Application of Extractive Fermentation on the Recuperation of Exopolysaccharide from Rhodotorula mucilaginosa UANL-001L
Abstract
:1. Introduction
2. Materials and Methods
2.1. Media Composition Effect on EPS Production
2.1.1. Cultivation Procedures in Submerged Fermentation
2.1.2. Cultivation Procedures in Presence of EOPO
2.1.3. Biomass and EPS Recuperation in Submerged Fermentation
2.2. EOPO Effect on Cell Viability and Biomass Generation
2.2.1. Cell Viability
- [C]: Cell concentration
- CC: Counted cells
- Cq: Counted quadrants
- CA: Counted blue cells
- TQ: Total quadrants
- FD: Dilution Factor
- V: Cell viability
2.2.2. Biomass Generation
2.3. Extractive Fermentation Parameter Study: Rheological Characterization and Phase Formation Time and Temperature
2.3.1. Rheological Characterization of Two-Phase Systems
2.3.2. Two-Phase Generation in the Prescence of EOPO 970
2.4. Biomass and EPS Production and Recovery on Extractive Fermentation with EOPO 970
2.5. Statistical Analysis
3. Results
3.1. Media Composition Effect on EPS Production
3.2. EOPO Effect on Viability and Biomass Generation
3.3. Extractive Fermentation Parameter Study: Rheological Characterization and Phase Formation Time and Temperature
3.3.1. Rheological Characterization of Two-Phase Systems
3.3.2. Two-Phase Generation in the Prescence of EOPO 970
3.4. Biomass and EPS Production and Recovery on Extractive Fermentation with EOPO 970
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hussain, A.; Zia, K.M.; Tabasum, S.; Noreen, A.; Ali, M.; Iqbal, R.; Zuber, M. Blends and composites of exopolysaccharides; properties and applications: A review. Int. J. Biol. Macromol. 2017, 94, 10–27. [Google Scholar] [CrossRef] [PubMed]
- Satyanarayana, T.; Gotthard, K. Yeast Biotechnology: Diversity and Applications, 1st ed.; Springer: New York, NY, USA, 2009. [Google Scholar] [CrossRef]
- Andhare, P.; Chauhan, K.; Dave, M.; Pathak, H. microbial exopolysaccharides: Advances in applications and future prospects. In Biotechnology Volume 3: Microbial Biotechnology, 1st ed.; Tewari, R., Ed.; Studium Press LLC: Houston, TX, USA, 2013; Volume 3, pp. 1–26. [Google Scholar] [CrossRef]
- Gonzalez Garza, M.T.; Barboza Perez, D.; Vazquez Rodriguez, A.; Garcia-Gutierrez, D.I.; Zarate, X.; Cantú Cardenas, M.E.; Urraca-Botello, L.I.; Lopez-Chuken, U.J.; Trevino-Torres, A.L.; Cerino-Córdoba, F.d.J.; et al. Metal-induced production of a novel bioadsorbent exopolysaccharide in a native Rhodotorula mucilaginosa from the mexican northeastern region. PLoS ONE 2016, 11, e0148430. [Google Scholar] [CrossRef] [Green Version]
- Vazquez-Rodriguez, A.; Vasto-Anzaldo, X.; Barboza Perez, D.; Vázquez-Garza, E.; Chapoy-Villanueva, H.; García-Rivas, G.; Garza-Cervantes, J.; Gómez-Lugo, J.; Gomez-Loredo, A.; Garza Gonzalez, M.T.; et al. Microbial Competition of Rhodotorula mucilaginosa UANL-001L and E. coli increase biosynthesis of Non-Toxic Exopolysaccharide with Applications as a Wide-Spectrum Antimicrobial. Sci. Rep. 2018, 8, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nwodo, U.U.; Green, E.; Okoh, A.I. Bacterial exopolysaccharides: Functionality and prospects. Int. J. Mol. Sci. 2012, 13, 14002–14015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Freitas, F.; Torres, C.A.V.; Reis, M.A.M. Engineering aspects of microbial exopolysaccharide production. Bioresour. Technol. 2017, 245, 1674–1763. [Google Scholar] [CrossRef] [PubMed]
- Show, P.L.; Tan, P.C.; Anuar, M.S.; Ariff, A.; Yusof, Y.A.; Chen, S.K.; Ling, T.C. Direct recovery of lipase derived from Burkholderia Cepacia in recycling aqueous two-phase flotation. Sep. Purif. Technol. 2011, 80, 577–584. [Google Scholar] [CrossRef]
- Zhu, J.H.; Yan, X.L.; Chen, H.J.; Wang, Z.H. In situ extraction of intracellular l-asparaginase using thermoseparating aqueous two-phase systems. J. Chromatogr. A 2007, 1147, 127–134. [Google Scholar] [CrossRef]
- Raja, S.; Murty, V.R.; Varadavenkatesan, T.; Rajasekar, V.; Ramesh, V. Aqueous Two Phase Systems for the Recovery of Biomolecules—A Review. Sci. Technol. 2011, 1, 7–16. [Google Scholar] [CrossRef]
- Rico-Castro, X.; González-Amado, M.; Soto, A.; Rodríguez, O. Aqueous two-phase systems with thermo-sensitive EOPO co-polymer (UCON) and sulfate salts: Effect of temperature and cation. J. Chem. Thermodyn. 2017, 108, 136–142. [Google Scholar] [CrossRef]
- Ates, O. Systems biology of microbial exopolysaccharides production. Front. Bioeng. Biotechnol. 2015, 3, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Ghada, S.I.; Mahmoud, G.M.; Asker, M.; Eman, A.G. Production and biological evaluation of exopolysaccharide from isolated Rhodotorula glutinins. Aus. J. Basic Appl. Sci. 2012, 6, 401–408. [Google Scholar]
- Sanchez, N.; Ramírez, D.; Zapata, A. evaluación de un sistema de fermentación extractiva para la producción de ácido láctico utilizando suero de leche como sustrato. VITAE Rev. Fac. Química Farm. 2007, 14, 27–34. [Google Scholar]
- Pavlova, K.; Grigorova, D. Production and properties of exopolysaccharide by Rhodotorula acheniorum MC. Food Res. Int. 1999, 32, 473–477. [Google Scholar] [CrossRef]
- Aksu, Z.; Tug, A. Carotenoids production by the yeast Rhodotorula mucilaginosa: Use of agricultural wastes as a carbon source. Process. Biochem. 2005, 40, 2985–2991. [Google Scholar] [CrossRef]
- Ann, M.; Ramirez, J.R.; Dizon, E.I.; Mercado, S.M. Substrate optimization for exopolysaccharide production by Rhodotorula minuta BIOTECH 2178 using simplex-lattice design. J. Soc. Technol. 2015, 5, 34–41. [Google Scholar]
- Chi, Z.; Zhao, S. Optimization of medium and cultivation conditions for pullulan production by a new pullulan-producing yeast strain. Enzyme Microb. Technol. 2003, 33, 206–211. [Google Scholar] [CrossRef]
- Villay, A.; Laroche, C.; Roriz, D.; El Alaoui, H.; Delbac, F.; Michaud, P. Optimization of culture parameters for exopolysaccharides production by the microalga Rhodella violacea. Bioresour. Technol. 2013, 146, 732–735. [Google Scholar] [CrossRef]
- Takita, J.; Itano, R.; Morii, N.; Ebina, F.; Matsuda, K.; Katohda, S. Production and rheology of exopolysaccharide by the yeast Rhodotorula mucilaginosa YR-2. J. Appl. Glycosci. 2004, 51, 255–257. [Google Scholar] [CrossRef]
- Yuksekdag, Z.N.; Aslim, B. Influence of different carbon sources on exopolysaccharide production by Lactobacillus delbrueckii subsp. bulgaricus (B3, G12) and Streptococcus thermophilus (W22). Braz. Arch. Biol. Technol. 2008, 51, 581–585. [Google Scholar] [CrossRef]
- Grobben, G.J.; Smith, M.R.; Sikkema, J.; de Bont, J.A.M. Influence of fructose and glucose on the production of exopolysaccharides and the activities of enzymes involved in the sugar metabolism and the synthesis of sugar nucleotides in Lactobacillus delbrueckii subsp. bulgaricus NCFB 2772. Appl. Microbiol. Biotechnol. 1996, 46, 279–284. [Google Scholar] [CrossRef]
- Schmid, J.; Sieber, V.; Rehm, B. Bacterial exopolysaccharides: Biosynthesis pathways and engineering strategies. Front. Microbiol. 2015, 6, 496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kold, D. Study of Mass Transfer in Viscous Fermentations. Ph.D. Thesis, Technical University of Denmark, Lyngby, Denmark, 2010. [Google Scholar]
- Schmidt, F.R. Optimization and scale up of industrial fermentation processes. Appl. Microbiol. Biotechnol. 2005, 68, 425–435. [Google Scholar] [CrossRef] [PubMed]
- Humbird, D.; Fei, Q. Scale-Up Considerations for Biofuels. In Biotechnology for Biofuel Production and Optimization, 1st ed.; Eckert, C.A., Trinh, C.T., Eds.; Elsevier: Amsterdam, The Netherlands, 2016; Volume 1, pp. 513–517. [Google Scholar] [CrossRef]
- Show, P.L.; Tan, C.P.; Anuar, M.S.; Ariff, A.; Yusof, Y.A.; Chen, S.K.; Ling, T.C. Extractive fermentation for improved production and recovery of lipase derived from Burkholderia cepacia using a thermoseparating polymer in aqueous two-phase systems. Bioresour. Technol. 2012, 116, 226–233. [Google Scholar] [CrossRef] [PubMed]
- Cox, C.S. Bacterial survival in suspension in polyethylene glycol solutions. J. Gen. Microbiol. 1966, 45, 275–281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, B.; Han, J.; Wang, Y.; Sheng, C.; Liu, Y.; Zhang, G.; Yan, Y. Separation, enrichment and determination of ciprofloxacin using thermoseparating polymer aqueous two-phase system combined with high performance liquid chromatography in milk, egg, and shrimp samples. Food Chem. 2014, 148, 105–111. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Z.; Song, H.; Cao, X.; Shen, Q.; Han, D.; Zhong, F.; Hu, H.; Yang, Y. Simultaneous extraction and purification of polysaccharides from Gentiana scabra Bunge by microwave-assisted ethanol-salt aqueous two-phase system. Ind. Crop. Prod. 2017, 102, 75–87. [Google Scholar] [CrossRef]
- Prasad, P.V.; Pisipati, S.; Mutava, R.N.; Tuinstra, M. Sensitivity of grain sorghum to high temperature stress during reproductive development. Crop. Sci. 2008, 48, 1911–1917. [Google Scholar] [CrossRef] [Green Version]
- Ng, H.S.; Tan, C.P.; Mokhtar, M.N.; Ibrahim, S.; Ariff, A.; Ooi, C.W.; Ling, T.C. Recovery of Bacillus cereus cyclodextrin glycosyltransferase and recycling of phase components in an aqueous two-phase system using thermo-separating polymer. Sep. Purif. Technol. 2012, 89, 9–15. [Google Scholar] [CrossRef]
- Badhwar, P.; Kumar, P.; Kumar Dubey, K. Extractive fermentation for process integration and amplified pullulan production by A. pullulans in Aqueous Two Phase Systems. Sci. Rep. 2019, 9, 1–8. [Google Scholar] [CrossRef] [Green Version]
Component | Concentration (g/L) |
---|---|
Peptic digest of animal tissue | 5.0 |
Yeast extract | 3.0 |
Malt extract | 3.0 |
Dextrose | 10.0 |
Component | Concentration (g/L) |
---|---|
Ammonium chloride (NH4Cl) | 2.0 |
Potassium phosphate (KH2PO4) | 1.0 |
Magnesium sulphate (MgSO4) | 0.5 |
Sodium chloride (NaCl) | 0.1 |
Calcium chloride (CaCl) | 0.1 |
Zinc sulphate (ZnSO4) | 0.005 |
Saccharose (C12H22O11) | 100.0 |
Component | Concentration (g/L) |
---|---|
Methylene blue | 0.025 |
Sodium chloride (NaCl) | 0.90 |
Calcium chloride (CaCl2) | 0.04 |
Potassium chloride (CaCl2) | 0.04 |
Medium | EOPO 970 | Microorganism | Viscosity | Superficial Tension (σ) | Interfacial Tension (γ) |
---|---|---|---|---|---|
[% v/v] | (Yes/No) | [Pa∙s] | [N/m] | [N/m] | |
Mineral | 10 | No | 0.00227 | 0.0680 | ND |
Mineral | 20 | No | 0.00285 | 0.0680 | 0.0337 |
Mineral | 30 | No | 0.00329 | 0.0680 | 0.0367 |
Mineral | 40 | No | 0.00378 | 0.0670 | 0.0380 |
Mineral | 50 | No | 0.00422 | 0.0670 | 0.0387 |
Mineral | 0 | Yes | 0.00135 | 0.0677 | ND |
Mineral | 10 | Yes | 0.00237 | 0.0680 | ND |
Mineral | 20 | Yes | 0.00422 | 0.0670 | 0.0310 |
Mineral | 30 | Yes | 0.00605 | 0.0660 | 0.0330 |
Mineral | 40 | Yes | 0.00771 | 0.0660 | 0.0350 |
Mineral | 50 | Yes | 0.00987 | 0.0653 | 0.0367 |
YM | 10 | No | 0.00291 | 0.0467 | ND |
YM | 20 | No | 0.00385 | 0.0443 | ND |
YM | 30 | No | 0.00490 | 0.0430 | 0.0300 |
YM | 40 | No | 0.00696 | 0.0420 | 0.0317 |
YM | 50 | No | 0.00835 | 0.0420 | 0.0350 |
YM | 0 | Yes | 0.00168 | 0.0537 | ND |
YM | 10 | Yes | 0.00426 | 0.0500 | ND |
YM | 20 | Yes | 0.00510 | 0.0500 | 0.0280 |
YM | 30 | Yes | 0.00850 | 0.0490 | 0.0287 |
YM | 40 | Yes | 0.00841 | 0.0470 | 0.0300 |
YM | 50 | Yes | 0.01019 | 0.0460 | 0.0330 |
YM | 0 | No | 0.00154 | 0.0403 | - |
EOPO | 100 | No | 0.11363 | 0.0547 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Medina-Ramirez, C.F.; Castañeda-Guel, M.T.; Alvarez-Gonzalez, M.F.; Montesinos-Castellanos, A.; Morones-Ramirez, J.R.; López-Guajardo, E.A.; Gómez-Loredo, A. Application of Extractive Fermentation on the Recuperation of Exopolysaccharide from Rhodotorula mucilaginosa UANL-001L. Fermentation 2020, 6, 108. https://doi.org/10.3390/fermentation6040108
Medina-Ramirez CF, Castañeda-Guel MT, Alvarez-Gonzalez MF, Montesinos-Castellanos A, Morones-Ramirez JR, López-Guajardo EA, Gómez-Loredo A. Application of Extractive Fermentation on the Recuperation of Exopolysaccharide from Rhodotorula mucilaginosa UANL-001L. Fermentation. 2020; 6(4):108. https://doi.org/10.3390/fermentation6040108
Chicago/Turabian StyleMedina-Ramirez, Carlo Franco, Mariana Teresa Castañeda-Guel, Ma. Fernanda Alvarez-Gonzalez, Alejandro Montesinos-Castellanos, Jose Ruben Morones-Ramirez, Enrique A. López-Guajardo, and Alma Gómez-Loredo. 2020. "Application of Extractive Fermentation on the Recuperation of Exopolysaccharide from Rhodotorula mucilaginosa UANL-001L" Fermentation 6, no. 4: 108. https://doi.org/10.3390/fermentation6040108
APA StyleMedina-Ramirez, C. F., Castañeda-Guel, M. T., Alvarez-Gonzalez, M. F., Montesinos-Castellanos, A., Morones-Ramirez, J. R., López-Guajardo, E. A., & Gómez-Loredo, A. (2020). Application of Extractive Fermentation on the Recuperation of Exopolysaccharide from Rhodotorula mucilaginosa UANL-001L. Fermentation, 6(4), 108. https://doi.org/10.3390/fermentation6040108