Effects of Medium Components on Isocitric Acid Production by Yarrowia lipolytica Yeast
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Selection ICA Producers
3.2. Effect Limiting Factors on ICA Production
3.3. Effect of Iron
3.4. Inhibition of Isocitrate Lyase
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Vickery, H.B. A suggested new nomenclature for the isomers of isocitric acid. J. Biol. Chem. 1962, 237, 1739–1741. [Google Scholar]
- Finogenova, T.V.; Morgunov, I.G.; Kamzolova, S.V.; Chernyavskaya, O.G. Organic acid production by the yeast Yarrowia lipolytica: A review of prospects. Appl. Biochem. Microbiol. 2005, 41, 418–425. [Google Scholar] [CrossRef]
- Heretsch, P.; Thomas, F.; Aurich, A.; Krautscheid, H.; Sicker, D.; Giannis, A. Syntheses with a chiral building block from the citric acid cycle: (2R,3S)-isocitric acid by fermentation of sunflower oil. Angew Chem. Int. Ed. Engl. 2008, 47, 1958–1960. [Google Scholar] [CrossRef]
- Aurich, A.; Specht, R.; Müller, R.A.; Stottmeister, U.; Yovkova, V.; Otto, C.; Holz, M.; Barth, G.; Heretsch, P.; Thomas, F.A.; et al. Microbiologically produced carboxylic acids used as building blocks in organic synthesis. In Reprogramming Microbial Metabolic Pathways. Subcellular Biochemistry; Wang, X., Chen, J., Quinn, P., Eds.; Springer: Dordrecht, The Netherlands, 2012; Volume 64, pp. 391–423. [Google Scholar] [CrossRef]
- Otto, C.; Holz, M.; Barth, G. Production of Organic Acids by Yarrowia lipolytica. In Yarrowia lipolytica; Microbiology Monographs; Barth, G., Ed.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 137–151. [Google Scholar] [CrossRef]
- Aurich, A.; Hofmann, J.; Oltrogge, R.; Wecks, M.; Glaser, R.; Blömer, L.; Mauersberger, S.; Roland, A.; Müller, R.A.; Sicker, D.; et al. Improved isolation of microbiologically produced (2R,3S)-isocitric acid by adsorption on activated carbon and recovery with methanol. Org. Process Res. Dev. 2017, 21, 866–870. [Google Scholar] [CrossRef] [Green Version]
- Giannis, A.; Mousavizadeh, F. On Artemisinin, Cyclopamine, D-Isocitric acid, Hyperforin, Epigenetics, Sialic Acid, and More. Synlett 2019, 30, 1401–1418. [Google Scholar] [CrossRef]
- Bullin, K.; Hennig, L.; Herold, R.; Krautscheid, H.; Richter, K.; Sicker, D. An optimized method for an (2R,3S)-isocitric acid building block. Monatsh. Chem. 2019, 150, 247–253. [Google Scholar] [CrossRef]
- Kamzolova, S.V.; Morgunov, I.G. Microbial production of (2R,3S)-isocitric acid: State of the arts and prospects (Review). Appl. Microbiol. Biotechnol. 2019, 103, 9321–93333. [Google Scholar] [CrossRef]
- Fickers, P.; Cheng, H.; Sze, K.; Lin, C. Sugar alcohols and organic acids synthesis in Yarrowia lipolytica: Where Are We? Microorganisms 2020, 8, 574. [Google Scholar] [CrossRef]
- Morgunov, I.G.; Karpukhina, O.V.; Kamzolova, S.V.; Samoilenko, V.A.; Inozemtsev, A.N. Investigation of the effect of biologically active threo-Ds-isocitric acid on oxidative stress in Paramecium caudatum. Prep. Biochem. Biotechnol. 2018, 48, 1–5. [Google Scholar] [CrossRef]
- Morgunov, I.G.; Kamzolova, S.V.; Karpukhina, O.V.; Bokieva, S.V.; Inozemtsev, A.N. Biosynthesis of isocitric acid in repeated-batch culture and testing of its stress-protective activity. Appl. Microbiol. Biotechnol. 2019, 103, 3549–3558. [Google Scholar] [CrossRef]
- Morgunov, I.G.; Kamzolova, S.V.; Karpukhina, O.V.; Bokieva, S.V.; Lunina, J.N.; Inozemtsev, A.N. Microbiological production of isocitric acid from biodiesel waste and its effect on spatial memory. Microorganisms 2020, 8, 462. [Google Scholar] [CrossRef] [Green Version]
- Finogenova, T.V. Biosynthesis of Organic Acids by Yeast Organisms and its Regulation. Ph.D. Thesis, USSR Academy of Sciences, Institute of Biochemistry and Physiology of Microorganisms, Pushchino, Russia, 1982. [Google Scholar]
- Kamzolova, S.V.; Shamin, R.V.; Stepanova, N.N.; Morgunov, G.I.; Lunina, J.N.; Allayarov, R.K.; Samoilenko, V.A.; Morgunov, I.G. Fermentation conditions and media optimization for isocitric acid production from ethanol by Yarrowia lipolytica. BioMed Res. Int. 2018, 2543210. [Google Scholar] [CrossRef] [Green Version]
- Holz, M.; Förster, A.; Mauersberger, S.; Barth, G. Aconitase overexpression changes the product ratio of citric acid production by Yarrowia lipolytica. Appl. Microbiol. Biotechnol. 2009, 81, 1087–1096. [Google Scholar] [CrossRef]
- Kamzolova, S.V.; Dedyukhina, E.G.; Samoilenko, V.A.; Lunina, J.N.; Puntus, I.F.; Allayarov, R.K.; Chiglintseva, M.N.; Mironov, A.A.; Morgunov, I.G. Isocitric acid production from rapeseed oil by Yarrowia lipolytica yeast. Appl. Microbiol. Biotechnol. 2013, 97, 9133–9144. [Google Scholar] [CrossRef]
- Kamzolova, S.V.; Lunina, Y.N.; Puntus, I.F.; Allayarov, R.K.; Laptev, I.A.; Samoilenko, V.A.; Morgunov, I.G. Biosynthesis of isocitric acid by the yeast Yarrowia lipolytica and its regulation. Appl. Biochem. Microbiol. 2015, 51, 249–254. [Google Scholar] [CrossRef]
- Hapeta, P.; Rakicka-Pustułka, M.; Juszczyk, P.; Robak, M.; Rymowicz, W.; Lazar, Z. Overexpression of citrate synthase increases isocitric acid biosynthesis in the Yarrowia lipolytica. Sustainability 2020, 12, 7364. [Google Scholar] [CrossRef]
- Da Silva, L.V.; Tavares, C.B.; Amaral, P.F.F.; Coehlo, M.A.Z. Production of citric acid by Yarrowia lipolytica in different crude oil concentrations and in different nitrogen sources. Chem. Eng. Trans. 2012, 27, 199–204. [Google Scholar]
- Morgunov, I.G.; Kamzolova, S.V. Physiologo-biochemical characteristics of citrate-producing yeast Yarrowia lipolytica grown on glycerol-containing waste of biodiesel industry. Appl. Microbiol. Biotechnol. 2015, 99, 6443–6450. [Google Scholar] [CrossRef]
- Rzechonek, D.A.; Dobrowolski, A.; Rymowicz, W.; Mirończuk, A.M. Aseptic production of citric and isocitric acid from crude glycerol by genetically modified Yarrowia lipolytica. Bioresour. Technol. 2019, 271, 340–344. [Google Scholar] [CrossRef]
- Kamzolova, S.V.; Allayarov, R.K.; Lunina, J.N.; Morgunov, I.G. The effect of oxalic and itaconic acids on threo-Ds-isocitric acid production from rapeseed oil by Yarrowia lipolytica. Bioresour. Technol. 2016, 206, 128–133. [Google Scholar] [CrossRef]
- Förster, A.; Jacobs, K.; Juretzek, T.; Mauersberger, S.; Barth, B. Overexpression of the ICL1 gene changes the product ratio of citric acid production by Yarrowia lipolytica. Appl. Microbiol. Biotechnol. 2007, 77, 861–869. [Google Scholar] [CrossRef]
- Abe, M.; Tabuchi, T.; Tanaka, M. Studies on organic acid fermentation in yeast. III. Accumulation of isocitric acid in cultures of yeast. J. Agric. Chem. Soc. Jpn. 1970, 44, 493–498. [Google Scholar]
- Oogaki, M.; Inoue, M.; Kaimaktchiev, A.C.; Nakahara, T.; Tabuchi, T. Production of isocitric acid from glucose by Candida ravautii. Agric. Biol. Chem. 1984, 48, 789–795. [Google Scholar] [CrossRef] [Green Version]
- Nakahara, T.; Kaimaktchiev, A.C.; Oogaki-Chino, M.; Uchida, Y.; Tebuchi, T. Isocitric acid production from n-alanes by Candida catenulate. Agric. Biol. Chem. 1987, 51, 2111–2116. [Google Scholar]
- Moeller, L.; Strehlitz, B.; Aurich, A.; Zehnsdorf, A.; Bley, T. Optimization of citric acid production from glucose by Yarrowia lipolytica. Eng. Life Sci. 2007, 7, 504–511. [Google Scholar] [CrossRef]
- Papanikolaou, S.; Galiotou-Panayotou, M.; Fakas, S.; Komaitis, M.; Aggelis, G. Citric acid production by Yarrowia lipolytica cultivated on olive-mill wastewater-based media. Bioresour. Technol. 2008, 99, 2419–2428. [Google Scholar] [CrossRef]
- Carsanba, E.; Papanikolaou, S.; Fickers, P.; Erten, H. Screening various Yarrowia lipolytica strains for citric acid production. Yeast 2019, 36, 319–327. [Google Scholar] [CrossRef]
- Tomaszewska, L.; Rakicka, M.; Rymowicz, W.; Rywińska, A. A comparative study on glycerol metabolism to erythritol and citric acid in Yarrowialipolytica yeast cells. FEMS Yeast Res. 2014, 14, 966–976. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kornberg, H.L. The role and control of the glyoxylate cycle in Escherichia coli. Biochem. J. 1966, 99, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Eprintsev, A.T.; Salnikov, A.V.; Haba, A.M.; Zaichikova, M.V. Isocitrate lyase isozymes and their role in organisms with different levels of organization. Biol. Bull. Rev. 2014, 4, 323–334. [Google Scholar] [CrossRef]
- Evans, C.T.; Ratledge, C. The physiological significance of citric acid in the control of metabolism in lipid-accumulating yeasts. Biotechnol. Genet. Eng. Rev. 1985, 3, 85–111. [Google Scholar] [CrossRef]
- Holdsworth, J.E.; Veenhuis, H.; Ratledge, C. Enzyme activities in oleaginous yeasts accumulating and utilizing exogenous or endogenous lipids. J. Gen. Microbiol. 1988, 134, 2907–2915. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Jong-Gubbels, P.; Vanrolleghem, P.; Heijnen, S.; Van Dijken, J.P.; Pronk, J.T. Regulation of carbon metabolism in chemostat cultures of Saccharomyces cerevisiae grown on mixtures of glucose and ethanol. Yeast 1995, 11, 407–418. [Google Scholar] [CrossRef] [PubMed]
- Kamzolova, S.V.; Lunina, J.N.; Morgunov, I.G. Biochemistry of citric acid production from rapeseed oil by Yarrowia lipolytica yeast. J. Am. Oil Chem. Soc. 2011, 88, 1965–1976. [Google Scholar] [CrossRef]
- Papanikolaou, S.; Aggelis, G. Lipids of oleaginous yeasts. Part II: Technology and potential applications. Eur. J. Lipid Sci. Technol. 2011, 113, 1052–1073. [Google Scholar] [CrossRef]
- Lopez-Boado, Y.S.; Herrero, P.; Gascon, S.; Moreno, F. Catabolite inactivation of isocitrate lyase from Saccharomyces cerevisiae. Arch. Microbiol. 1987, 147, 231–234. [Google Scholar] [CrossRef]
- Cioni, M.; Pinzauti, G.; Vanni, P. Comparative biochemistry of the glyoxylate cycle. Comp. Biochem. Physiol. 1981, 70, 1–26. [Google Scholar] [CrossRef]
- Cortay, J.C.; Negre, D.; Galinier, A.; Duclos, B.; Perriere, G.; Cozzone, A.J. Regulation of the acetate operon in Escherichia coli: Purification and functional characterization of the IclR repressor. EMBO J. 1991, 10, 675–679. [Google Scholar] [CrossRef]
- Schöler, A.; Schüller, H.J. Structure and regulation of the isocitrate lyase gene ICL1 from the yeast Saccharomyces cerevisiae. Curr. Genet. 1993, 23, 375–381. [Google Scholar] [CrossRef]
- McCullough, W.; Shanks, A. Properties of genes involved in the control of isocitrate lyase production in Aspergillus nidulans. J. Gen. Microbiol. 1993, 139, 509–511. [Google Scholar] [CrossRef] [Green Version]
- Barth, G.; Scheuber, T. Cloning of the isocitrate lyase gene (ICL1) from Yarrowia lipolytica and characterization of the deduced protein. Mol. Gen. Genet. 1993, 241, 422–430. [Google Scholar] [CrossRef]
- Ordiz, I.; Herrero, P.; Rodicio, R.; Moreno, F. Glucose-induced inactivation of isocitrate lyase in Saccharomyces cerevisiae is mediated by an internal decapeptide sequence. FEBS Lett. 1995, 367, 219–222. [Google Scholar] [CrossRef] [Green Version]
- Ordiz, I.; Herrero, P.; Rodicio, R.; Moreno, F. Glucose-induced inactivation of isocitrate lyase in Saccharomyces cerevisiae is mediated by the cAMP-dependent protein kinase catalytic subunits Tpk 1 and Tpk2. FEBS Lett. 1996, 385, 43–46. [Google Scholar] [CrossRef] [Green Version]
- Schöler, A.; Schüller, H.J. A carbon source-responsive promoter element necessary for activation of the isocitrate lyase gene ICL1 is common to genes of the gluconeogenic pathway in the yeast Saccharomyces cerevisiae. Mol. Cell. Biol. 1994, 14, 3613–3622. [Google Scholar] [CrossRef] [Green Version]
- Tanaka, A.; Nabeshima, S.; Tokuda, M.; Fukui, S. Studies on the physiology and metabolism of hydrocarbon-utilizing microorganisms. XX. Partial purification of isocitrate lyase from Candida tropicalis and some kinetic properties of the enzyme. Agric. Biol. Chem. 1977, 41, 795–801. [Google Scholar] [CrossRef]
- Hanozet, G.M.; Guerritore, A. Role of phosphoenolpyruvate and 6-phosphogluconate in the short-term control of yeast isocitrate lyase. Arch. Biochem. Biophys. 1972, 149, 127–135. [Google Scholar] [CrossRef]
- LaPorte, D.C.; Walsh, K.; Koshland, D.E., Jr. The branch point effect. Ultrasensitivity and subsensitivity to metabolic control. J. Biol. Chem. 1984, 259, 14068–14075. [Google Scholar]
- Rúa, J.; de Arriaga, D.; Busto, F.; Soler, J. Isocitrate lyase from Phycomycesblakesleeanus. The role of Mg2+ ions, kinetics and evidence for two classes of modifiable thiol groups. Biochem. J. 1990, 272, 359–367. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, G.; Stahmann, K.P.; Sahm, H. Inhibition of purified isocitrate lyase identified itaconate and oxalate as potential antimetabolites for the riboflavin overproducer Ashbya gossypii. Microbiology 1996, 142, 411–417. [Google Scholar] [CrossRef] [Green Version]
- Hildebrandt, W.; Weide, H. Isocitrate lyase of Candida guilliermondii, strain H17. 3. Regulation by intermediates of alkane catabolism and general model of regulation. Z. Allg. Mikrobiol. 1974, 14, 47–52. [Google Scholar] [CrossRef]
- Hoyt, J.C.; Johnson, K.E.; Reeves, H.C. Purification and characterization of Acinetobacter calcoaceticus isocitrate lyase. J. Bacteriol. 1991, 173, 6844–6848. [Google Scholar] [CrossRef] [Green Version]
- McFadden, B.A.; Purohit, S. Itaconate, an isocitrate lyase-directed inhibitor in Pseudomonas indigofera. J. Bacteriol. 1977, 131, 136–144. [Google Scholar] [CrossRef] [Green Version]
- Krátký, M.; Vinšová, J. Advances in mycobacterial isocitrate lyase targeting and inhibitors. Curr. Med. Chem. 2012, 19, 6126–6137. [Google Scholar] [CrossRef]
- O’Connell, B.T.; Paznokas, J.L. Glyoxylate cycle in Mucor racemosus. J. Bacteriol. 1980, 143, 416–421. [Google Scholar] [CrossRef] [Green Version]
- Munir, E.; Hattori, T.; Shimada, M. Purification and characterization of isocitrate lyase from the wood-destroying basidiomycete Fomitopsis palustris grown on glucose. Arch. Biochem. Biophys. 2002, 399, 225–231. [Google Scholar] [CrossRef]
- Karklin, R.; Peltzmane, I.; Raminya, L.; Korde, G. Overproduction of isocitric acid by wild strain of Candida lipolytica. In Metabolism of n-Alkanes and Oversynthesis of Products by Microorganisms; Finogenova, T.V., Sharyshev, A.A., Eds.; USSR Academy of Sciences, Institute of Biochemistry and Physiology of Microorganisms Pushchino: Pushchino, Russia, 1991; pp. 143–146. [Google Scholar]
Strains | Biomass (g/L) | ICA (g/L) | CA (g/L) | ICA/CA Ratio |
---|---|---|---|---|
Aciculoconidium aculeatum VKM Y-1301 | 4.43 ± 0.35 | 0 | 0.53 | n.d. |
Babjeviella inositovora VKM Y-2494 | 4.60 ± 0.53 | 0 | 0 | n.d. |
Blastobotrys adeninivorans VKM Y-2676 | 4.90 ± 0.56 | 0.60 ± 0.10 | 1.64 ± 0.07 | 1:2.7 |
C. intermedia | 4.20 ± 0.60 | 0 | 0 | n.d. |
C. parapsilosis | 4.10 ± 0.66 | 0 | 0 | n.d. |
C. tropicalis 303 | 3.00 ± 0.56 | 0 | 0 | n.d. |
C. utilis VKM Y-33 | 1.47 ± 0.50 | 0 | 0 | n.d. |
C. zeylanoides VKM Y-6 | 2.21 ± 0.50 | 0.61 ± 0.12 | 1.22 ± 0.12 | 1:2 |
C. zeylanoides VKM Y-14 | 2.20 ± 0.20 | 1.11 ± 0.20 | 2.22 ± 0.13 | 1:2 |
C. zeylanoides VKM Y-2324 | 2.57 ± 0.21 | 1.12 ± 0.12 | 1.90 ± 0.20 | 1:1.7 |
Diutina catenulata VKM Y-5 | 4.70 ± 0.20 | 1.30 ± 0.20 | 2.60 ± 0.20 | 1:2 |
D. catenulata VKM Y-36 | 2.30 ± 0.20 | 1.10 ± 0.20 | 1.1 ± 0.20 | 1:1 |
D. rugosa VKM Y-67 | 2.03 ± 0.35 | 0 | 0 | n.d. |
Meyerozyma guilliermondii | 5.20 ± 0.56 | 0.80 ± 0.10 | 2.35 ± 0.10 | 1:2.9 |
Pichia besseyi VKM Y-2084 | 2.15 ± 0.15 | 0 | 0 | n.d. |
P. media VKM Y-1381 | 2.55 ± 0.15 | 0 | 0 | n.d. |
P. membranifaciens VKM Y-292 | 3.01 ± 0.40 | 0 | 0 | n.d. |
Sugiyamaella paludigena VKM Y-2443 | 2.65 ± 0.35 | 0 | 0 | n.d. |
Wickerhamomyces bisporus VKM Y-1065 | 2.90 ± 0.25 | 0 | 0 | n.d. |
Y. lipolytica VKM Y-2412 | 2.00 ± 0.21 | 2.10 ± 0.35 | 1.10 ± 0.16 | 1:1 |
Y. lipolytica VKM Y-2373 | 1.70 ± 0.17 | 6.30 ± 0.61 | 4.84 ± 0.39 | 1.3:1 |
Y. lipolytica 68 | 2.37 ± 0.23 | 0.14 ± 0.01 | 0.16 ± 0.02 | 1:1.1 |
Y. lipolytica 69 | 2.60 ± 0.22 | 2.90 ± 0.26 | 2.21 ± 0.21 | 1.3:1 |
Y. lipolytica 374/4 | 2.40 ± 0.24 | 2.46 ± 0.40 | 2.66 ± 0.29 | 1:1.1 |
Y. lipolytica 571 | 3.50 ± 0.29 | 1.1 ± 0.18 | 1.07 ± 0.10 | 1:1 |
Y. lipolytica 581 | 2.40 ± 0.21 | 1.26 ± 0.24 | 1.73 ± 0.27 | 1:1.4 |
Y. lipolytica 585 | 1.95 ± 0.20 | 1.20 ± 0.19 | 1.52 ± 0.25 | 1:1.3 |
Y. lipolytica 607 | 2.20 ± 0.20 | 1.80 ± 0.60 | 1.7 ± 0.44 | 1:1.1 |
Y. lipolytica 684 | 2.78 ± 0.40 | 2.10 ± 0.60 | 2.0 ± 0.24 | 1.1:1 |
Zygoascus hellenicus VKM Y-2007 | 2.70 ± 0.20 | 0 | 0 | n.d. |
Parameter | Limiting Component (mg/L) | ||||
---|---|---|---|---|---|
Full Medium | N | P | S | Mg | |
2545 (N) | 630 (N) | 1960 (N) | 1960 (N) | 1960 (N) | |
492 (P) | 492 (P) | 16.4 (P) | 492 (P) | 492 (P) | |
362 (S) | 362 (S) | 362 (S) | 12 (S) | 362 (S) | |
280 (Mg) | 280 (Mg) | 280 (Mg) | 280 (Mg) | 5.6 (Mg) | |
Time (h) | 48 | 96 | 96 | 96 | 96 |
Biomass (g/L) | 27.7 ± 3.3 | 9.83 ± 0.15 | 8.23 ± 0.15 | 8.40 ± 0.20 | 9.80 ± 0.20 |
ICA (g/L) | 1.37 ± 0.12 | 46.97 ± 2.73 | 38.0 ± 1.1 | 40.36 ± 1.86 | 20.83 ± 0.57 |
CA (g/L) | 1.37 ± 0.10 | 35.67 ± 1.05 | 32.36 ± 2.25 | 38.46 ± 0.31 | 6.40 ± 0.36 |
ICA/CA ratio | 1:1 | 1.3:1 | 1.2:1 | 1.1:1 | 3.3:1 |
YICA (g/g) | n.d. | 0.83 | 0.67 | 0.71 | 0.37 |
QICA (g/L·h) | n.d. | 0.79 | 0.64 | 0.68 | 0.35 |
Parameter | Concentration of Iron (mg/L) | |||||
---|---|---|---|---|---|---|
Without Fe | 0.05 | 1.5 | 3.0 | 6.0 | 10.0 | |
Biomass (g/L) | 2.83 ± 0.15 | 9.83 ± 0.15 | 10.67 ± 0.15 | 11.10 ± 0.36 | 10.73 ± 0.78 | 15.73 ± 0.15 |
ICA (g/L) | 10.97 ± 0.73 | 46.97 ± 2.73 | 51.50 ± 1.5 | 48.90 ± 3.57 | 48.50 ± 0.50 | 35.67 ± 2.04 |
CA (g/L) | 10.67 ± 1.25 | 35.67 ± 1.05 | 30.23 ± 0.60 | 28.60 ± 0.62 | 28.73 ± 1.15 | 20.58 ± 2.31 |
ICA/CA ratio | 1:1 | 1.3:1 | 1.7:1 | 1.7:1 | 1.7:1 | 1.7:1 |
YICA (g/g) | 0.19 | 0.83 | 0.91 | 0.86 | 0.86 | 0.63 |
QICA (g/L·h) | 0.18 | 0.79 | 0.87 | 0.80 | 0.81 | 0.62 |
Enzyme activity (U/mg protein) | ||||||
CS | 2.20 ± 0.30 | 2.25 ± 0.35 | 2.66 ± 0.20 | 2.62 ± 0.40 | 2.70 ± 0.30 | 2.75 ± 0.25 |
AH | 0.20 ± 0.02 | 0.25 ± 0.03 | 0.95 ± 0.15 | 0.93 ± 0.25 | 0.85 ± 0.16 | 0.88 ± 0.07 |
NAD-ICDH | 0.02 ± 0.01 | 0.02 ± 0.01 | 0.03 ± 0.01 | 0.03 ± 0.01 | 0.03 ± 0.01 | 0.03 ± 0.01 |
ICL | 0.11 ± 0.01 | 0.12 ± 0.01 | 0.12 ± 0.01 | 0.11 ± 0.01 | 0.11 ± 0.01 | 0.12 ± 0.01 |
Inhibitor | Concentration in Cultural Medium (g/L) | |
---|---|---|
Initial | Residual | |
Glucose 6-phosphate | 1.1 | 0 |
Fructose 1,6-bisphosphate | 2.1 | 0 |
Pyruvic acid | 0.2 | 0 |
Citric acid | 0.6 | 0 |
α-Ketoglutaric acid | 0.4 | 0 |
Fumaric acid | 0.3 | 0 |
Malic acid | 0.5 | 0 |
Oxaloacetic acid | 0.4 | 0 |
Itaconic acid | 0.4 | 0.4 |
Oxalate | 0.4 | 0.4 |
Parameter | Concentration of Itaconic Acid (mM) | ||||
---|---|---|---|---|---|
0 | 20 | 30 | 40 | 50 | |
Biomass (g/L) | 10.67 ± 0.15 | 10.1 ± 1.15 | 10.85 ±1.15 | 9.7 ± 1.10 | 7.7 ± 1.20 |
ICA (g/L) | 51.50 ± 1.5 | 62.70 ± 4.45 | 70.60 ± 2.15 | 51.00 ± 3.45 | 31.00 ± 6.15 |
CA (g/L) | 30.23 ± 0.60 | 23.50 ± 2.15 | 17.50 ± 1.15 | 12.75 ± 2.25 | 7.75 ± 2.15 |
ICA/CA ratio | 1.7:1 | 2.8:1 | 4:1 | 4:1 | 4:1 |
YICA (g/g) | 0.91 | 1.11 | 1.25 | 0.90 | 0.55 |
QICA (g/L·h) | 0.87 | 1.06 | 1.19 | 0.86 | 0.52 |
Enzyme activity (U/mg protein) | |||||
CS | 2.66 ± 0.20 | 2.30 ± 0.35 | 2.20 ± 0.35 | 2.20 ± 0.35 | 2.10 ± 0.20 |
AH | 0.95 ± 0.15 | 0.85 ± 0.07 | 0.85 ± 0.07 | 0.80 ± 0.17 | 0.75 ± 0.10 |
NAD-ICDH | 0.03 ± 0.01 | 0.02 ± 0.01 | 0.02 ± 0.01 | 0.02 ± 0.01 | 0.02 ± 0.01 |
ICL | 0.12 ± 0.01 | 0.01 ± 0.01 | 0.01 ± 0.01 | 0.01 ± 0.01 | 0.01 ± 0.01 |
Parameter | With Inhibitor | |||
---|---|---|---|---|
Without Inhibitor | Itaconic Acid 30 mM | Oxalic Acid 30 mM | Itaconic Acid + Oxalic Acid | |
Biomass (g/L) | 10.67 ± 0.15 | 10.85 ± 1.15 | 9.80 ± 0.75 | 6.10 ± 0.65 |
ICA (g/L) | 51.50 ± 1.5 | 70.60 ± 2.15 | 62.80 ± 4.75 | 68.00 ± 2.20 |
CA (g/L) | 30.23 ± 0.60 | 17.50 ± 1.15 | 22.20 ± 2.15 | 17.00 ± 2.15 |
ICA/CA ratio | 1.7:1 | 4:1 | 2.9:1 | 4:1 |
YICA (g/g) | 0.91 | 1.25 | 1.11 | 1.2 |
QICA (g/L·h) | 0.87 | 1.19 | 1.05 | 1.15 |
Enzyme activity (U/mg protein) | ||||
CS | 2.66 ± 0.20 | 2.20 ± 0.35 | 2.70 ± 0.20 | 2.20 ± 0.25 |
AH | 0.95 ± 0.15 | 0.85 ± 0.07 | 0.78 ± 0.10 | 0.80 ± 0.10 |
NAD-ICDH | 0.03 ± 0.01 | 0.02 ± 0.01 | 0.03 ± 0.02 | 0.03 ± 0.01 |
ICL | 0.12 ± 0.01 | 0.01 ± 0.01 | 0.01 ± 0.01 | 0.01 ± 0.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kamzolova, S.V.; Samoilenko, V.A.; Lunina, J.N.; Morgunov, I.G. Effects of Medium Components on Isocitric Acid Production by Yarrowia lipolytica Yeast. Fermentation 2020, 6, 112. https://doi.org/10.3390/fermentation6040112
Kamzolova SV, Samoilenko VA, Lunina JN, Morgunov IG. Effects of Medium Components on Isocitric Acid Production by Yarrowia lipolytica Yeast. Fermentation. 2020; 6(4):112. https://doi.org/10.3390/fermentation6040112
Chicago/Turabian StyleKamzolova, Svetlana V., Vladimir A. Samoilenko, Julia N. Lunina, and Igor G. Morgunov. 2020. "Effects of Medium Components on Isocitric Acid Production by Yarrowia lipolytica Yeast" Fermentation 6, no. 4: 112. https://doi.org/10.3390/fermentation6040112
APA StyleKamzolova, S. V., Samoilenko, V. A., Lunina, J. N., & Morgunov, I. G. (2020). Effects of Medium Components on Isocitric Acid Production by Yarrowia lipolytica Yeast. Fermentation, 6(4), 112. https://doi.org/10.3390/fermentation6040112