Effect of the Addition of Non-Saccharomyces at First Alcoholic Fermentation on the Enological Characteristics of Cava Wines
Abstract
:1. Introduction
2. Materials and Methods
2.1. Winemaking Process
2.2. Enological Analysis
2.3. Protein Analysis
2.3.1. Total Protein Concentration Determined by UV Spectrophotometric Method
2.3.2. Wine Protein Composition Evaluated by SDS-PAGE
2.4. Foamability
2.5. GC-MS Analysis
2.6. Sensory Analysis
2.7. Statistical Analysis
3. Results and Discussion
3.1. Enological Analysis
3.2. Protein Analysis
3.2.1. Total Protein Concentration Determined by UV-Visible Spectrophotometry
3.2.2. Wine Protein Composition Evaluated by SDS-PAGE
3.3. Foamability
3.4. Volatile Composition
3.5. Sensory Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Ivit, N.N.; Kemp, B. The Impact of Non-Saccharomyces Yeast on Traditional Method Sparkling Wine. Fermentation 2018, 4, 73. [Google Scholar] [CrossRef] [Green Version]
- Plata, C.; Millán, C.; Mauricio, J.C.; Ortega, J.M. Formation of ethyl acetate and isoamyl acetate by various species of wine yeasts. Food Microbiol. 2003, 20, 217–224. [Google Scholar] [CrossRef]
- Rojas, V.; Gil, J.V.; Piñaga, F.; Manzanares, P. Acetate ester formation in wine by mixed cultures in laboratory fermentations. Int. J. Food Microbiol. 2003, 86, 181–188. [Google Scholar] [CrossRef]
- Benito, S. The impacts of Schizosaccharomyces on winemaking. Appl. Microbiol. Biotechnol. 2019, 103, 4291–4312. [Google Scholar] [CrossRef]
- Morata, A.; Escott, C.; Bañuelos, M.A.; Loira, I.; Del Fresno, J.M.; González, C.; Suárez-Lepe, J.A. Contribution of non-saccharomyces yeasts to wine freshness. A review. Biomolecules 2020, 10, 34. [Google Scholar] [CrossRef] [Green Version]
- Comitini, F.; Capece, A.; Ciani, M.; Romano, P. New insights on the use of wine yeasts. Curr. Opin. Food Sci. 2017, 13, 44–49. [Google Scholar] [CrossRef]
- Benito, Á.; Jeffares, D.; Palomero, F.; Calderón, F.; Bai, F.-Y.; Bähler, J.; Benito, S. Selected Schizosaccharomyces pombe Strains Have Characteristics That Are Beneficial for Winemaking. PLoS ONE 2016, 11, e0151102. [Google Scholar] [CrossRef]
- Ivit, N.N.; Loira, I.; Morata, A.; Benito, S.; Palomero, F.; Suárez-Lepe, J. Making natural sparkling wines with non-Saccharomyces yeasts. Eur. Food Res. Technol. 2018, 244. [Google Scholar] [CrossRef]
- Loira, I.; Morata, A.; Comuzzo, P.; Callejo, M.J.; Gonzalez, C.; Calderón, F.; Suárez-Lepe, J. Use of Schizosaccharomyces pombe and Torulaspora delbrueckii strains in mixed and sequential fermentations to improve red wine sensory quality. Food Res. Int. 2015, 76. [Google Scholar] [CrossRef]
- Canonico, L.; Comitini, F.; Ciani, M. Torulaspora delbrueckii for secondary fermentation in sparkling wine production. Food Microbiol. 2018, 74, 100–106. [Google Scholar] [CrossRef]
- González-Royo, E.; Pascual, O.; Kontoudakis, N.; Esteruelas, M.; Esteve-Zarzoso, B.; Mas, A.; Canals, J.-M.; Zamora, F. Oenological consequences of sequential inoculation with non-Saccharomyces yeasts (Torulaspora delbrueckii or Metschnikowia pulcherrima) and Saccharomyces cerevisiae in base wine for sparkling wine production. Eur. Food Res. Technol. 2014, 240. [Google Scholar] [CrossRef]
- Medina-Trujillo, L.; González-Royo, E.; Sieczkowski, N.; Heras, J.; Canals, J.M.; Zamora, F. Effect of sequential inoculation (Torulaspora delbrueckii/Saccharomyces cerevisiae) in the first fermentation on the foaming properties of sparkling wine. Eur. Food Res. Technol. 2017, 243, 681–688. [Google Scholar] [CrossRef]
- OIV. International Organisation of Vine and Wine. Compendium of International Methods of Wine and Must Analysis. In Paris, France. 2020. Volumes 1 and 2. Available online: http://www.oiv.int (accessed on 7 May 2020).
- Silvestri, A.C.; Sabatier, J.; Ducruet, J. A new method of protein extraction from red wines. J. Int. Sci. Vigne Vin. 2013, 47, 213–220. [Google Scholar] [CrossRef]
- Maujean, A.; Poinsaut, P.; Dantan, H.; Brissonnet, F.; Cossiez, E. Etude de la tenue et de la qualité de mousse des vins effervescents. II: Mise au point d’une technique de mesure de la moussabilité de la tenue et de la stabilité de la mousse des vins effervescents. Bull. OIV 1990, 63, 405–427. [Google Scholar]
- Torrens, J.; Riu-Aumatell, M.; López-Tamames, E.; Buxaderas, S. Volatile Compounds of Red and White Wines by Headspace-Solid-Phase Microextraction Using Different Fibers. J. Chromatogr. Sci. 2004, 42, 310–316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mislata, A.M.; Puxeu, M.; Tomás, E.; Nart, E.; Ferrer-Gallego, R. Influence of the oxidation in the aromatic composition and sensory profile of Rioja red aged wines. Eur. Food Res. Technol. 2020, 246, 1167–1181. [Google Scholar] [CrossRef]
- Benito, S.; Hofmann, T.; Laier, M.; Lochbühler, B.; Schüttler, A.; Ebert, K.; Fritsch, S.; Röcker, J.; Rauhut, D. Effect on quality and composition of Riesling wines fermented by sequential inoculation with non-Saccharomyces and Saccharomyces cerevisiae. Eur. Food Res. Technol. 2015, 241, 707–717. [Google Scholar] [CrossRef]
- Binati, R.L.; Lemos Junior, W.J.F.; Luzzini, G.; Slaghenaufi, D.; Ugliano, M.; Torriani, S. Contribution of non-Saccharomyces yeasts to wine volatile and sensory diversity: A study on Lachancea thermotolerans, Metschnikowia spp. and Starmerella bacillaris strains isolated in Italy. Int. J. Food Microbiol. 2020, 318. [Google Scholar] [CrossRef] [PubMed]
- Padilla, B.; Gil, J.V.; Manzanares, P. Past and future of non-Saccharomyces yeasts: From spoilage microorganisms to biotechnological tools for improving wine aroma complexity. Front. Microbiol. 2016, 7. [Google Scholar] [CrossRef] [Green Version]
- Cilindre, C.; Liger-Belair, G.; Villaume, S.; Jeandet, P.; Marchal, R. Foaming properties of various Champagne wines depending on several parameters: Grape variety, aging, protein and CO2 content. Anal. Chim. Acta 2010, 660, 164–170. [Google Scholar] [CrossRef]
- Dambrouck, T.; Marchal, R.; Marchal-Delahaut, L.; Parmentier, M.; Maujean, A.; Jeandet, P. Immunodetection of proteins from grapes and yeast in a white wine. J. Agric. Food Chem. 2003, 51, 2727–2732. [Google Scholar] [CrossRef]
- Mostert, T.T.; Divol, B. Investigating the proteins released by yeasts in synthetic wine fermentations. Int. J. Food Microbiol. 2014, 171, 108–118. [Google Scholar] [CrossRef]
- Andrés-Lacueva, C.; Lamuela-Raventós, R.M.; Buxaderas, S.; de la Torre-Boronat, M.d.C. Influence of Variety and Aging on Foaming Properties of Cava (Sparkling Wine). 2. J. Agric. Food Chem. 1997, 45, 2520–2525. [Google Scholar] [CrossRef]
- Vanrell, G.; Canals, R.; Esteruelas, M.; Fort, F.; Canals, J.M.; Zamora, F. Influence of the use of bentonite as a riddling agent on foam quality and protein fraction of sparkling wines (Cava). Food Chem. 2007, 104, 148–155. [Google Scholar] [CrossRef]
- Martínez-Rodríguez, A.; Carrascosa, A.; Barcenilla, J.; Pozo-Bayón, M.; Polo, M. Autolytic capacity and foam analysis as additional criteria for the selection of yeast strains for sparkling wine production. Food Microbiol. 2001, 18, 183–191. [Google Scholar] [CrossRef]
- Condé, B.C.; Bouchard, E.; Culbert, J.A.; Wilkinson, K.L.; Fuentes, S.; Howell, K.S. Soluble Protein and Amino Acid Content Affects the Foam Quality of Sparkling Wine. J. Agric. Food Chem. 2017, 65, 9110–9119. [Google Scholar] [CrossRef]
- Ancín-Azpilicueta, C.; González-Marco, A.; Jiḿenez-Moreno, N. Evolution of esters in aged Chardonnay wines obtained with different vinification methods. J. Sci. Food Agric. 2009, 89, 2446–2451. [Google Scholar] [CrossRef]
- Ferreira, V.; López, R.; Cacho, J.F. Quantitative determination of the odorants of young red wines from different grape varieties. J. Sci. Food Agric. 2000, 80, 1659–1667. [Google Scholar] [CrossRef]
- Tao, Y.-S. Active volatiles of cabernet sauvignon wine from Changli County. Health 2009, 01, 176–182. [Google Scholar] [CrossRef] [Green Version]
- Gómez-Míguez, M.J.; Cacho, J.F.; Ferreira, V.; Vicario, I.M.; Heredia, F.J. Volatile components of Zalema white wines. Food Chem. 2007, 100, 1464–1473. [Google Scholar] [CrossRef]
- Peinado, R.A.; Moreno, J.; Bueno, J.E.; Moreno, J.A.; Mauricio, J.C. Comparative study of aromatic compounds in two young white wines subjected to pre-fermentative cryomaceration. Food Chem. 2004, 84, 585–590. [Google Scholar] [CrossRef]
- Guth, H. Quantitation and Sensory Studies of Character Impact Odorants of Different White Wine Varieties. J. Agric. Food Chem. 1997, 45, 3027–3032. [Google Scholar] [CrossRef]
- Lambrechts, M.; Pretorius, I. Yeast and its importance to wine aroma—A review. S. Afr. J. Enol Vitic 2000, 21. [Google Scholar] [CrossRef] [Green Version]
CHARDONNAY | ||||||
Alcoholic Strength | Volatile Acidity | Abs. 420 nm | Abs. 520 nm | Abs. 620 nm | Color Intensity | |
BW | ||||||
Y1 | 10.1 a ± 0.0 | 0.40 c ± 0.00 | 0.099 a ± 0.005 | 0.036 ab ± 0.002 | 0.011 ab ± 0.003 | 0.15 a ± 0.01 |
Y2 | 9.9 a ± 0.3 | 0.38 bc ± 0.00 | 0.179 a ± 0.098 | 0.047 b ± 0.002 | 0.013 b ± 0.001 | 0.24 a ± 0.10 |
Y3 | 10.1 a ± 0.0 | 0.52 d ± 0.01 | 0.090 a ± 0.012 | 0.023 a ± 0.006 | 0.006 a ± 0.002 | 0.12 a ± 0.02 |
Y4 | 10.5 a ± 0.6 | 0.33 a ± 0.01 | 0.118 a ± 0.011 | 0.035 ab ± 0.006 | 0.012 ab ± 0.000 | 0.17 a ± 0.02 |
Y5 | 9.7 a ± 0.0 | 0.37 b ± 0.01 | 0.122 a ± 0.023 | 0.038 ab ± 0.008 | 0.013 b ± 0.001 | 0.17 a ± 0.03 |
18M | ||||||
Y1 | 11.3 c ± 0.0 | 0.54 b ± 0.02 | 0.146 e ± 0.001 | 0.065 c ± 0.007 | 0.029 c ± 0.001 | 0.24 c ± 0.01 |
Y2 | 11.2 b ± 0.0 | 0.48 ab ± 0.04 | 0.123 d ± 0.001 | 0.036 b ± 0.001 | 0.019 abc ± 0.001 | 0.18 b ± 0.00 |
Y3 | 11.5 e ± 0.0 | 0.72 c ± 0.01 | 0.110 b ± 0.000 | 0.023 a ± 0.001 | 0.007 a ± 0.001 | 0.14 a ± 0.01 |
Y4 | 11.1 a ± 0.0 | 0.44 a ± 0.01 | 0.106 a ± 0.001 | 0.037 b ± 0.001 | 0.022 bc ± 0.001 | 0.16 b ± 0.01 |
Y5 | 11.3 c ± 0.0 | 0.41 a ± 0.01 | 0.119 c ± 0.001 | 0.030 ab ± 0.001 | 0.015 ab ± 0.007 | 0.16 b ± 0.01 |
XAREL.LO | ||||||
Alcoholic Strength | Volatile Acidity | Abs. 420 nm | Abs. 520 nm | Abs. 620 nm | Color Intensity | |
BW | ||||||
Y1 | 9.9 a ± 0.0 | 0.26 a ± 0.02 | 0.075 a ± 0.013 | 0.016 ab ± 0.001 | 0.004 a ± 0.001 | 0.09 a ± 0.01 |
Y2 | 9.9 a ± 0.0 | 0.26 a ± 0.00 | 0.064 a ± 0.006 | 0.015 a ± 0.002 | 0.005 a ± 0.002 | 0.08 a ± 0.01 |
Y3 | 11.7 d ± 0.0 | 0.31 b ± 0.00 | 0.065 a ± 0.001 | 0.023 b ± 0.001 | 0.006 a ± 0.001 | 0.09 a ± 0.00 |
Y4 | 10.0 b ± 0.0 | 0.25 a ± 0.00 | 0.067 a ± 0.005 | 0.017 ab ±0.004 | 0.005 a ± 0.001 | 0.09 a ± 0.01 |
Y5 | 10.1 c ± 0.0 | 0.29 ab ± 0.01 | 0.081 a ± 0.001 | 0.019 ab ± 0.001 | 0.004 a ± 0.001 | 0.10 a ± 0.00 |
18M | ||||||
Y1 | 11.1 b ± 0.0 | 0.30 b ± 0.01 | 0.075 bc ± 0.000 | 0.017 b ± 0.001 | 0.008 c ± 0.000 | 0.10 c ± 0.01 |
Y2 | 11.4 e ± 0.0 | 0.29 b ± 0.01 | 0.074 b ± 0.001 | 0.018 b ± 0.001 | 0.003 a ± 0.001 | 0.09 b ± 0.00 |
Y3 | 11.3 d ± 0.0 | 0.35 c ± 0.01 | 0.065 a ± 0.001 | 0.010 a ± 0.000 | 0.002 a ± 0.000 | 0.08 a ± 0.1 |
Y4 | 11.0 a ± 0.0 | 0.24 a ± 0.00 | 0.078 c ± 0.001 | 0.016 b ± 0.001 | 0.005 b ± 0.000 | 0.10 c ± 0.1 |
Y5 | 11.2 c ± 0.0 | 0.30 b ± 0.01 | 0.087 d ± 0.001 | 0.027 c ± 0.000 | 0.015 d ± 0.001 | 0.13 d ± 0.01 |
CH Y1 (Bands) | V12 | V13 | V14 | V15 | V16 | V17 | ||
MW (Kda) | 96.1 | 59.4 | 28.6 | 26.1 | 22.8 | 19.4 | ||
% | 12.8 | 2.7 | 9.1 | 7.4 | 63 | 5.1 | ||
CH Y2 (Bands) | V30 | V19 | V20 | V21 | V22 | V23 | ||
MW (Kda) | 97.7 | 64.3 | 27.2 | 24.9 | 22.1 | 18.6 | ||
% | 10.1 | 2.7 | 11.6 | 25.2 | 48.4 | 2 | ||
CH Y3 (Bands) | V19 | V20 | V21 | V22 | V23 | V24 | V25 | V26 |
MW (Kda) | 66.7 | 57.4 | 47.2 | 40.4 | 32.7 | 26.4 | 21 | 18 |
% | 14.6 | 12.8 | 5.7 | 5.7 | 7.2 | 7.2 | 32.2 | 2.2 |
CH Y4 (Bands) | V11 | V12 | V13 | V14 | V15 | V16 | V17 | V18 |
MW (Kda) | 74.8 | 53.9 | 36.3 | 28.2 | 23.4 | 20.2 | 18.7 | 15.9 |
% | 28.8 | 4.5 | 2.4 | 12.2 | 42.9 | 3.7 | 4.3 | 1.2 |
CH Y5 (Bands) | V1 | V2 | V3 | V4 | V5 | V6 | V7 | V8 |
MW (Kda) | 68.5 | 48.7 | 35.9 | 26.8 | 23.1 | 20.3 | 18 | 16.2 |
% | 20.2 | 2.9 | 5.7 | 25.1 | 30 | 3.7 | 3.2 | 9.3 |
XA Y1 (Bands) | V29 | V30 | V31 | V32 | ||||
MW (Kda) | 68.4 | 26.9 | 21.4 | 18.2 | ||||
% | 27.6 | 33.9 | 26.5 | 12.1 | ||||
XA Y2 (Bands) | V22 | V23 | V24 | V25 | ||||
MW (Kda) | 73.2 | 29.5 | 27.6 | 25.5 | ||||
% | 43.9 | 26.8 | 19.5 | 9.8 | ||||
XA Y3 (Bands) | V11 | V12 | V13 | V14 | V15 | |||
MW (Kda) | 92.1 | 32.9 | 28.9 | 25.3 | 22.9 | |||
% | 10.5 | 14.4 | 3.2 | 70.4 | 1.5 | |||
XA Y4 (Bands) | V1 | V2 | V3 | V4 | V5 | |||
MW (Kda) | 91.6 | 31.7 | 29.5 | 27.6 | 23.9 | |||
% | 24.9 | 3.3 | 38.2 | 15.4 | 18.3 | |||
XA Y5 (Bands) | V25 | V26 | V27 | V28 | V29 | |||
MW (Kda) | 92.2 | 31.5 | 28.7 | 25 | 20.8 | |||
% | 28.1 | 50.2 | 11.3 | 6.1 | 4.3 | |||
10% < | < 80% |
CHARDONNAY | XAREL.LO | |||||||||
Sample BW | Y1 | Y2 | Y3 | Y4 | Y5 | Y1 | Y2 | Y3 | Y4 | Y5 |
ESTERS | 26,557 b ± 387 | 29,560 b ± 311 | 17,351 a ± 209 | 29,375 b ± 357 | 29,256 b ± 825 | 30,854 ± 1266 | 32,710 b ± 1173 | 21,101 a ± 101 | 29,373 ab ± 2103 | 30,109 b ± 3834 |
Ethyl butyrate | 164 b ± 2 | 208 b ± 8 | 88 a ± 11 | 210 b ± 17 | 201 b ± 16 | 599 ab ± 94 | 669 b ± 127 | 329 a ± 2 | 391 ab ± 26 | 411 ab ± 81 |
Ethyl isovalerate | 267 b ± 4 | 233 b ± 0 | 111 a ± 19 | 265 b ± 35 | 241 b ± 8 | 279 b ± 13 | 278 ab ± 15 | 161 a ± 1 | 179 ab ± 19 | 270 ab ± 60 |
Ethyl hexanoate | 5143 b ± 251 | 5272 b ± 134 | 2182 a ± 217 | 5326 b ± 704 | 5265 b ± 160 | 7149 b ± 244 | 7988 b ± 100 | 3755 a ± 14 | 6730 ab ± 336 | 7171 b ± 1283 |
Ethyl octanoate | 14,015 b ± 172 | 15,199 b ± 56 | 8683 a ± 1498 | 15,457 b ± 41 | 15,060 b ± 192 | 14,242 b ± 464 | 15,093 b ± 738 | 9426 a ± 15 | 13,970 b ± 815 | 13,765 b ± 1901 |
Ethyl decanoate | 6825 ab ± 286 | 8481 b ± 222 | 6027 a ± 399 | 7903 ab ± 1034 | 8321 b ± 463 | 7939 a ± 412 | 8065 a ± 634 | 7003 a ± 67 | 7602 a ± 78 | 7895 a ± 477 |
Ethyl dodecanoate | 123 a ± 16 | 152 ab ± 5 | 243 b ± 47 | 198 ab ± 36 | 153 ab ± 4 | 621 a ± 42 | 595 a ± 79 | 413 a ± 3 | 468 a ± 119 | 556 a ± 35 |
Diethyl succinate | 16 a ± 1 | 14 a ± 2 | 18 a ± 1 | 14 a ± 2 | 14 a ± 1 | 24 ab ± 3 | 21 a ± 4 | 13 a ± 0 | 34 b ± 4 | 36 b ± 3834 |
ACETATES | 13,319 b ± 229 | 13,029 b ± 274 | 9219 a ± 319 | 14,189 b ± 1565 | 12,988 b ± 426 | 17,177 a ± 1237 | 16,816 a ± 1096 | 14,721 a ± 685 | 13,728 a ± 1091 | 16,104 a ± 783 |
Ethyl acetate | 2809 a ± 45 | 3060 a ± 107 | 2902 a ± 67 | 2928 a ± 151 | 3016 a ± 150 | 4819 b ± 273 | 4492 b ± 49 | 4801 b ± 67 | 3195.3 a ± 250 | 4234 b ± 254 |
Isoamyl acetate | 10,270 b ± 185 | 9741 b ± 158 | 6190 a ± 249 | 11,043 b ± 1412 | 9745 b ± 264 | 12,137 b ± 934 | 12,063 b ± 101 | 9724 a ± 621 | 10,342.3 ab ± 826 | 11,603 b ± 517 |
Hexyl acetate | 81 bc ± 0 | 88 c ± 2 | 43 a ± 0 | 71 b ± 1 | 75 b ± 5 | 62 b ± 9 | 65 b ± 3 | 41 a ± 0 | 53.4 ab ± 4 | 58 ab ± 3 |
2-phenylethyl acetate | 159 c ± 1 | 140 b ± 7 | 83 a ± 2 | 146 bc ± 1 | 151 bc ± 7 | 159 a ± 20 | 195 a ± 31 | 154 a ± 3 | 137 a ± 11 | 208 a ± 10 |
ALCOHOLS | 3703 ab ± 59 | 3217 a ± 150 | 3823 ab ± 9 | 3944 b ± 132 | 3682 ab ± 339 | 7611 a ± 4 | 7671 a ± 147 | 8166 a ± 189 | 8282 a ± 711 | 7965 a ± 341 |
Isoamyl alcohol | 3147 ab ± 54 | 2705 a ± 139 | 3291 ab ± 9 | 3408 b ± 120 | 3125 ab ± 306 | 6609 a ± 55 | 6592 a ± 137 | 7014 b ± 176 | 7146 b ± 623 | 6914 ab ± 280 |
Isobutanol | 117 b ± 1 | 105 a ± 2 | 103 a ± 2 | 95 a ± 1 | 101 a ± 5 | 78 ab ± 1 | 81 ab ± 8 | 64 a ± 1 | 100 c ± 1 | 85 bc ± 5 |
Benzyl alcohol | 2 a ± 0 | 2 cd ± 0 | 2 b ± 0 | 2 c ± 0 | 3 d ± 0 | 5 a ± 0 | 6 ab ± 0 | 5 a ± 0 | 6 ab ± 0 | 7 b ± 0 |
2-phenylethyl alcohol | 437 a ± 6 | 405 a ± 16 | 426 a ± 1 | 439 a ± 11 | 452 a ± 29 | 919 a ± 50 | 991 a ± 19 | 1082 b ± 14 | 1030 b ± 86 | 959 a ± 56 |
FATTY ACIDS | 924 b ± 19 | 1016 b ± 18 | 543 a ± 3 | 963 b ± 12 | 1032 b ± 55 | 1362 b ± 31 | 1626 b ± 131 | 819 a ± 4 | 1353 b ± 110 | 1640 b ± 102 |
Hexanoic acid | 169 b ± 10 | 168 b ± 2 | 90 a ± 0 | 151 b ± 1 | 172 b ± 5 | 223 b ± 2 | 260 bc ± 8 | 117 a ± 1 | 223 b ± 21 | 282 c ± 22 |
Octanoic acid | 511 b ± 3 | 550 b ± 12 | 273 a ± 2 | 516 b ± 15 | 561 b ± 29 | 786 b ± 17 | 930 b ± 69 | 461 a ± 4 | 790 b ± 62 | 944 b ± 56 |
Decanoic acid | 243 b ± 6 | 299 c ± 3 | 180 a ± 1 | 296 c ± 4 | 299 c ± 19 | 353 ab ± 16 | 435 b ± 54 | 242 a ± 0 | 339 ab ± 37 | 414 b ± 24 |
TOTAL AROMAS | 44,503 b ± 538 | 46,824 b ± 138 | 30,937 a ± 2410 | 48,471 b ± 1327 | 46,957 b ± 5 | 57,004 ab ± 2538 | 58,823 b ± 2547 | 44,808 a ± 601 | 52,737 ab ± 4015 | 55,819 ab ± 5061 |
CHARDONNAY | XAREL.LO | |||||||||
Sample 18M | Y1 | Y2 | Y3 | Y4 | Y5 | Y1 | Y2 | Y3 | Y4 | Y5 |
ESTERS | 11,917 a ± 140 | 15,320 c ± 13 | 10,801 a ± 107 | 11,867 a ± 438 | 13,842 b ± 487 | 13,274 d ± 118 | 13,837 d ± 192 | 9072 a ± 297 | 10,390 b ± 134 | 11,931 c ± 12 |
Ethyl butyrate | 305 b ± 3 | 437 d ± 6 | 258 a ± 14 | 283 ab ± 3 | 370 c ± 2. | 417 d ± 0 | 423 d ± 4 | 237 a ± 0 | 328 b ± 1 | 387 c ± 7 |
Ethyl isovalerate | 64 a ± 1 | 113 bc ± 2 | 71 a ± 0 | 110 b ± 4 | 126 c ± 7 | 67 b ± 0 | 89 c ± 2 | 51 a ± 1 | 64 b ± 1 | 120 d ± 3 |
Ethyl hexanoate | 3452 a ± 89 | 4261 c ± 39 | 3240 a ± 71 | 3271 a ± 42 | 3792 b ± 47 | 4110 cd ± 49 | 4353 d ± 65 | 2505 a ± 103 | 3625 b ± 66 | 3875 bc ± 45 |
Ethyl octanoate | 6105 ab ± 19 | 7805 c ± 35 | 5351 a ± 34 | 6044 a ± 347 | 7013 bc ± 390 | 6761 d ± 11 | 7549 e ± 238 | 4562 a ± 120 | 5370 b ± 29 | 6121 c ± 48 |
Ethyl decanoate | 1938 a ± 27 | 2649 d ± 13 | 1824 a ± 13 | 2112 b ± 41 | 2475 c ± 40 | 1854 c ± 154 | 1353 b ± 20 | 1660 bc ± 70 | 943 a ± 35 | 1369 b ± 4 |
Ethyl dodecanoate | 19 b ± 0 | 18 a ± 0 | 20 c ± 0 | 25 d ± 0 | 53 e ± 0 | 38 b ± 1 | 37 b ± 0 | 20 a ± 0 | 37 b ± 2 | 37 b ± 0 |
Diethyl succinate | 33 c ± 1 | 36 d ± 0 | 37 d ± 1 | 21 b ± 0 | 12 a ± 0 | 25 a ± 0 | 33 b ± 1 | 36 b ± 2 | 24 a ± 1 | 23 a ± 0 |
ACETATES | 9613 b ± 2 | 12,472 d ± 28 | 13,010 e ± 268 | 9086 a ± 90 | 10,955 c ± 701 | 9724 b ± 85 | 10,018 bc ± 172 | 8491 a ± 96 | 8132 a ± 38 | 10,387 c ± 31 |
Ethyl acetate | 5715 b ± 68 | 7168 b ± 23 | 8496 c ± 170 | 4554 a ± 15 | 5853 b± 24 | 5703 b ± 6 | 5490 b ± 75 | 5432 b ± 35 | 4500 a ± 16 | 5402 b ± 37 |
Isoamyl acetate | 3776 a ± 67 | 5136 c ± 42 | 4399 b ± 92 | 4430 b ± 73 | 4961 c ± 37 | 3931 c ± 78 | 4405 d ± 95 | 2978 a ± 61 | 3535 b ± 21 | 4828 e ± 5 |
Hexyl acetate | 104 bc ± 2 | 143 d ± 2 | 95 b ± 5 | 67 a ± 1 | 117 c ± 9 | 51 b ± 1 | 67 c ± 1 | 28 a ± 0 | 51 b ± 0 | 97 d ± 1 |
2-phenylethyl acetate | 17 a ± 1 | 24 ab ± 6 | 20 a ± 0 | 34 b ± 0 | 23 ab ± 0 | 39 a ± 0 | 56 d ± 1 | 52 c ± 0 | 46 b ± 0 | 59 e ± 0 |
ALCOHOLS | 5437 b ± 88 | 6353 c ± 7 | 7507 d ± 180 | 4964 a ± 24 | 5621 b ± 39 | 6153 b ± 16 | 6063 b ± 105 | 6175 b ± 78 | 6066 b ± 14 | 5657 a ± 25 |
Isoamyl alcohol | 4879 b ± 77 | 5780 c ± 9 | 4806 b ± 15 | 4465 a ± 21 | 5110 b ± 18 | 5402 c ± 16 | 5241 bc ± 94 | 4960 a ± 45 | 5089 ab ± 7 | 4960 a ± 24 |
Isobutanol | 114 ab ± 5 | 146 cd ± 2 | 168 d ± 13 | 97 a ± 0 | 134 bc ± 1 | 135 bc ± 0 | 132 b ± 1 | 99 a ± 5 | 147 cd ± 4 | 149 d ± 2 |
Benzyl alcohol | 2 a ± 0 | 4 c ± 0 | 6 e ± 0 | 5 d ± 0 | 3 b ± 0 | 4 b ± 0 | 4 c ± 0 | 4 a ± 0 | 5 d ± 0 | 4 a ± 0 |
2-phenylethyl alcohol | 441 b ± 6 | 424 ab ± 0 | 527 c ± 15 | 396 ab ± 3 | 374 a ± 3 | 611 b ± 0 | 686 c ± 10 | 1111 e ± 30 | 826 d ± 19 | 544 a ± 1 |
FATTY ACIDS | 845 b ± 3 | 988 d ± 2 | 625 a ± 14 | 877 c ± 4 | 853 bc ± 0 | 875 b ± 5 | 1068 d ± 4 | 709 a ± 10 | 945 c ± 14 | 971 c ± 9 |
Hexanoic acid | 214 c ± 1 | 243 d ± 1 | 150 a ± 0 | 201 b ± 3 | 210 c ± 0 | 223 b ± 3 | 259 c ± 2 | 144 a ± 3 | 231 b ± 7 | 236 b ± 4 |
Octanoic acid | 497 b ± 3 | 589 d ± 0 | 352 a ± 7 | 525 c ± 1 | 509 b ± 0 | 511 b ± 0 | 628 e ± 11 | 404 a ± 2 | 554 c ± 2 | 584 d ± 0 |
Decanoic acid | 133 a ± 1 | 156 b ± 1 | 122 a ± 6 | 151 b ± 1 | 133 a ± 0 | 141 a ± 2 | 181 c ± 5 | 160 b ± 5 | 160 b ± 5 | 151 ab ± 5 |
TOTAL AROMAS | 27,811 a ± 47 | 35,134 c ± 9 | 31,943 b ± 569 | 26,794 a ± 556 | 31,271 b ± 596 | 30,026 d ± 225 | 30,987 d ± 89 | 24,446 a ± 481 | 25,534 b ± 200 | 28,946 c ± 15 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mislata, A.M.; Puxeu, M.; Andorrà, I.; Espligares, N.; de Lamo, S.; Mestres, M.; Ferrer-Gallego, R. Effect of the Addition of Non-Saccharomyces at First Alcoholic Fermentation on the Enological Characteristics of Cava Wines. Fermentation 2021, 7, 64. https://doi.org/10.3390/fermentation7020064
Mislata AM, Puxeu M, Andorrà I, Espligares N, de Lamo S, Mestres M, Ferrer-Gallego R. Effect of the Addition of Non-Saccharomyces at First Alcoholic Fermentation on the Enological Characteristics of Cava Wines. Fermentation. 2021; 7(2):64. https://doi.org/10.3390/fermentation7020064
Chicago/Turabian StyleMislata, Ana María, Miquel Puxeu, Immaculada Andorrà, Noelia Espligares, Sergi de Lamo, Montserrat Mestres, and Raúl Ferrer-Gallego. 2021. "Effect of the Addition of Non-Saccharomyces at First Alcoholic Fermentation on the Enological Characteristics of Cava Wines" Fermentation 7, no. 2: 64. https://doi.org/10.3390/fermentation7020064
APA StyleMislata, A. M., Puxeu, M., Andorrà, I., Espligares, N., de Lamo, S., Mestres, M., & Ferrer-Gallego, R. (2021). Effect of the Addition of Non-Saccharomyces at First Alcoholic Fermentation on the Enological Characteristics of Cava Wines. Fermentation, 7(2), 64. https://doi.org/10.3390/fermentation7020064