Assessment of the Suitability of Aromatic and High-Bitter Hop Varieties (Humulus lupulus L.) for Beer Production in the Conditions of the Małopolska Vistula Gorge Region
Abstract
:1. Introduction
2. Material and Methods
2.1. Characteristic of Varieties
2.1.1. ‘Marynka’
2.1.2. ‘Iunga’
2.1.3. ‘Magnum’
2.1.4. ‘Lubelski’
2.1.5. ‘Sybilla’
2.1.6. ‘Lomik’
2.2. Field Research
2.3. Collection and Determination of Soil Samples
2.4. Sampling of Hop Cones
2.5. Mechanical Analysis of Cones
2.6. Chemicals Analysis
2.6.1. Determination of Hop Resins
2.6.2. GC Analysis of Essential Oils from Hops
2.7. Research Conditions
2.7.1. Natural Conditions
2.7.2. Soil Conditions
2.7.3. Meteorological Conditions
2.8. Statistical Calculatons
3. Results
3.1. The Yield of Fresh and Dry Mass of Cones
3.2. A Dry and Fresh Mass of One Hundred Cones
3.3. Physical and Mechanical Indicators of the Yield of Cones
3.4. Chemical Composition of Hop Cones
3.5. The Ratio of Myrcene to Humulene
3.6. Variabilities of Yield and Physical and Chemical Composition Characteristics of Hop Cones
4. Discussion
5. Future
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Skomra, U.; Kawka-Lipińska, M. Guide to the Hop Protection Signaler; IUNG-PIB: Puławy, Poland, 2018; p. 72. ISBN 978-83-7562-281-2. [Google Scholar]
- Kondić, D.; Cerenak, A.; Košir, I.J.; Ocvirk, M.; Krmpot, T.; Ðurić, G. Morphological and Biochemical Characterization of Wild Hop (Humulus lupulus L.) Populations from Banja Luka Area (Bosnia and Herzegovina). Agronomy 2021, 11, 239. [Google Scholar] [CrossRef]
- Skomra, U. The Role of Scientific Research in Shaping Progress in the Production of Hops and Tobacco; Institute of Soil Science and Plant Cultivation-National Research Institute: Puławy, Poland, 2012; pp. 10–30. (In Polish) [Google Scholar]
- Skomra, U. Factors influencing the quality of hops and their products during processing and storage. Ferment. Fruit Veg. Ind. 2015, 4, 37–38. (In Polish) [Google Scholar]
- Solarska, E. Good Agricultural Practices in Integrated Production with the Use of Beneficial Microorganisms in Hop Cultivation; EM Ecosystem Association-Nature’s Heritage: Warsaw, Poland, 2012; pp. 19–60. (In Polish) [Google Scholar]
- Dwornikiewicz, J.; Migdal, J.; Solarska, E.; Stasiak, M.; Zaorski, T. Hops Grower’s Guide; Institute of Soil Science and Plant Cultivation: Puławy, Poland, 1996; p. 54. (In Polish) [Google Scholar]
- Dwornikiewicz, J. Phytosanitary and Agrotechnical Principles of Hop Planting; Institute of Soil Science and Plant Cultivation-National Research Institute: Puławy, Poland, 2006; pp. 5–17. [Google Scholar]
- Astray, G.; Gullón, P.; Gullón, B.; Munekata, P.E.S.; Lorenzo, J.M. Humulus lupulus L. as a Natural Source of Functional Biomolecules. Appl. Sci. 2020, 10, 5074. [Google Scholar] [CrossRef]
- FAOSTAT. Crops. 2019. Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 29 May 2021).
- Dwornikiewicz, J. Regionalization of hop production in Poland. Pamiętnik Puławski 2002, 130, 125–134. (In Polish) [Google Scholar]
- Dwornikiewicz, J. Regional differentiation of hop production in Poland. Wieś Jutra 2006, 12, 37–38. [Google Scholar]
- Lewandowski, A. Comprehensive Research on the Economic Value of Hop Varieties in 1988–1995; Variety Studies, Issue 77; COBORU: Słupia Wielka, Poland, 2003; p. 85. ISSN 1231-823X. (In Polish) [Google Scholar]
- Skomra, U. Polish Varieties of Hops; Institute of Soil Science and Plant Cultivation-National Research Institute: Puławy, Poland, 2010; p. 60. [Google Scholar]
- Szewczuk, C. Hop. In Growing Plants; Kotecki, A., Ed.; University of Life Science in Wroclaw: Wroclaw, Poland, 2020; Volume 3, pp. 537–558. ISBN 978-83-7717-342-8. [Google Scholar]
- Dwornikiewicz, J. Current State and Prospects of Hop Cultivation in Poland until 2020; Studia i Raporty IUNG-PIB: Puławy, Poland, 2009; Volume 133, pp. 133–145, (In Polish). [Google Scholar] [CrossRef]
- Donner, P.; Pokorný, J.; Ježek, J.; Krofta, K.; Patzak, J.; Pulkrábek, J. Influence of weather conditions, irrigation and plant age on yield and alpha-acids content of Czech hop (Humulus lupulus L.) cultivars. Plant Soil Environ. 2020, 66, 41–46. [Google Scholar] [CrossRef] [Green Version]
- PN-R-04031: 1997. Chemical and Agricultural Analysis of Soil-Sampling. Food, Agriculture and Forestry Sector; Technical Committee 90, Soil Cultivation and Horticulture: Warsaw, Poland, 1997; p. 5. [Google Scholar]
- Bartmiński, P.; Krusińska, A.; Bieganowski, A.; Ryżak, M. Preparation of soil samples for grain size distribution analysis using the laser diffraction method. Roczniki Gleboznawcze Soil Sci. Annu. 2011, 62, 9–15. (In Polish) [Google Scholar]
- KQ/PB-75 Revision 04 of March 26, 2018 Particle Size Distribution in the Particle Range (0.02–2000) µm Range (0.01–99.99), Laser Diffraction Method. Scope of Accreditation No. AB 1186. Available online: https://www.pca.gov.pl/en/accredited-organizations/accredited-organizations/testing-laboratories/ (accessed on 31 May 2021). (In Polish)
- ISO 10390: 2005. Soil Quality-Determination of pH. Available online: https://www.iso.org/standard/40879.html (accessed on 31 January 2021).
- KQ/PB-34. Version 05 from 01/07/2014. Organic Carbon Content. Scope of Accreditation No. AB 1186. Available online: file:///C:/Users/Barbara/Downloads/AB%201186%20(2).pdf (accessed on 31 May 2021).
- Mocek, A. Soil Science; State Scientific Publisher: Warszawa, Poland, 2015; p. 571. [Google Scholar]
- PN-R-04020: 1994 + AZ1: 2004. Chemical and Agricultural Analysis of Soil; Polish Committee for Standardization: Warsaw, Poland, 2004. (In Polish) [Google Scholar]
- PN-R-04023: 1996. Chemical and Agricultural Analysis of Soil. In Determination of the Available Phosphorus Content in Mineral Soils; Polish Committee for Standardization: Warsaw, Poland, 1996. (In Polish) [Google Scholar]
- PN-R-04022: 1996 + AZ1: 2002. Chemical and agricultural analysis of soil. In Determination of Available Potassium in Mineral Soils; Polish Committee for Standardization: Warsaw, Poland, 2002. (In Polish) [Google Scholar]
- PN-R-04017: 1992. Content of Copper Soluble in HCl. In Mineral Soil; Polish Committee for Standardization: Warsaw, Poland, 1992. (In Polish) [Google Scholar]
- PN-R-04019: 1993. Content of Manganese Soluble in HCl in Mineral Soil; Polish Committee for Standardization: Warsaw, Poland, 1993. (In Polish) [Google Scholar]
- PN-R-04021: 1994. Content of Iron Soluble in HCl in Mineral Soil; Polish Committee for Standardization: Warsaw, Poland, 1994. (In Polish) [Google Scholar]
- PN-R-04018: 1993. Content of Boron Soluble in HCl in Mineral Soil; Polish Committee for Standardization: Warsaw, Poland, 1993. (In Polish) [Google Scholar]
- Commission regulation (EC) No 1850/2006 of 14 December 2006 laying down detailed rules for the certification of hops and hop products. Off. J. Eur. Union 2006, 355, 72–87.
- PN-A-79097: 2001. Hop Granules and Extracts; PKN: Warsaw, Poland, 2001. [Google Scholar]
- European Brewery Convention. Analytica-EBC, Section 7. Hops, Method 7.10. Hop Oil Content in Hops and Hop Products; Fachverlag Hans Carl: Nürnberg, Germany, 2002. [Google Scholar]
- European Brewery Convention. Analytica-EBC, Section 7. Hops, Method 7.12. Hops Essential Oils by Capillary Gas Chromatography, Flame Ionization Detection; Fachverlag Hans Carl: Nürnberg, Germany, 2006. [Google Scholar]
- McAdam, E.L.; Vaillancourt, R.E.; Koutoulis, A.; Whittock, S.P. Quantitative genetic parameters for yield, plant growth and cone chemical traits in hop (Humulus lupulus L.). BMC Genet. 2014, 15, 22. [Google Scholar] [CrossRef] [PubMed]
- Kondracki, J. Regional Geography of Poland; Scientific Publishers PWN SA: Warsaw, Poland, 2013. [Google Scholar]
- Woś, A. Polish Climate; Polish Scientific Publishers PWN: Warsaw, Poland, 1999; EAN: 8301127805. [Google Scholar]
- PTG 2008. Particle Size Distribution and Textural Classes of Soils and Mineral Materials-Classification of Polish Society of Soil Science 2008. Rocz. Glebozn. 2009, 60, 5–16. [Google Scholar]
- Nawrocki, S. Fertilizer Recommendations. Part. I. Limit Numbers for Valuation of Soils in Macro and Microelements; IUNG: Puławy, Poland, 1985; p. 38. [Google Scholar]
- Skowera, B.; Kopcińska, J.; Kopeć, B. Changes in thermal and precipitation conditions in Poland in 1971–2010. Ann. Warsaw Univ. Life Sci. SGGW. Land Reclam. 2014, 46, 153–162. [Google Scholar] [CrossRef]
- SAS Institute Inc. SAS/STAT®9.2 User’s Guide; SAS Institute Inc.: Cary, NC, USA, 2008. [Google Scholar]
- Trętowski, J.; Wójcik, R. Methodology of Agricultural Experiments; University of Agriculture and Education: Siedlce, Poland, 1991; p. 500. (In Polish) [Google Scholar]
- Crossa, J.; Franco, J. Statistical methods for classifying genotypes. Euphytica 2004, 153, 19–37. [Google Scholar] [CrossRef]
- MacKinnon, D.; Pavlovič, V.; Čeh, B.; Naglič, B.; Pavlovič, B. The impact of weather conditions on alpha-acid content in hop (Humulus lupulus L.) cv. Aurora. Plant Soil Environ. 2020, 66, 519–525. [Google Scholar] [CrossRef]
- Lewandowski, A. Syntheses of the Results of Varietal Experiments. Hop. 1991–1995; No 1082; COBORU: Słupia Wielka, Poland, 1996; p. 18. ISSN 1232-0927. [Google Scholar]
- Salantă, L.C.; Coldea, T.R.; Ignat, M.V.; Pop, C.R.; Tofană, M.; Mudura, E.; Bors, A.; Pasqualone, A.; Zhao, H. Non-Alcoholic and Craft Beer Production and Challenges. Processes 2020, 8, 1382. [Google Scholar] [CrossRef]
- Feller, C.; Bleiholder, H.; Buhr, L.; Hack, H.; Hess, M.; Klose, R.; Meier, U.; Stauss, R.; Boom, T.; Weber, E. Phenological growth stages of vegetable crops. II. Fruit vegetables and pulses. Co-ding and description according to the extended BBCH scale with illustrations. Nachr. des Dtsch. Pflanzenschutzd. 1995, 47, 217–232. [Google Scholar]
- Srečec, S.; Kvaternjak, I.; Kaučić, D.; Špoljar, A.; Erhatič, R. Influence of climatic conditions on accumulation of α-acids in hop clones. Agric. Conspec. Sci. 2008, 73, 161–166. [Google Scholar]
- Srečec, S.; Čeh, B.; Ciler, T.S.; Rus, A.F. Empiric mathematical model for predicting the content of alpha-acids in hop (Humulus lupulus L.) cv. Aurora. Springer Plus 2013, 2, 59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arruda, T.R.; Pinheiro, P.F.; Silva, P.I.; Bernardes, P.C. A new perspective for a well-recognized raw material: Phenol content, antioxidant and antimicrobial activity, and the α- and β-acid profile of Brazilian hop extracts (Humulus lupulus L.). LWT 2021, 141, 110905. [Google Scholar] [CrossRef]
- Biendl, M.; Engelhard, B.; Forster, A.; Gahr, A.; Lutz, A.; Mitter, W.; Schmidt, R.; Schonberger, C. Hops. Their Cultivation, Composition and Usage; Fachverlag Hans Carl GmbH: Nuremberg, Germany, 2014; ISBN 9783418008233. [Google Scholar]
- Eriksen, R.L.; Rutto, L.K.; Dombrowski, J.E.; Henning, J.A. Photosynthetic Activity of Six Hop (Humulus lupulus L.) Cultivars under Different Temperature Treatments. Hort Sci. 2020, 55, 403–409. [Google Scholar] [CrossRef] [Green Version]
- De Keukeleire, J.; Janssens, I.; Heyerick, A.; Ghekiere, G.; Cambie, J.; Roldán-Ruiz, I.; Van Bockstaele, E.; De Keukeleire, D. Relevance of organic farming and effect of climatological conditions on the formation of α-acids, β-acids, desmethylxanthohumol and xanthohumol in hop (Humulus lupulus L.). J. Agric. Food Chem. 2007, 55, 61–66. [Google Scholar] [CrossRef]
- Eyres, G.; Dufour, J.-P. Hops Essential Oil: Analysis, Chemical Composition, and Odor Properties. In Beer in Health and Disease Prevention; Preedy, V.R., Ed.; Academic Press: London, UK, 2009; pp. 239–254. [Google Scholar] [CrossRef]
- Holt, S.; Miks, M.H.; de Carvalho, B.T.; Foulquié-Moreno, M.R.; Thevelein, J.M. Molecular biology of fruit and flower aromas in beer and other alcoholic beverages. FEMS Microbiol. Rev. 2018, 43, 193–222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dietz, C.; Cook, D.; Huismann, M.; Wilson, C.; Ford, R. The multisensory perception of hop essential oil: A review. J. Inst. Brew. 2020, 126, 320–342. [Google Scholar] [CrossRef]
- Van Holle, A.; Van Landschoot, A.; Roldán-Ruiz, I.; Naudts, D.; De Keukeleire, D. The brewing value of Amarillo hops (Humulus lupulus L.) grown in the northwest United States: A preliminary study of the importance of terroir. J. Inst. Brew. 2017, 123, 312–319. [Google Scholar] [CrossRef] [Green Version]
- Moir, M. Hops–A millennium review. J. Am. Soc. Brew. Chem. 2000, 58, 131–146. [Google Scholar] [CrossRef]
- Steenackers, B.; De Cooman, L.; De Vos, D. Chemical transformations of characteristic hop secondary metabolites in relation to beer properties and the brewing process: A review. Food Chem. 2015, 172, 742–756. [Google Scholar] [CrossRef]
- Hecht, S.; Kammhuber, K.; Reiner, J.; Bacher, A.; Eisenreich, W. Biosynthetic experiments with tall plants under field conditions. 18O2 incorporation into humulone from Humulus lupulus. Phytochemistry 2004, 65, 1057–1060. [Google Scholar] [CrossRef]
- Pavlovič, V.; Pavlovič, M.; Čerenak, A.; Košir, I.J.; Čeh, B.; Rozman, Č.; Turk, J.; Pažek, K.; Krofta, K.; Gregoric, G. Environment and weather influence on quality and market value of hops. Plant Soil Environ. 2012, 58, 155–160. [Google Scholar] [CrossRef] [Green Version]
No | Location | Geographic Location | Hops Growing Area [ha] | The Share of Hops in the Sown Structure [%] |
---|---|---|---|---|
1 | Zastów (A) | 51°16′ N; 21°52′ E | 2.0 | 23.5 |
2 | Szkuciska (B) | 51°14′ N; 21°49′ E | 2.0 | 11.8 |
3 | Brzozowa (C) | 51°14′ N; 21°50 E | 2.5 | 17.7 |
4 | Majdany (D) | 51°13′ N; 21°49′ E | 2.0 | 20.2 |
No. | Varieties | Variety Registration Status * | The Origin of Varieties | The Origin of the Seedlings ** | Year of Entry into the Register of Original Varieties |
---|---|---|---|---|---|
1 | ‘Marynka’ | Bitter variety, Ro | Was created in Poland from the crossing of the Brewers Gold x variety with wild hops, male from the former Yugoslavia | IUNG | 1988 |
2 | ‘Iunga’ 1 | Bitter variety, Ro | Was created in Poland from the crossing of ‘Northern Brewer’ × ‘Marynka’ varieties | IUNG | 2005 |
3 | ‘Magnum’ | Bitter variety, Ro | Was developed at the Hop Research Center in Huell, Germany. Her lineage consists of a combination of Galena (the American super-alpha variety) and a male German variety marked only with the number 75/5/3. | IUNG | 2000 |
4 | ‘Lubelski’ | Super aromatic, Ro | Was bred in Poland by individual and pedigree selection from the domestic population | IUNG | 1964 |
5 | ‘Sybilla’ | Aromatic, Ro | Was created in Poland by crossing the ‘Lubelski’ variety with wild male hops from the former Yugoslavia | IUNG | 1996 |
6 | ‘Lomik’ | Aromatic Rs | Was created in Poland after crossing the ‘Northern Brewer’ variety with wild male hops from the vicinity of Lublin and subjected to the action of mutagenic agents | POWIŚLE | 1988 |
No | Trade Name | Active Substance/ Composition | Preparation/ Doses | The Use/Terms |
---|---|---|---|---|
1 | Aliette 80 WG | (Aluminum fosetyl) | 250 g in 100 dm3 H2O | Against downy mildew (Pseudoperonospora humuli) immediately after being brought onto the conductors in 600 dm3 H2O ha−1, after two to 3 weeks-in 800 dm3 H2O ha−1; after the hops have reached the grid level of 1500–2000 dm3 H2O ha−1 |
2 | Confidor 200 SL, Imidor 200 SL Sherpa 100 EC | Imidachlopryd Imidaklopryd cypermetryna | 0.018% ha−1 0.018% ha−1 0.05% ha−1 | Against the plum-hop aphid (Phorodon humuli Schrank). Plants were sprayed after reaching the height of the supporting structure ¾, the treatment was repeated until the cones matured. 2000 dm3 H2O ha−1 were used for spraying after the mesh had grown through |
Location * | Plot Number | Years | ||
---|---|---|---|---|
2011 | 2012 | 2013 | ||
A | 71, 72, 73 | Rye | Phacelia | Turnip |
B | 33, 34, 35 | Phacelia | White mustard | Rye |
C | 36, 37, 38 | Turnip | Rye | White mustard |
D | 155, 156, 157 | Turnip | Rye | White mustard |
Location * | Percentage of Fraction Diameter (mm ∅) | Composition Granulometric (acc. Usda) | ||
---|---|---|---|---|
0.5–2.0 | 0.5–0.002 | <0.002 | ||
Zastów | 36.97 | 57.06 | 5.97 | SiL** |
Szkuciska | 34.47 | 59.21 | 6.32 | SiL |
Brzozowa | 36.78 | 58.01 | 5.21 | SiL |
Majdany | 36.41 | 57.09 | 6.50 | SiL |
Average | 36.16 | 57.84 | 5.49 |
Location | Content of Assimilable Forms of Elements [mg 100 g−1 of Soil] | Humus [gkg−1] | Content Corg | pH [1 mol KCI] | The Content of Micronutrients [mg kg−1 soil] | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
P2O5 | K2O | Mg | B | Mn | Cu | Zn | Fe | ||||
Zastów | 26.9 | 11.6 | 19.5 | 2.67 | 1.37 | 7.3 | 3.85 | 295 | 57.5 | 24.5 | 3630 |
Szkuciska | 10.9 | 9.6 | 10.3 | 2.82 | 1.29 | 5.9 | 1.44 | 233 | 58.0 | 16.4 | 2755 |
Brzozowa | 13.1 | 11.1 | 10.9 | 2.51 | 1.34 | 6.9 | 2.97 | 248 | 42.5 | 18.4 | 2245 |
Majdany | 27.3 | 12.0 | 20.6 | 2.67 | 1.36 | 7.1 | 4.02 | 299 | 60.1 | 25.5 | 3690 |
Year | Month | Total Rainfall a Month (mm) | Total Rainfall a Month (mm) | Average Air Temperature (°C) | Average Air Temperature in the Month (°C) | Sielianinov Hydrothermal Coefficient | ||||
---|---|---|---|---|---|---|---|---|---|---|
Decade of Month | Decade of Month | |||||||||
1 | 2 | 3 | 1 | 2 | 3 | |||||
2014 | April | 3.2 | 15.3 | 26.2 | 44.7 | 7.4 | 7.9 | 14.1 | 9.8 | 1.5 |
May | 32.7 | 88.4 | 72.5 | 193.6 | 10.6 | 12.9 | 17.4 | 13.6 | 4.6 | |
June | 11.2 | 3.0 | 63.9 | 78.1 | 17.4 | 16.0 | 15.4 | 16.3 | 1.6 | |
July | 14.2 | 38.4 | 30.6 | 83.2 | 19.4 | 19.8 | 21.8 | 20.3 | 1.3 | |
August | 24.9 | 32.8 | 44.5 | 102.2 | 22.5 | 18.1 | 14.4 | 18.3 | 1.8 | |
September | 3.2 | 2.7 | 19.3 | 25.2 | 15.3 | 15.4 | 11.2 | 14.0 | 0.6 | |
Sum | 527.0 | 2.2 | ||||||||
2015 | April | 12.7 | 2.8 | 25.3 | 40.8 | 4.5 | 8.6 | 13.2 | 8.7 | 1.6 |
May | 26.8 | 8.9 | 76.2 | 111.9 | 13.5 | 13.2 | 13.1 | 13.3 | 2.7 | |
June | 0.8 | 8.1 | 3.2 | 12.1 | 18.6 | 17.7 | 16.8 | 17.7 | 0.2 | |
July | 9.4 | 23.5 | 10.7 | 43.6 | 23.0 | 20.8 | 21.8 | 21.9 | 0.6 | |
August | 0.0 | 0.0 | 7.6 | 7.6 | 27.4 | 23.9 | 22.1 | 24.4 | 0.1 | |
September | 37.7 | 32.2 | 42.8 | 112.7 | 15.4 | 17.6 | 13.1 | 15.3 | 2.5 | |
Sum | 328.7 | 1.3 | ||||||||
2016 | April | 14.0 | 13.6 | 16.4 | 44.0 | 10.7 | 10.6 | 7.9 | 9.7 | 1.5 |
May | 14.2 | 21.6 | 2.1 | 37.9 | 13.6 | 12.2 | 19.2 | 15.1 | 0.8 | |
June | 5.5 | 35.5 | 2.4 | 43.4 | 17.0 | 18.2 | 22.4 | 19.2 | 0.8 | |
July | 13.7 | 49.8 | 66.2 | 129.7 | 18.9 | 18.7 | 22.0 | 19.9 | 2.1 | |
August | 28.2 | 5.9 | 37.3 | 71.4 | 19.8 | 16.8 | 19.6 | 18.8 | 1.2 | |
September | 7.4 | 0.0 | 3.7 | 11.1 | 19.2 | 16.3 | 12.1 | 15.8 | 0.2 | |
Sum | 337.5 | 1.1 | ||||||||
2017 | April | 8.9 | 20.3 | 21.9 | 51.1 | 7.0 | 7.5 | 9.8 | 8.1 | 2.1 |
May | 39.2 | 28.9 | 33.5 | 101.6 | 11.8 | 14.2 | 17.9 | 15.3 | 2.1 | |
June | 42.1 | 53.2 | 10.6 | 105.9 | 17.8 | 19.6 | 18.1 | 18.5 | 1.9 | |
July | 49.3 | 56.7 | 20.1 | 126.1 | 19.6 | 18.4 | 19.6 | 19.2 | 2.1 | |
August | 0.0 | 9.5 | 8.3 | 17.8 | 20.5 | 19.1 | 18.0 | 19.2 | 0.3 | |
September | 28.2 | 16.3 | 20.1 | 64.6 | 14.3 | 11.1 | 10.0 | 11.8 | 1.8 | |
Sum | 467.1 | 1.7 |
Variety | A Fresh Yield of Cones [t ha−1] | A Dry Yield of Cones [t ha−1] | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Location * | ||||||||||
A | B | C | D | X | A | B | C | D | X | |
‘Marynka’ | 19.20 a** | 16.67 b | 19.60 b | 18.36 b | 18.46 b | 2.30 a | 2.00 b | 2.34 b | 2.35 b | 2.22 b |
‘Iunga’ | 18.34 a | 20.00 a | 22.90 a | 20.58 a | 20.46 a | 2.20 a | 2.40 a | 2.75 a | 2.75 a | 2.45 a |
‘Magnum’ | 15.80 b | 19.60 a | 20.00 b | 18.67 b | 18.52 b | 1.90 b | 2.35 a | 2.63 a | 2.40 b | 2.22 b |
‘Lubelski’ | 10.00 c | 8.34 c | 10.80 d | 9.91 c | 9.76 c | 1.20 c | 1.00 c | 1.29 c | 1.30 d | 1.17 c |
‘Sybilla’ | 14.20 b | 17.50 b | 19.50 b | 17.92 b | 17.28 b | 1.70 b | 2.10 b | 2.56 a | 2.35 b | 2.05 b |
‘Lomik’ | 16.50 b | 16.70 b | 16.70 c | 18.12 b | 17.00 b | 1.82 b | 1.90 b | 2.10 b | 1.90 c | 1.87 c |
Average | 15.67 c | 16.47 b | 18.25 a | 17.26 b | 16.91 | 1.85 c | 1.86 c | 2.28 a | 2.18 b | 2.00 |
Varieties | A Fresh Mass of 100 Cones [g] | A Dry Mass of 100 Cones [g] | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Location * | ||||||||||
A | B | C | D | X | A | B | C | D | X | |
‘Marynka’ | 224.7 b** | 214.6 c | 211.8 c | 215.3 c | 216.6 c | 27.0 c | 25.2 c | 24.4 c | 27.5 c | 26.0 c |
‘Iunga’ | 224.6 b | 210.9 c | 218.7 b | 229.0 b | 220.8 b | 26.6 c | 25.4 c | 25.6 b | 28.4 b | 26.5 c |
‘Magnum’ | 310.4 a | 307.1 a | 308.2 a | 307.5 a | 308.3 a | 37.1 a | 36.4 a | 37.9 a | 36.6 a | 37.0 a |
‘Lubelski’ | 238.2 b | 236.4 b | 226.7 b | 231.9 b | 233.3 b | 29.6 b | 28.2 b | 26.3 b | 27.9 b | 28.0 b |
‘Sybilla’ | 306.1 a | 302.0 a | 303.0 a | 305.6 a | 304.2 a | 37.4 a | 35.7 a | 36.1 a | 36.8 a | 36.5 a |
‘Lomik’ | 155.3 c | 152.2 d | 148.8 d | 143.8 d | 150.0 d | 19.2 d | 18.3 d | 17.5 d | 17.0 d | 18.0 d |
Average | 243.2 a | 237.2 b | 236.2 b | 238.9 b | 238.9 | 29.5 a | 28.2 c | 28.0 c | 29.0 b | 28.7 |
Variety | Cone Length of Hop (mm) | Length of Spindle Cone (mm) | Number of Nodes per Cone Spindle of Hops (pcs.) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A * | B | C | D | X | A | B | C | D | X | A | B | C | D | X | |
‘Marynka’ | 30.6 c** | 28.5 b | 28.8 b | 29.9 c | 29.5 d | 17.9 c | 17.0 c | 16.9 c | 17.1 b | 17.2 e | 11.2 b | 10.2 c | 10.3 c | 10.7 c | 10.6 d |
‘Iunga’ | 33.1 b | 31.2 b | 31.5 b | 31.4 c | 31.8 c | 25.4 b | 22.7 b | 23.8 a | 23.8 a | 23.9 c | 14.6 a | 13.2 b | 13.4 b | 13.1 b | 13.6 b |
‘Magnum’ | 41.9 a | 40.6 a | 39.8 a | 40.7 a | 40.8 a | 29.3 a | 28.6 a | 28.3 a | 28.3 a | 28.6 a | 16.4 a | 16.0 a | 15.7 a | 15.9 a | 16.0 a |
‘Lubelski’ | 43.2 a | 40.2 a | 40.5 a | 40.1 a | 41.0 a | 26.8 a | 25.5 a | 26.0 a | 25.4 a | 25.9 b | 14.0 a | 12.9 b | 12.8 b | 13.2 b | 13.2 b |
‘Sybilla’ | 37.9 a | 37.1 a | 36.5 a | 37.3 a | 37.2 b | 26.0 b | 24.6 b | 24.2 a | 24.9 a | 24.9 b | 16.4 a | 15.5 a | 15.0 a | 15.7 a | 15.7 a |
‘Lomik’ | 32.7 b | 31.5 b | 30.9 b | 32.2 a | 31.8 c | 21.1 c | 20.0 c | 19.6 c | 20.9 b | 20.4 d | 12.7 b | 11.6 bc | 11.4 bc | 12.4 b | 12.0 c |
Average | 36.6 a | 34.9 b | 34.7 b | 35.3 b | 35.3 | 24.4 a | 23.1 b | 23.1 b | 23.4 b | 23.5 | 14.2 a | 13.2 b | 13.1 b | 13.5 b | 13.5 |
Varieties | Length of the Cones (mm) | Length of Cone Spindle of Hops (mm) | Number of Nodes per Cone Spindle of Hops (Pcs.) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
2015 | 2016 | 2017 | X | 2015 | 2016 | 2017 | X | 2015 | 2016 | 2017 | X | |
‘Marynka’ | 30.1 b* | 29.4 c | 28.9 b | 29.5 d | 17.5 d | 17.1 d | 16.8 c | 17.1 c | 10.9 c | 10.8 c | 10.2 c | 10.6 d |
‘Iunga’ | 32.2 b | 31.9 b | 31.2 b | 31.8 c | 24.5 b | 23.8 b | 23.4 b | 23.9 b | 14.1 b | 13.7 b | 13.1 b | 13.6 b |
‘Magnum’ | 41.6 a | 41.0 a | 39.8 a | 40.8 a | 29.1 a | 28.5 a | 28.1 a | 28.6 a | 16.8 a | 16.2 a | 15.1 a | 16.0 a |
‘Sybilla’ | 38.3 a | 37.0 a | 36.2 a | 37.2 b | 25.6 b | 25.0 b | 24.2 b | 24.9 b | 16.3 a | 16.1 a | 14.9 a | 15.7 a |
‘Lomik’ | 32.5 b | 31.9 b | 31.1 b | 31.8 c | 21.2 c | 20.4 c | 19.7 c | 20.4 bc | 12.7 b | 12.3 b | 11.1 c | 12.0 c |
Average | 34.9 a | 34.2 a | 33.4 b | 34.2 | 23.6 a | 23.0 b | 22.4 c | 23.5 | 14.2 a | 13.8 a | 12.9 b | 13.5 |
Varieties | Alfa-acids (%) | Beta-acids (%) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
A * | B | C | D | X | A | B | C | D | X | |
‘Marynka’ | 7.5 b** | 7.9 b | 8.7 b | 9.6 b | 8.4 c | 4.3 b | 4.6 b | 4.8 b | 4.6 b | 4.7 b |
‘Iunga’ | 11.8 a | 11.0 a | 10.6 a | 11.7 a | 11.3 b | 6.4 a | 6.2 a | 6.0 a | 6.2 a | 6.4 a |
‘Magnum’ | 12.5 a | 11.5 a | 11.5 a | 12.7 a | 12.1 a | 5.9 a | 6.5 a | 7.0 a | 6.5 a | 6.6 a |
‘Lubelski’ | 4.3 c | 4.2 d | 4.0 d | 4.4 d | 4.2 e | 4.6 b | 4.5 b | 4.1 b | 4.4 b | 4.5 b |
‘Sybilla’ | 6.1 b | 6.0 c | 6.2 c | 6.8 c | 6.3 d | 3.5 bc | 3.5 bc | 3.8 b | 3.6 b | 3.7 c |
‘Lomik’ | 4.3 c | 4.0 d | 4.6 d | 5.1 d | 4.5 e | 4.2 b | 4.0 b | 3.4 c | 3.9 b | 4.0 c |
Average | 7.8 b | 7.4 bc | 7.6 b | 8.4 a | 7.8 | 4.8 b | 4.9 b | 4.9 b | 5.4 a | 5.0 |
Varieties | Alfa-Acids (%) | Beta-Acids (%) | ||||||
---|---|---|---|---|---|---|---|---|
2015 | 2016 | 2017 | X | 2015 | 2016 | 2017 | X | |
‘Marynka’ | 8.7 b* | 8.5 b | 8.1 b | 8.4 b | 4.9 b | 4.8 b | 4.5 b | 4.7 b |
‘Iunga’ | 11.6 a | 11.3 a | 11.0 a | 11.3 a | 6.6 a | 6.5 a | 6.1 a | 6.4 a |
‘Magnum’ | 12.6 a | 12.0 a | 11.6 a | 12.1 a | 6.9 a | 6.9 a | 6.0 a | 6.6 a |
‘Lubelski’ | 4.5 c | 4.3 d | 3.9 d | 4.2 d | 5.0 b | 4.5 b | 4.0 b | 4.5 b |
‘Sybilla’ | 6.6 b | 6.4 c | 5.9 c | 6.3 c | 4.0 b | 3.8 bc | 4.0 b | 3.7 c |
‘Lomik’ | 5.0 c | 4.6 d | 4.0 d | 4.5 d | 4.4 b | 4.1 b | 3.2 c | 4.0 c |
Average | 8.2 a | 7.8 b | 7.4 c | 7.8 | 5.3 a | 5.1 a | 3.6 b | 5.0 |
Specification | Location * | Years | Average | |||||
---|---|---|---|---|---|---|---|---|
A | B | C | D | 2015 | 2016 | 2017 | ||
Total oils (mL 100 g−1) | 1.9 a** | 1.7 a | 1.6 a | 1.8 a | 1.9 a | 1.8 a | 1.5 b | 1.7 |
Myrcene (%) | 39.3 b | 39.5 b | 37.7 b | 45.1 a | 41.4 a | 40.7 a | 39.0 b | 40.4 |
Humulene (%) | 22.3 b | 20.7 bc | 21.4 bc | 26.8 a | 23.4 a | 23.1 a | 21.9 b | 22.8 |
Farnesene (%) | 7.8 a | 7.9 b | 7.8 b | 7.8 a | 8.0 a | 7.9 a | 7.6 b | 6.7 |
Caryophyllene (%) | 6.5 b | 6.0 c | 6.2 c | 7.8 a | 7.1 a | 6.8 a | 6.0 b | 6.6 |
Varieties | Total oil content (mL 100 g−1) | Myrcene (%) | Humulene (%) | Farnesene (%) | Caryophyllene (%) | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Location * | ||||||||||||||||||||
A | B | C | D | A | B | C | D | A | B | C | D | A | B | C | D | A | B | C | D | |
‘Marynka’ | 2.2 a** | 2.3 a | 2.4 a | 2.6 a | 32.0 a | 35.0 a | 33.0 a | 33.0 a | 20.0 b | 19.0 b | 21.0 b | 25.0 a | 15.0 a | 16.0 a | 15.0 a | 15.0 a | 5.0 b | 5.0 b | 5.0 b | 6.3 a |
‘Iunga’ | 2.2 a | 2.0 a | 2.0 a | 2.2 a | 50.0 a | 52.0 a | 49.0 a | 52.0 a | 20.0 b | 19.0 b | 21.0 b | 25.0 a | 0.9 a | 0.8 a | 0.8 a | 0.7 a | 7.0 b | 7.0 b | 7.0 b | 8.8 a |
Magnum’ | 2.1 a | 2.0 a | 2.0 a | 2.2 a | 32.0 b | 32.0 b | 30.0 b | 38.0 a | 32.0 b | 30.0 c | 34.0 b | 40.0 a | 1.0 a | 0.7 a | 0.8 a | 0.9 a | 9.0 b | 8.0 c | 9.0 b | 10.8 a |
Lubelski’ | 2.1 a | 1.0 b | 1.0 b | 1.1 b | 42.0 b | 40.0 b | 41.0 b | 51.3 a | 22.0 a | 19.0 b | 16.0 b | 23.8 a | 14.4 a | 14.3 a | 14.6 a | 14.5 a | 5.0 a | 4.0 b | 4.0 b | 5.4 a |
‘Sybilla’ | 1.8 a | 1.8 a | 1.6 a | 1.8 a | 43.0 b | 44.0 b | 40.0 b | 52.9 a | 19.0 a | 18.0 b | 18.3 b | 22.9 a | 9.6 a | 8.9 a | 9.2 a | 9.0 a | 6.0 b | 6.0 b | 6.1 b | 7.4 a |
‘Lomik’ | 1.0 a | 0.8 a | 0.7 a | 0.8 a | 37.0 a | 34.0 a | 33.0 b | 43.4 a | 21.0 b | 19.0 b | 18.0 b | 24.2 a | 6.0 a | 6.8 a | 6.4 a | 6.5 a | 7.0 a | 6.0 b | 6.0 b | 7.9 a |
Average | 1.9 a | 1.7 a | 1.6 a | 1.8 a | 39.3 b | 39.5 b | 37.7 bc | 45.1 a | 22.3 b | 20.7 c | 21.4 c | 26.8 a | 7.8 a | 7.9 a | 7.8 a | 7.8 a | 6.5 b | 6.0 b | 6.2 b | 7.8 a |
Varieties | Total Oil Content (mL 100 g−1) | Myrcene (%) | Humulene (%) | Farnesene (%) | Caryophyllene (%) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Years | |||||||||||||||
2015 | 2016 | 2017 | 2015 | 2016 | 2017 | 2015 | 2016 | 2017 | 2015 | 2016 | 2017 | 2015 | 2016 | 2017 | |
‘Marynka’ | 2.5 a* | 2.5 a | 2.2 b | 33.5 a | 33.7 a | 32.3 a | 21.7 a | 21.5 a | 20.6 a | 15.6 a | 15.7 a | 14.6 b | 5.8 a | 5.3 a | 4.9 a |
‘Junga’ | 2.3 a | 2.3 a | 1.8 b | 52.1 a | 50.9 a | 49.0 a | 21.7 a | 21.5 a | 20.6 a | 0.9 a | 0.8 a | 0.6 a | 7.8 a | 7.8 a | 6.8 b |
Lubelski’ | 2.4 a | 2.2 a | 1.8 b | 34.4 a | 33.2 a | 31.3 a | 34.3 a | 34.6 a | 33.2 a | 0.9 a | 0.8 a | 0.7 a | 10.0 a | 9.4 a | 8.3 b |
‘Magnum’ | 1.2 a | 1.1 a | 0.9 b | 44.5 a | 43.9 a | 42.3 a | 21.3 a | 20.8 a | 18.6 b | 14.7 a | 14.4 a | 14.0 a | 4.9 a | 4.8 a | 4.2 a |
‘Sybilla’ | 2.0 a | 1.8 a | 1.5 b | 46.5 a | 45.3 a | 43.1 a | 20.3 a | 19.7 a | 18.6 b | 9.3 a | 8.9 a | 9.4 a | 6.9 a | 6.5 a | 6.0 a |
‘Lomik’ | 0.9 a | 0.8 a | 0.7 a | 37.5 a | 37.0 a | 36.1 a | 21.3 a | 20.5 a | 19.9 b | 6.4 a | 6.5 a | 6.4 a | 7.0 a | 7.0 a | 6.2 a |
Average | 1.9 a | 1.8 a | 1.5 b | 41.4 a | 40.7 a | 39.0 b | 23.4 a | 23.1 a | 21.9 b | 8.0 a | 7.9 a | 7.6 b | 7.1 a | 6.8 a | 6.0 b |
Specification | Significance of Effect | Percentage Contribution of the Variance to the Total Variance | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Years | Varieties | Location | Years × Varieties | Years × Location | Location ×Varieties | Years × Varieties× Location | Years | Varieties | Location | Years × Varieties | Years × Location | Location ×Varieties | Years × Varieties× Location | |
Fresh yield of hop [t ha−1] | ** | ** | ** | * | ** | ** | ** | 34.9 | 13.6 | 11.1 | 4.4 | 13.7 | 9.1 | 13.2 |
Dry yield of hop [t ha−1] | ** | ** | * | ** | ** | * | * | 36.9 | 17.7 | 2.1 | 15.7 | 11.5 | 8.8 | 7.3 |
Fresh mass of cones [g] | ** | ** | ** | ** | ** | * | ns | 29.6 | 9.2 | 15.2 | 29.0 | 9.9 | 7.1 | 1.1 |
Dry mass of cones [g] | ** | ** | ** | ** | ** | ns | * | 41.2 | 12.3 | 10.5 | 14.8 | 12.3 | 1.2 | 8.1 |
Cone Length of Hop [mm] | ** | ** | ** | ** | ** | * | ** | 44.2 | 16.4 | 7.0 | 14.2 | 8.2 | 5.1 | 16.1 |
Cone length of spindle [mm] | ** | ** | * | ** | ** | ** | ** | 35.1 | 10.9 | 2.2 | 22.7 | 11.4 | 6.8 | 12.0 |
The number of nodes per cone spindle of hop [pcs] | ** | ** | * | ** | ns | * | ** | 18.5 | 29.5 | 5.8 | 31.5 | 1.1 | 3.5 | 12.1 |
Alpha-acids (%) | * | ** | * | ** | ** | ** | ns | 4.4 | 8.9 | 5.9 | 25.6 | 17.7 | 35.5 | 0.9 |
Beta-acids (%) | * | * | ns | ** | ** | ** | ** | 5.2 | 3.5 | 0.1 | 20.9 | 15.7 | 10.4 | 41.7 |
Alpha-acids/Beta-acids | ** | ** | * | ** | ** | ** | ns | 24.6 | 29.1 | 1.0 | 27.2 | 11.1 | 6.5 | 0.9 |
General oil content (mL 100 g−1) | ** | ** | * | ** | ** | ** | * | 24.6 | 12.4 | 1.8 | 34.2 | 9.7 | 13.5 | 5.0 |
Myrcene (%) | ** | ** | ** | ns | ** | * | ** | 7.4 | 11.6 | 1.9 | 0.1 | 44.7 | 5.6 | 22.3 |
Humulene (%) | * | ** | * | ** | ** | ** | ** | 3.3 | 7.8 | 5.7 | 19.1 | 14.5 | 12.8 | 34.4 |
Farnesene (%) | ** | ** | * | ** | ** | * | ** | 7.8 | 12.3 | 2.9 | 17.8 | 16.7 | 9.9 | 20.2 |
Caryophyllene (%) | ** | * | * | ** | ** | ** | ** | 29.5 | 9.2 | 1.8 | 17.1 | 21.1 | 12.8 | 30.0 |
Myrcene to humulene ratio | * | ** | * | ** | ** | ** | ** | 2.3 | 7.9 | 2.1 | 20.4 | 21.7 | 17.0 | 30.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sawicka, B.; Śpiewak, M.; Kiełtyka-Dadasiewicz, A.; Skiba, D.; Bienia, B.; Krochmal-Marczak, B.; Pszczółkowski, P. Assessment of the Suitability of Aromatic and High-Bitter Hop Varieties (Humulus lupulus L.) for Beer Production in the Conditions of the Małopolska Vistula Gorge Region. Fermentation 2021, 7, 104. https://doi.org/10.3390/fermentation7030104
Sawicka B, Śpiewak M, Kiełtyka-Dadasiewicz A, Skiba D, Bienia B, Krochmal-Marczak B, Pszczółkowski P. Assessment of the Suitability of Aromatic and High-Bitter Hop Varieties (Humulus lupulus L.) for Beer Production in the Conditions of the Małopolska Vistula Gorge Region. Fermentation. 2021; 7(3):104. https://doi.org/10.3390/fermentation7030104
Chicago/Turabian StyleSawicka, Barbara, Mateusz Śpiewak, Anna Kiełtyka-Dadasiewicz, Dominika Skiba, Bernadetta Bienia, Barbara Krochmal-Marczak, and Piotr Pszczółkowski. 2021. "Assessment of the Suitability of Aromatic and High-Bitter Hop Varieties (Humulus lupulus L.) for Beer Production in the Conditions of the Małopolska Vistula Gorge Region" Fermentation 7, no. 3: 104. https://doi.org/10.3390/fermentation7030104
APA StyleSawicka, B., Śpiewak, M., Kiełtyka-Dadasiewicz, A., Skiba, D., Bienia, B., Krochmal-Marczak, B., & Pszczółkowski, P. (2021). Assessment of the Suitability of Aromatic and High-Bitter Hop Varieties (Humulus lupulus L.) for Beer Production in the Conditions of the Małopolska Vistula Gorge Region. Fermentation, 7(3), 104. https://doi.org/10.3390/fermentation7030104