Agricultural Waste and Wastewater as Feedstock for Bioelectricity Generation Using Microbial Fuel Cells: Recent Advances
Abstract
:1. Introduction
1.1. The Availability of Various Agricultural Waste
1.2. Current Status of Agricultural Wastes
1.3. Characteristics of Agricultural Wastes and Wastewaters
1.3.1. Physical Properties
1.3.2. Chemical Properties
Proximate Analysis
Ultimate Analysis
1.4. Pretreatment of Agricultural Wastes
1.4.1. Physical Pretreatment
1.4.2. Acid Pretreatment
1.4.3. Alkali Pretreatment
1.4.4. Biological Pretreatment
1.5. Route for Conversion
1.5.1. Biochemical Conversion
1.5.2. Thermochemical Conversion
1.6. Up-Gradation of End-Products
2. Agricultural Waste Usage in Microbial Fuel Cell Technology
Microbial Fuel Cells Used in Laboratory Studies for Scale-Up Purposes
3. Agro-Industrial Wastewater as a Substrate for Microbial Fuel Cells
3.1. Palm Oil Mill Effluent
3.2. Mustard Tuber and Molasses Wastewater
3.3. Brewery Wastewater
3.4. Winery Wastewater
3.5. Other Agricultural Activity Effluents and Waste
4. Agricultural Residues
4.1. Wheat Straw and Corn Stover
4.2. Rice Straw
4.3. Cassava Mill Effluents
4.4. Vegetable Waste
4.5. Fruit Waste
4.6. Plant and Yard Waste
5. Treatment of Animal Debris Waste and Wastewater in Microbial Fuel Cells
5.1. Slaughterhouse and Animal Debris Containing Waste
5.2. Livestock Compost Wastewater
5.3. Swine Wastewater
5.4. Poultry Slaughterhouse Wastewater
5.5. Dairy Industry Wastewater
6. Comparison of Related Works
7. Factors Affecting the Performance of MFC Utilizing Food Waste
7.1. pH
7.2. Substrate Concentration
7.3. Temperature
7.4. Salinity
8. Strategy to Enhance the Efficiency of MFC Performance
9. Techno-Economic Evaluation of Microbial Fuel Cell Technology
10. MFC Commercialization
11. Life Cycle Assessment
12. Challenges in Using Microbial Fuel Cells
13. Conclusions and Future Direction
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bhagchandanii, D.D.; Babu, R.P.; Sonawane, J.M.; Khanna, N.; Pandit, S.; Jadhav, D.A.; Khilari, S.; Prasad, R. A Comprehensive Understanding of Electro. Fermentation 2020, 6, 92. [Google Scholar] [CrossRef]
- Azam, M.; Jahromy, S.S.; Raza, W.; Raza, N.; Lee, S.S.; Kim, K.-H.; Winter, F. Status, Characterization and Potential Utilization of Municipal Solid Waste as Renewable Energy Source: Lahore Case Study in Pakistan. Environ. Int. 2020, 134, 105291. [Google Scholar] [CrossRef] [PubMed]
- Savla, N.; Pandit, S.; Khanna, N.; Mathuriya, A.S.; Jung, S.P. Microbially Powered Electrochemical Systems Coupled with Membrane-Based Technology for Sustainable Desalination and Efficient Wastewater Treatment. J. Korean Soc. Environ. Eng. 2020, 42, 360–380. [Google Scholar] [CrossRef]
- Kumbhar, P.; Savla, N.; Banerjee, S.; Mathuriya, A.S.; Sarkar, A.; Khilari, S.; Jadhav, D.A.; Pandit, S. Chapter 26—Microbial Electrochemical Heavy Metal Removal: Fundamental to the Recent Development. In Wastewater Treatment; Elsevier: Amsterdam, The Netherlands, 2021; pp. 521–542. [Google Scholar] [CrossRef]
- Yang, Y.; Liew, R.K.; Tamothran, A.M.; Foong, S.Y.; Yek, P.N.Y.; Chia, P.W.; Van Tran, T.; Peng, W.; Lam, S.S. Gasification of Refuse-Derived Fuel from Municipal Solid Waste for Energy Production: A Review. Env. Chem Lett. 2021, 19, 2127–2140. [Google Scholar] [CrossRef] [PubMed]
- ElMekawy, A.; Srikanth, S.; Bajracharya, S.; Hegab, H.M.; Nigam, P.S.; Singh, A.; Mohan, S.V.; Pant, D. Food and Agricultural Wastes as Substrates for Bioelectrochemical System (BES): The Synchronized Recovery of Sustainable Energy and Waste Treatment. Food Res. Int. 2015, 73, 213–225. [Google Scholar] [CrossRef]
- Khan, T.S.; Mubeen, U. Wheat Straw: A Pragmatic Overview. Curr. Res. J. Biol. Sci. 2012, 4, 673–675. [Google Scholar]
- Wang, X.; Feng, Y.; Wang, H.; Qu, Y.; Yu, Y.; Ren, N.; Li, N.; Wang, E.; Lee, H.; Logan, B.E. Bioaugmentation for Electricity Generation from Corn Stover Biomass Using Microbial Fuel Cells. Env. Sci. Technol. 2009, 43, 6088–6093. [Google Scholar] [CrossRef]
- Lin, H.; Ying, Y. Theory and Application of near Infrared Spectroscopy in Assessment of Fruit Quality: A Review. Sens. Instrum. Food Qual. Saf. 2009, 3, 130–141. [Google Scholar] [CrossRef]
- Jin, B.; van Leeuwen, H.J.; Patel, B.; Yu, Q. Utilisation of Starch Processing Wastewater for Production of Microbial Biomass Protein and Fungal α-Amylase by Aspergillus Oryzae. Bioresour. Technol. 1998, 66, 201–206. [Google Scholar] [CrossRef]
- Shah, A.V.; Srivastava, V.K.; Mohanty, S.S.; Varjani, S. Municipal Solid Waste as a Sustainable Resource for Energy Production: State-of-the-Art Review. J. Environ. Chem. Eng. 2021, 9, 105717. [Google Scholar] [CrossRef]
- Bustillo-Lecompte, C.F.; Mehrvar, M. Slaughterhouse Wastewater Characteristics, Treatment, and Management in the Meat Processing Industry: A Review on Trends and Advances. J. Environ. Manag. 2015, 161, 287–302. [Google Scholar] [CrossRef]
- Rezaei, F.; Richard, T.L.; Logan, B.E. Analysis of Chitin Particle Size on Maximum Power Generation, Power Longevity, and Coulombic Efficiency in Solid–Substrate Microbial Fuel Cells. J. Power Sour. 2009, 192, 304–309. [Google Scholar] [CrossRef]
- Engineering and Science of Biomass Feedstock Production and Provision; Shastri, Y.; Hansen, A.; Rodríguez, L.; Ting, K.C. (Eds.) Springer-Verlag: New York, NY, USA, 2014; ISBN 978-1-4899-8013-7. [Google Scholar]
- Nagarajan, D.; Varjani, S.; Lee, D.-J.; Chang, J.-S. Sustainable Aquaculture and Animal Feed from Microalgae—Nutritive Value and Techno-Functional Components. Renew. Sustain. Energy Rev. 2021, 150, 111549. [Google Scholar] [CrossRef]
- Lebo, S.E.; Gargulak, J.D.; McNally, T.J. Lignin. In Kirk-Othmer Encyclopedia of Chemical Technology; American Cancer Society: Atlanta, GA, USA, 2001; ISBN 978-0-471-23896-6. [Google Scholar]
- Kan, T.; Strezov, V.; Evans, T.J. Lignocellulosic Biomass Pyrolysis: A Review of Product Properties and Effects of Pyrolysis Parameters. Renew. Sustain. Energy Rev. 2016, 57, 1126–1140. [Google Scholar] [CrossRef]
- Prajapati, P.; Varjani, S.; Singhania, R.R.; Patel, A.K.; Awasthi, M.K.; Sindhu, R.; Zhang, Z.; Binod, P.; Awasthi, S.K.; Chaturvedi, P. Critical Review on Technological Advancements for Effective Waste Management of Municipal Solid Waste—Updates and Way Forward. Environ. Technol. Innov. 2021, 23, 101749. [Google Scholar] [CrossRef]
- Varjani, S.; Shah, A.V.; Vyas, S.; Srivastava, V.K. Processes and Prospects on Valorizing Solid Waste for the Production of Valuable Products Employing Bio-Routes: A Systematic Review. Chemosphere 2021, 282, 130954. [Google Scholar] [CrossRef]
- Lloyd, T.A.; Wyman, C.E. Combined Sugar Yields for Dilute Sulfuric Acid Pretreatment of Corn Stover Followed by Enzymatic Hydrolysis of the Remaining Solids. Bioresour. Technol. 2005, 96, 1967–1977. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Cheng, J. Hydrolysis of Lignocellulosic Materials for Ethanol Production: A Review. Bioresour. Technol. 2002, 83, 1–11. [Google Scholar] [CrossRef]
- Agbor, V.B.; Cicek, N.; Sparling, R.; Berlin, A.; Levin, D.B. Biomass Pretreatment: Fundamentals toward Application. Biotechnol. Adv. 2011, 29, 675–685. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.; Wang, C.; Liu, Y.; Hu, C.; Xin, Y.; Ding, N.; Su, S. Effect of Ultrasonic Pretreatment of the Dairy Manure on the Electricity Generation of Microbial Fuel Cell. Biochem. Eng. J. 2018, 129, 44–49. [Google Scholar] [CrossRef]
- Tao, K.; Quan, X.; Quan, Y. Composite vegetable degradation and electricity generation in microbial fuel cell with ultrasonic pretreatment. Env. Eng. Manag. J. 2013, 12, 1423–1427. [Google Scholar] [CrossRef]
- Wang, Y.-Z.; Shen, Y.; Gao, L.; Liao, Z.-H.; Sun, J.-Z.; Yong, Y.-C. Improving the Extracellular Electron Transfer of Shewanella Oneidensis MR-1 for Enhanced Bioelectricity Production from Biomass Hydrolysate. Rsc Adv. 2017, 7, 30488–30494. [Google Scholar] [CrossRef] [Green Version]
- Cao, Y.; Zhang, R.; Cheng, T.; Guo, J.; Xian, M.; Liu, H. Imidazolium-Based Ionic Liquids for Cellulose Pretreatment: Recent Progresses and Future Perspectives. Appl. Microbiol. Biotechnol. 2017, 101, 521–532. [Google Scholar] [CrossRef] [Green Version]
- Yang, B.; Qin, X.; Hu, H.; Duan, C.; He, Z.; Ni, Y. Using Ionic Liquid (EmimAc)-Water Mixture in Selective Removal of Hemicelluloses from a Paper-Grade Bleached Hardwood Kraft Pulp. Cellulose 2020, 27, 9653–9661. [Google Scholar] [CrossRef]
- Wahlström, R.M.; Suurnäkki, A. Enzymatic Hydrolysis of Lignocellulosic Polysaccharides in the Presence of Ionic Liquids. Green Chem. 2015, 17, 694–714. [Google Scholar] [CrossRef] [Green Version]
- Amin, F.R.; Khalid, H.; Zhang, H.; Rahman, S.U.; Zhang, R.; Liu, G.; Chen, C. Pretreatment Methods of Lignocellulosic Biomass for Anaerobic Digestion. AMB Express 2017, 7, 72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, T. Production of Electricity from Rice Straw with Different Pretreatment Methods Using a Sediment Microbial Fuel Cell. Int. J. Electrochem. Sci. 2018, 461–471. [Google Scholar] [CrossRef]
- Xiao, B.; Yang, F.; Liu, J. Evaluation of Electricity Production from Alkaline Pretreated Sludge Using Two-Chamber Microbial Fuel Cell. J. Hazard. Mater. 2013, 254–255, 57–63. [Google Scholar] [CrossRef]
- Wagner, A.O.; Lackner, N.; Mutschlechner, M.; Prem, E.M.; Markt, R.; Illmer, P. Biological Pretreatment Strategies for Second-Generation Lignocellulosic Resources to Enhance Biogas Production. Energies 2018, 11, 1797. [Google Scholar] [CrossRef] [Green Version]
- Galbe, M.; Wallberg, O. Pretreatment for Biorefineries: A Review of Common Methods for Efficient Utilisation of Lignocellulosic Materials. Biotechnol. Biofuels 2019, 12, 294. [Google Scholar] [CrossRef] [Green Version]
- Krishnaraj, R.N.; Berchmans, S.; Pal, P. The Three-Compartment Microbial Fuel Cell: A New Sustainable Approach to Bioelectricity Generation from Lignocellulosic Biomass. Cellulose 2015, 22, 655–662. [Google Scholar] [CrossRef]
- Zamri, M.F.M.A.; Hasmady, S.; Akhiar, A.; Ideris, F.; Shamsuddin, A.H.; Mofijur, M.; Fattah, I.M.R.; Mahlia, T.M.I. A Comprehensive Review on Anaerobic Digestion of Organic Fraction of Municipal Solid Waste. Renew. Sustain. Energy Rev. 2021, 137, 110637. [Google Scholar] [CrossRef]
- Gupta, G.K.; Mondal, M.K. Bio-Energy Generation from Sagwan Sawdust via Pyrolysis: Product Distributions, Characterizations and Optimization Using Response Surface Methodology. Energy 2019, 170, 423–437. [Google Scholar] [CrossRef]
- Hossain, A.K.; Davies, P.A. Pyrolysis Liquids and Gases as Alternative Fuels in Internal Combustion Engines—A Review. Renew. Sustain. Energy Rev. 2013, 21, 165–189. [Google Scholar] [CrossRef]
- Bridgewater, A.V. Biomass Fast Pyrolysis. Therm. Sci. 2004, 8, 21–50. [Google Scholar] [CrossRef]
- Ram, M.; Mondal, M.K. Comparative Study of Native and Impregnated Coconut Husk with Pulp and Paper Industry Waste Water for Fuel Gas Production. Energy 2018, 156, 122–131. [Google Scholar] [CrossRef]
- Cai, J.; Zeng, R.; Zheng, W.; Wang, S.; Han, J.; Li, K.; Luo, M.; Tang, X. Synergistic Effects of Co-Gasification of Municipal Solid Waste and Biomass in Fixed-Bed Gasifier. Process. Saf. Environ. Prot. 2021, 148, 1–12. [Google Scholar] [CrossRef]
- Chand Malav, L.; Yadav, K.K.; Gupta, N.; Kumar, S.; Sharma, G.K.; Krishnan, S.; Rezania, S.; Kamyab, H.; Pham, Q.B.; Yadav, S.; et al. A Review on Municipal Solid Waste as a Renewable Source for Waste-to-Energy Project in India: Current Practices, Challenges, and Future Opportunities. J. Clean. Prod. 2020, 277, 123227. [Google Scholar] [CrossRef]
- Miltner, M.; Makaruk, A.; Harasek, M. Review on Available Biogas Upgrading Technologies and Innovations towards Advanced Solutions. J. Clean. Prod. 2017, 161, 1329–1337. [Google Scholar] [CrossRef]
- Capodaglio, A.; Molognoni, D.; Dallago, E.; Liberale, A.; Cella, R.; Longoni, P.; Pantaleoni, L. Microbial Fuel Cells for Direct Electrical Energy Recovery from Urban Wastewaters. Sci. World J. 2013, 2013, 634738. [Google Scholar] [CrossRef] [Green Version]
- Logan, B.E.; Hamelers, B.; Rozendal, R.; Schröder, U.; Keller, J.; Freguia, S.; Aelterman, P.; Verstraete, W.; Rabaey, K. Microbial Fuel Cells: Methodology and Technology. Env. Sci. Technol. 2006, 40, 5181–5192. [Google Scholar] [CrossRef] [PubMed]
- Molognoni, D.; Puig, S.; Balaguer, M.D.; Liberale, A.; Capodaglio, A.G.; Callegari, A.; Colprim, J. Reducing Start-up Time and Minimizing Energy Losses of Microbial Fuel Cells Using Maximum Power Point Tracking Strategy. J. Power Sour. 2014, 269, 403–411. [Google Scholar] [CrossRef]
- Rozendal, R.A.; Hamelers, H.V.M.; Rabaey, K.; Keller, J.; Buisman, C.J.N. Towards Practical Implementation of Bioelectrochemical Wastewater Treatment. Trends Biotechnol. 2008, 26, 450–459. [Google Scholar] [CrossRef] [PubMed]
- Savla, N.; Khilari, S.; Pandit, S.; Jung, S.P. Effective Cathode Catalysts for Oxygen Reduction Reactions in Microbial Fuel Cell. In Bioelectrochemical Systems: Vol. 1 Principles and Processes; Kumar, P., Kuppam, C., Eds.; Springer: Singapore, 2020; ISBN 9789811568725. pp. 189–210. [Google Scholar]
- Callegari, A.; Cecconet, D.; Molognoni, D.; Capodaglio, A.G. Sustainable Processing of Dairy Wastewater: Long-Term Pilot Application of a Bio-Electrochemical System. J. Clean. Prod. 2018, 189, 563–569. [Google Scholar] [CrossRef]
- Capodaglio, A.G.; Molognoni, D.; Pons, A.V. A Multi-Perspective Review of Microbial Fuel-Cells for Wastewater Treatment: Bio-Electro-Chemical, Microbiologic and Modeling Aspects. Aip. Conf. Proc. 2016, 1758, 030032. [Google Scholar] [CrossRef]
- Cercado-Quezada, B.; Delia, M.-L.; Bergel, A. Testing Various Food-Industry Wastes for Electricity Production in Microbial Fuel Cell. Bioresour. Technol. 2010, 101, 2748–2754. [Google Scholar] [CrossRef] [Green Version]
- Jung, S.P.; Pandit, S. Chapter 3.1—Important Factors Influencing Microbial Fuel Cell Performance. In Microbial Electrochemical Technology; Mohan, S.V., Varjani, S., Pandey, A., Eds.; Biomass, Biofuels and Biochemicals; Elsevier: Amsterdam, The Netherlands, 2019; pp. 377–406. ISBN 978-0-444-64052-9. [Google Scholar]
- Pandit, S.; Das, D. Principles of Microbial Fuel Cell for the Power Generation. In Microbial Fuel Cell: A Bioelectrochemical System that Converts Waste to Watts; Das, D., Ed.; Springer International Publishing: Berlin, Germany, 2018; pp. 21–41. ISBN 978-3-319-66793-5. [Google Scholar]
- Savla, N.; Anand, R.; Pandit, S.; Prasad, R. Utilization of Nanomaterials as Anode Modifiers for Improving Microbial Fuel Cells Performance. J. Renew. Mater. 2020, 8, 1581–1605. [Google Scholar] [CrossRef]
- Kim, H.J.; Park, H.S.; Hyun, M.S.; Chang, I.S.; Kim, M.; Kim, B.H. A Mediator-Less Microbial Fuel Cell Using a Metal Reducing Bacterium, Shewanella Putrefaciens. Enzym. Microb. Technol. 2002, 30, 145–152. [Google Scholar] [CrossRef]
- Ieropoulos, I.A.; Greenman, J.; Melhuish, C.; Hart, J. Comparative Study of Three Types of Microbial Fuel Cell. Enzym. Microb. Technol. 2005, 37, 238–245. [Google Scholar] [CrossRef]
- Roy, S.; Pandit, S. 1.2—Microbial Electrochemical System: Principles and Application. In Microbial Electrochemical Technology; Mohan, S.V., Varjani, S., Pandey, A., Eds.; Biomass, Biofuels and Biochemicals; Elsevier: Amsterdam, The Netherlands, 2019; pp. 19–48. ISBN 978-0-444-64052-9. [Google Scholar]
- Jiang, D.; Curtis, M.; Troop, E.; Scheible, K.; McGrath, J.; Hu, B.; Suib, S.; Raymond, D.; Li, B. A Pilot-Scale Study on Utilizing Multi-Anode/Cathode Microbial Fuel Cells (MAC MFCs) to Enhance the Power Production in Wastewater Treatment. Int. J. Hydrog. Energy 2011, 36, 876–884. [Google Scholar] [CrossRef]
- Feng, Y.; He, W.; Liu, J.; Wang, X.; Qu, Y.; Ren, N. A Horizontal Plug Flow and Stackable Pilot Microbial Fuel Cell for Municipal Wastewater Treatment. Bioresour. Technol. 2014, 156, 132–138. [Google Scholar] [CrossRef]
- Lu, M.; Chen, S.; Babanova, S.; Phadke, S.; Salvacion, M.; Mirhosseini, A.; Chan, S.; Carpenter, K.; Cortese, R.; Bretschger, O. Long-Term Performance of a 20-L Continuous Flow Microbial Fuel Cell for Treatment of Brewery Wastewater. J. Power Sour. 2017, 356, 274–287. [Google Scholar] [CrossRef]
- Liang, P.; Wei, J.; Li, M.; Huang, X. Scaling up a Novel Denitrifying Microbial Fuel Cell with an Oxic-Anoxic Two Stage Biocathode. Front. Env. Sci. Eng. 2013, 7, 913–919. [Google Scholar] [CrossRef]
- Zhuang, L.; Yuan, Y.; Wang, Y.; Zhou, S. Long-Term Evaluation of a 10-Liter Serpentine-Type Microbial Fuel Cell Stack Treating Brewery Wastewater. Bioresour. Technol. 2012, 123, 406–412. [Google Scholar] [CrossRef]
- Vilajeliu-Pons, A.; Puig, S.; Salcedo-Dávila, I.D.; Balaguer, M.; Colprim, J. Long-Term Assessment of Six-Stacked Scaled-up MFCs Treating Swine Manure with Different Electrode Materials. Environ. Sci. Water Res. Technol. 2017, 3, 947–959. [Google Scholar] [CrossRef] [Green Version]
- Wu, S.; Li, H.; Zhou, X.; Liang, P.; Zhang, X.; Jiang, Y.; Huang, X. A Novel Pilot-Scale Stacked Microbial Fuel Cell for Efficient Electricity Generation and Wastewater Treatment. Water Res. 2016, 98, 396–403. [Google Scholar] [CrossRef] [PubMed]
- Ge, Z.; He, Z. Long-Term Performance of a 200 Liter Modularized Microbial Fuel Cell System Treating Municipal Wastewater: Treatment, Energy, and Cost. Environ. Sci. Water Res. Technol. 2016, 2, 274–281. [Google Scholar] [CrossRef] [Green Version]
- Liang, P.; Duan, R.; Jiang, Y.; Zhang, X.; Qiu, Y.; Huang, X. One-Year Operation of 1000-L Modularized Microbial Fuel Cell for Municipal Wastewater Treatment. Water Res. 2018, 141, 1–8. [Google Scholar] [CrossRef]
- Prasertsan, P.; Prasertsan, S.; Kittikun, A.H. Recycling of Agro-Industrial Wastes Through Cleaner Technology. Biotechnology 2010, 10, 1–11. [Google Scholar]
- Mohanty, S.S.; Koul, Y.; Varjani, S.; Pandey, A.; Ngo, H.H.; Chang, J.-S.; Wong, J.W.C.; Bui, X.-T. A Critical Review on Various Feedstocks as Sustainable Substrates for Biosurfactants Production: A Way towards Cleaner Production. Microb. Cell Factories 2021, 20, 120. [Google Scholar] [CrossRef]
- Kim, G.; Kim, W.; Yun, C.; Son, D.; Chang, D.; Bae, H.; Lee, Y.; Sunwoo, Y.; Hong, K. Agro-Industrial Wastewater Treatment by Electrolysis Technology. Int. J. Electrochem. Sci. 2013, 8, 9835–9850. [Google Scholar]
- Vinayak, V.; Khan, M.J.; Varjani, S.; Saratale, G.D.; Saratale, R.G.; Bhatia, S.K. Microbial Fuel Cells for Remediation of Environmental Pollutants and Value Addition: Special Focus on Coupling Diatom Microbial Fuel Cells with Photocatalytic and Photoelectric Fuel Cells. J. Biotechnol. 2021, 338, 5–19. [Google Scholar] [CrossRef]
- Garcia-Nunez, J.A.; Ramirez-Contreras, N.E.; Rodriguez, D.T.; Silva-Lora, E.; Frear, C.S.; Stockle, C.; Garcia-Perez, M. Evolution of Palm Oil Mills into Bio-Refineries: Literature Review on Current and Potential Uses of Residual Biomass and Effluents. Resour. Conserv. Recycl. 2016, 110, 99–114. [Google Scholar] [CrossRef]
- Ng, W.P.Q.; Lam, H.L.; Ng, F.Y.; Kamal, M.; Lim, J.H.E. Waste-to-Wealth: Green Potential from Palm Biomass in Malaysia. J. Clean. Prod. 2012, 34, 57–65. [Google Scholar] [CrossRef] [Green Version]
- Baranitharan, E.; Khan, M.R.; Yousuf, A.; Teo, W.F.A.; Tan, G.Y.A.; Cheng, C.K. Enhanced Power Generation Using Controlled Inoculum from Palm Oil Mill Effluent Fed Microbial Fuel Cell. Fuel 2015, 143, 72–79. [Google Scholar] [CrossRef]
- Cheng, J.; Zhu, X.; Ni, J.; Borthwick, A. Palm Oil Mill Effluent Treatment Using a Two-Stage Microbial Fuel Cells System Integrated with Immobilized Biological Aerated Filters. Bioresour. Technol. 2010, 101, 2729–2734. [Google Scholar] [CrossRef] [PubMed]
- Guo, F.; Fu, G.; Zhang, Z.; Zhang, C. Mustard Tuber Wastewater Treatment and Simultaneous Electricity Generation Using Microbial Fuel Cells. Bioresour. Technol. 2013, 136, 425–430. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Sun, C.; Liu, X.; Han, W.; Dong, Y.; Li, Y. Electricity Production from Molasses Wastewater in Two-Chamber Microbial Fuel Cell. Water Sci. Technol. 2013, 68, 494–498. [Google Scholar] [CrossRef]
- Hassan, S.H.A.; el Nasser, A.; Zohri, A.; Kassim, R.M.F. Electricity Generation from Sugarcane Molasses Using Microbial Fuel Cell Technologies. Energy 2019, 178, 538–543. [Google Scholar] [CrossRef]
- Pandit, S.; Balachandar, G.; Das, D. Improved Energy Recovery from Dark Fermented Cane Molasses Using Microbial Fuel Cells. Front. Chem. Sci. Eng. 2014, 8, 43–54. [Google Scholar] [CrossRef]
- Kaewkannetra, P.; Chiwes, W.; Chiu, T.Y. Treatment of Cassava Mill Wastewater and Production of Electricity through Microbial Fuel Cell Technology. Fuel 2011, 90, 2746–2750. [Google Scholar] [CrossRef]
- Oh, S.; Logan, B.E. Hydrogen and Electricity Production from a Food Processing Wastewater Using Fermentation and Microbial Fuel Cell Technologies. Water Res. 2005, 39, 4673–4682. [Google Scholar] [CrossRef]
- Pepe Sciarria, T.; Merlino, G.; Scaglia, B.; D’Epifanio, A.; Mecheri, B.; Borin, S.; Licoccia, S.; Adani, F. Electricity Generation Using White and Red Wine Lees in Air Cathode Microbial Fuel Cells. J. Power Sour. 2015, 274, 393–399. [Google Scholar] [CrossRef]
- Herrero-Hernandez, E.; Smith, T.J.; Akid, R. Electricity Generation from Wastewaters with Starch as Carbon Source Using a Mediatorless Microbial Fuel Cell. Biosens. Bioelectron. 2013, 39, 194–198. [Google Scholar] [CrossRef] [PubMed]
- Behera, M.; Jana, P.S.; More, T.T.; Ghangrekar, M.M. Rice Mill Wastewater Treatment in Microbial Fuel Cells Fabricated Using Proton Exchange Membrane and Earthen Pot at Different PH. Bioelectrochemistry 2010, 79, 228–233. [Google Scholar] [CrossRef]
- Wang, Z.; Lee, T.; Lim, B.; Choi, C.; Park, J. Microbial Community Structures Differentiated in a Single-Chamber Air-Cathode Microbial Fuel Cell Fueled with Rice Straw Hydrolysate. Biotechnol. Biofuels 2014, 7, 9. [Google Scholar] [CrossRef] [Green Version]
- Zuo, Y.; Maness, P.-C.; Logan, B.E. Electricity Production from Steam-Exploded Corn Stover Biomass. Energy Fuels 2006, 20, 1716–1721. [Google Scholar] [CrossRef]
- Feng, Y.; Wang, X.; Logan, B.E.; Lee, H. Brewery Wastewater Treatment Using Air-Cathode Microbial Fuel Cells. Appl. Microbiol. Biotechnol. 2008, 78, 873–880. [Google Scholar] [CrossRef]
- Wen, Q.; Wu, Y.; Zhao, L.; Sun, Q. Production of Electricity from the Treatment of Continuous Brewery Wastewater Using a Microbial Fuel Cell. Fuel 2010, 89, 1381–1385. [Google Scholar] [CrossRef]
- Rahman, A.; Borhan, M.S.; Rahman, S. Evaluation of Microbial Fuel Cell (MFC) for Bioelectricity Generation and Pollutants Removal from Sugar Beet Processing Wastewater (SBPW). Water Sci. Technol. 2018, 77, 387–397. [Google Scholar] [CrossRef] [PubMed]
- Jayashree, C.; Arulazhagan, P.; Adish Kumar, S.; Kaliappan, S.; Yeom, I.T.; Rajesh Banu, J. Bioelectricity Generation from Coconut Husk Retting Wastewater in Fed Batch Operating Microbial Fuel Cell by Phenol Degrading Microorganism. Biomass Bioenerg. 2014, 69, 249–254. [Google Scholar] [CrossRef]
- Azbar, N.; Bayram, A.; Filibeli, A.; Muezzinoglu, A.; Sengul, F.; Ozer, A. A Review of Waste Management Options in Olive Oil Production. Crit. Rev. Environ. Sci. Technol. 2004, 34, 209–247. [Google Scholar] [CrossRef]
- Ochando-Pulido, J.M.; Martinez-Ferez, A. On the Purification of Agro-Industrial Wastewater by Membrane Technologies: The Case of Olive Mill Effluents. Desalination 2017. [Google Scholar] [CrossRef] [Green Version]
- Sciarria, T.P.; Tenca, A.; D’Epifanio, A.; Mecheri, B.; Merlino, G.; Barbato, M.; Borin, S.; Licoccia, S.; Garavaglia, V.; Adani, F. Using Olive Mill Wastewater to Improve Performance in Producing Electricity from Domestic Wastewater by Using Single-Chamber Microbial Fuel Cell. Bioresour. Technol. 2013, 147, 246–253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gurung, A.; Oh, S.-E. Rice Straw as a Potential Biomass for Generation of Bioelectrical Energy Using Microbial Fuel Cells (MFCs). Energy Sour. Part A Recovery Util. Environ. Eff. 2015, 37, 2625–2631. [Google Scholar] [CrossRef]
- Kaewkannetra, P.; Imai, T.; Garcia-Garcia, F.J.; Chiu, T.Y. Cyanide Removal from Cassava Mill Wastewater Using Azotobactor Vinelandii TISTR 1094 with Mixed Microorganisms in Activated Sludge Treatment System. J. Hazard. Mater. 2009, 172, 224–228. [Google Scholar] [CrossRef] [PubMed]
- Agarry, S.E.; Oghenejobor, K.M.; Solomon, B.O. Bioelectricity production from cassava mill effluents using microbial fuel cell technology. Niger. J. Technol. 2016, 35, 329–336. [Google Scholar] [CrossRef] [Green Version]
- Javed, M.; Nisar, M.A.; Ahmad, M.; Muneer, B. Production of Bioelectricity from Vegetable Waste Extract by Designing a U-Shaped Microbial Fuel Cell. Pak. J. Zool. 2017, 49, 711–716. [Google Scholar] [CrossRef]
- Logroño, W.; Ramírez, G.; Recalde, C.; Echeverría, M.; Cunachi, A. Bioelectricity Generation from Vegetables and Fruits Wastes by Using Single Chamber Microbial Fuel Cells with High Andean Soils. Energy Procedia 2015, 75, 2009–2014. [Google Scholar] [CrossRef] [Green Version]
- Toding, O.S.L.; Virginia, C.; Suhartini, S. Conversion Banana and Orange Peel Waste into Electricity Using Microbial Fuel Cell. IOP Conf. Ser. Earth Env. Sci. 2018, 209, 012049. [Google Scholar] [CrossRef]
- Khan, A.M.; Obaid, M. Comparative Bioelectricity Generation from Waste Citrus Fruit Using a Galvanic Cell, Fuel Cell and Microbial Fuel Cell. J. Energy South. Afr. 2015, 26, 90–99. [Google Scholar] [CrossRef]
- Miran, W.; Nawaz, M.; Jang, J.; Lee, D.S. Sustainable Electricity Generation by Biodegradation of Low-Cost Lemon Peel Biomass in a Dual Chamber Microbial Fuel Cell. Int. Biodeterior. Biodegrad. 2016, 106, 75–79. [Google Scholar] [CrossRef]
- Wang, M.; Yan, Z.; Huang, B.; Zhao, J.; Liu, R. Electricity Generation by Microbial Fuel Cells Fuelled with Enteromorpha Prolifera Hydrolysis. Int. J. Electrochem. Sci. 2013, 8, 2104–2111. [Google Scholar]
- Zang, G.-L.; Sheng, G.-P.; Tong, Z.-H.; Liu, X.-W.; Teng, S.-X.; Li, W.-W.; Yu, H.-Q. Direct Electricity Recovery from Canna Indica by an Air-Cathode Microbial Fuel Cell Inoculated with Rumen Microorganisms. Env. Sci. Technol. 2010, 44, 2715–2720. [Google Scholar] [CrossRef] [PubMed]
- Sunder, G.C.; Satyanarayan, S. Efficient Treatment of Slaughter House Wastewater by Anaerobic Hybrid Reactor Packed with Special Floating Media. Available online: https://www.semanticscholar.org/paper/Efficient-Treatment-of-Slaughter-House-Wastewater-Sunder-Satyanarayan/10da3a3b26f8ccc5c53a1421085e591d490649c6 (accessed on 28 August 2021).
- Katuri, K.P.; Enright, A.-M.; O’Flaherty, V.; Leech, D. Microbial Analysis of Anodic Biofilm in a Microbial Fuel Cell Using Slaughterhouse Wastewater. Bioelectrochemistry 2012, 87, 164–171. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhu, N.; Wang, Y.; Li, P.; Wu, P.; Wu, J. Animal Carcass Wastewater Treatment and Bioelectricity Generation in Up-Flow Tubular Microbial Fuel Cells: Effects of HRT and Non-Precious Metallic Catalyst. Bioresour. Technol. 2013, 128, 454–460. [Google Scholar] [CrossRef] [PubMed]
- Rout, P.R.; Shahid, M.K.; Dash, R.R.; Bhunia, P.; Liu, D.; Varjani, S.; Zhang, T.C.; Surampalli, R.Y. Nutrient Removal from Domestic Wastewater: A Comprehensive Review on Conventional and Advanced Technologies. J. Environ. Manag. 2021, 296, 113246. [Google Scholar] [CrossRef]
- Inoue, K.; Ito, T.; Kawano, Y.; Iguchi, A.; Miyahara, M.; Suzuki, Y.; Watanabe, K. Electricity Generation from Cattle Manure Slurry by Cassette-Electrode Microbial Fuel Cells. J. Biosci. Bioeng. 2013, 116, 610–615. [Google Scholar] [CrossRef]
- Kiely, P.D.; Cusick, R.; Call, D.F.; Selembo, P.A.; Regan, J.M.; Logan, B.E. Anode Microbial Communities Produced by Changing from Microbial Fuel Cell to Microbial Electrolysis Cell Operation Using Two Different Wastewaters. Bioresour. Technol. 2011, 102, 388–394. [Google Scholar] [CrossRef]
- Scott, K.; Murano, C. Microbial Fuel Cells Utilising Carbohydrates. J. Chem. Technol. Biotechnol. 2007, 82, 92–100. [Google Scholar] [CrossRef]
- Zhang, G.; Zhao, Q.; Jiao, Y.; Wang, K.; Lee, D.-J.; Ren, N. Biocathode Microbial Fuel Cell for Efficient Electricity Recovery from Dairy Manure. Biosens. Bioelectron. 2012, 31, 537–543. [Google Scholar] [CrossRef] [PubMed]
- Babanova, S.; Jones, J.; Phadke, S.; Lu, M.; Angulo, C.; Garcia, J.; Carpenter, K.; Cortese, R.; Chen, S.; Phan, T.; et al. Continuous Flow, Large-Scale, Microbial Fuel Cell System for the Sustained Treatment of Swine Waste. Water Environ. Res. 2020, 92, 60–72. [Google Scholar] [CrossRef]
- Min, B.; Kim, J.; Oh, S.; Regan, J.M.; Logan, B.E. Electricity Generation from Swine Wastewater Using Microbial Fuel Cells. Water Res. 2005, 39, 4961–4968. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.R.; Dec, J.; Bruns, M.A.; Logan, B.E. Removal of Odors from Swine Wastewater by Using Microbial Fuel Cells. Appl. Env. Microbiol. 2008, 74, 2540–2543. [Google Scholar] [CrossRef] [Green Version]
- Cheng, C.Y.; Li, C.C.; Chung, Y.C. Continuous Electricity Generation and Pollutant Removal from Swine Wastewater Using a Single-Chambered Air-Cathode Microbial Fuel Cell. Available online: https://www.scientific.net/AMR.953-954.158 (accessed on 23 August 2020).
- Nyoyoko, V. Generation of Electricity from Poultry Waste Using Microbial Fuel Cell. J. Microbiol. Biotechnol. 2015, 5, 31–37. [Google Scholar]
- Oyiwona, G.E.; Ogbonna, J.C.; Anyanwu, C.U.; Okabe, S. Electricity Generation Potential of Poultry Droppings Wastewater in Microbial Fuel Cell Using Rice Husk Charcoal Electrodes. Bioresour. Bioprocess. 2018, 5, 13. [Google Scholar] [CrossRef] [Green Version]
- Jaeel, A.J. Electricity Production from Dual Chambers Microbial Fuel Cell Fed with Chicken Manure-Wastewater. Wasit J. Eng. Sci. 2015, 3, 9–18. [Google Scholar] [CrossRef]
- He, L.; Du, P.; Chen, Y.; Lu, H.; Cheng, X.; Chang, B.; Wang, Z. Advances in Microbial Fuel Cells for Wastewater Treatment. Renew. Sustain. Energy Rev. 2017, 71, 388–403. [Google Scholar] [CrossRef]
- Demirer, G.; Duran, M.; Erguder, T.H.; Güven, E.; Uğurlu, Ö.; Tezel, U. Anaerobic Treatability and Biogas Production Potential Studies of Different Agro-Industrial Wastewaters in Turkey. Biodegradation 2000, 11, 401–405. [Google Scholar] [CrossRef]
- Mansoorian, H.J.; Mahvi, A.H.; Jafari, A.J.; Khanjani, N. Evaluation of Dairy Industry Wastewater Treatment and Simultaneous Bioelectricity Generation in a Catalyst-Less and Mediator-Less Membrane Microbial Fuel Cell. J. Saudi Chem. Soc. 2016, 20, 88–100. [Google Scholar] [CrossRef] [Green Version]
- Venkata Mohan, S.; Mohanakrishna, G.; Velvizhi, G.; Babu, V.L.; Sarma, P.N. Bio-Catalyzed Electrochemical Treatment of Real Field Dairy Wastewater with Simultaneous Power Generation. Biochem. Eng. J. 2010, 51, 32–39. [Google Scholar] [CrossRef]
- Antonopoulou, G.; Stamatelatou, K.; Bebelis, S.; Lyberatos, G. Electricity Generation from Synthetic Substrates and Cheese Whey Using a Two Chamber Microbial Fuel Cell. Biochem. Eng. J. 2010, 50, 10–15. [Google Scholar] [CrossRef]
- Tremouli, A.; Antonopoulou, G.; Bebelis, S.; Lyberatos, G. Operation and Characterization of a Microbial Fuel Cell Fed with Pretreated Cheese Whey at Different Organic Loads. Bioresour. Technol. 2013, 131, 380–389. [Google Scholar] [CrossRef] [PubMed]
- Scott, K.; Rimbu, G.A.; Katuri, K.P.; Prasad, K.K.; Head, I.M. Application of Modified Carbon Anodes in Microbial Fuel Cells. Process. Saf. Environ. Prot. 2007, 85, 481–488. [Google Scholar] [CrossRef]
- Mahdi Mardanpour, M.; Nasr Esfahany, M.; Behzad, T.; Sedaqatvand, R. Single Chamber Microbial Fuel Cell with Spiral Anode for Dairy Wastewater Treatment. Biosens. Bioelectron. 2012, 38, 264–269. [Google Scholar] [CrossRef] [PubMed]
- Elakkiya, E.; Matheswaran, M. Comparison of Anodic Metabolisms in Bioelectricity Production during Treatment of Dairy Wastewater in Microbial Fuel Cell. Bioresour. Technol. 2013, 136, 407–412. [Google Scholar] [CrossRef] [PubMed]
- Kelly, P.T.; He, Z. Understanding the Application Niche of Microbial Fuel Cells in a Cheese Wastewater Treatment Process. Bioresour. Technol. 2014, 157, 154–160. [Google Scholar] [CrossRef]
- Patil, S.A.; Surakasi, V.P.; Koul, S.; Ijmulwar, S.; Vivek, A.; Shouche, Y.S.; Kapadnis, B.P. Electricity Generation Using Chocolate Industry Wastewater and Its Treatment in Activated Sludge Based Microbial Fuel Cell and Analysis of Developed Microbial Community in the Anode Chamber. Bioresour. Technol. 2009, 100, 5132–5139. [Google Scholar] [CrossRef]
- Zhang, B.; Zhao, H.; Zhou, S.; Shi, C.; Wang, C.; Ni, J. A Novel UASB–MFC–BAF Integrated System for High Strength Molasses Wastewater Treatment and Bioelectricity Generation. Bioresour. Technol. 2009, 100, 5687–5693. [Google Scholar] [CrossRef]
- Mohanakrishna, G.; Venkata Mohan, S.; Sarma, P.N. Bio-Electrochemical Treatment of Distillery Wastewater in Microbial Fuel Cell Facilitating Decolorization and Desalination along with Power Generation. J. Hazard. Mater. 2010, 177, 487–494. [Google Scholar] [CrossRef]
- Sevda, S.; Dominguez-Benetton, X.; Vanbroekhoven, K.; De Wever, H.; Sreekrishnan, T.R.; Pant, D. High Strength Wastewater Treatment Accompanied by Power Generation Using Air Cathode Microbial Fuel Cell. Appl. Energy 2013, 105, 194–206. [Google Scholar] [CrossRef]
- Venkata Mohan, S.; Mohanakrishna, G.; Sarma, P.N. Composite Vegetable Waste as Renewable Resource for Bioelectricity Generation through Non-Catalyzed Open-Air Cathode Microbial Fuel Cell. Bioresour. Technol. 2010, 101, 970–976. [Google Scholar] [CrossRef]
- Mohanakrishna, G.; Venkata Mohan, S.; Sarma, P.N. Utilizing Acid-Rich Effluents of Fermentative Hydrogen Production Process as Substrate for Harnessing Bioelectricity: An Integrative Approach. Int. J. Hydrog. Energy 2010, 35, 3440–3449. [Google Scholar] [CrossRef]
- Yokoyama, H.; Ohmori, H.; Ishida, M.; Waki, M.; Tanaka, Y. Treatment of Cow-Waste Slurry by a Microbial Fuel Cell and the Properties of the Treated Slurry as a Liquid Manure. Anim. Sci. J. 2006, 77, 634–638. [Google Scholar] [CrossRef]
- Zheng, X.; Nirmalakhandan, N. Cattle Wastes as Substrates for Bioelectricity Production via Microbial Fuel Cells. Biotechnol. Lett. 2010, 32, 1809–1814. [Google Scholar] [CrossRef] [PubMed]
- Deng, H.; Wu, Y.-C.; Zhang, F.; Huang, Z.-C.; Chen, Z.; Xu, H.-J.; Zhao, F. Factors Affecting the Performance of Single-Chamber Soil Microbial Fuel Cells for Power Generation. Pedosphere 2014, 24, 330–338. [Google Scholar] [CrossRef]
- Wang, C.-T.; Liao, F.-Y.; Liu, K.-S. Electrical Analysis of Compost Solid Phase Microbial Fuel Cell. Int. J. Hydrog. Energy 2013, 38, 11124–11130. [Google Scholar] [CrossRef]
- Hassan, S.H.A.; Gad El-Rab, S.M.F.; Rahimnejad, M.; Ghasemi, M.; Joo, J.-H.; Sik-Ok, Y.; Kim, I.S.; Oh, S.-E. Electricity Generation from Rice Straw Using a Microbial Fuel Cell. Int. J. Hydrog. Energy 2014, 39, 9490–9496. [Google Scholar] [CrossRef]
- Wang, X.; Tang, J.; Cui, J.; Liu, Q.; Giesy, J.P.; Hecker, M. Synergy of Electricity Generation and Waste Disposal in Solid- State Microbial Fuel Cell (MFC) of Cow Manure Composting. Int. J. Electrochem. Sci. 2014, 9, 14. [Google Scholar]
- Zhang, Y.; Min, B.; Huang, L.; Angelidaki, I. Generation of Electricity and Analysis of Microbial Communities in Wheat Straw Biomass-Powered Microbial Fuel Cells. Appl. Env. Microbiol. 2009, 75, 3389–3395. [Google Scholar] [CrossRef] [Green Version]
- Thygesen, A.; Poulsen, F.W.; Angelidaki, I.; Min, B.; Bjerre, A.-B. Electricity Generation by Microbial Fuel Cells Fuelled with Wheat Straw Hydrolysate. Biomass Bioenerg. 2011, 35, 4732–4739. [Google Scholar] [CrossRef]
- Jadhav, G.S.; Ghangrekar, M.M. Performance of Microbial Fuel Cell Subjected to Variation in PH, Temperature, External Load and Substrate Concentration. Bioresour. Technol. 2009, 100, 717–723. [Google Scholar] [CrossRef]
- Picioreanu, C.; van Loosdrecht, M.C.M.; Curtis, T.P.; Scott, K. Model Based Evaluation of the Effect of PH and Electrode Geometry on Microbial Fuel Cell Performance. Bioelectrochemistry 2010, 78, 8–24. [Google Scholar] [CrossRef]
- Zhang, L.; Li, J.; Zhu, X.; Ye, D.; Liao, Q. Effect of Proton Transfer on the Performance of Unbuffered Tubular Microbial Fuel Cells in Continuous Flow Mode. Int. J. Hydrog. Energy 2015, 40, 3953–3960. [Google Scholar] [CrossRef]
- Zhang, L.; Li, C.; Ding, L.; Xu, K.; Ren, H. Influences of Initial PH on Performance and Anodic Microbes of Fed-Batch Microbial Fuel Cells. J. Chem. Technol. Biotechnol. 2011, 86, 1226–1232. [Google Scholar] [CrossRef]
- Ye, Y.; Ngo, H.H.; Guo, W.; Chang, S.W.; Nguyen, D.D.; Liu, Y.; Nghiem, L.D.; Zhang, X.; Wang, J. Effect of Organic Loading Rate on the Recovery of Nutrients and Energy in a Dual-Chamber Microbial Fuel Cell. Bioresour. Technol. 2019, 281, 367–373. [Google Scholar] [CrossRef]
- Li, X.M.; Cheng, K.Y.; Wong, J.W.C. Bioelectricity Production from Food Waste Leachate Using Microbial Fuel Cells: Effect of NaCl and PH. Bioresour. Technol. 2013, 149, 452–458. [Google Scholar] [CrossRef]
- Madani, S.; Gheshlaghi, R.; Mahdavi, M.A.; Sobhani, M.; Elkamel, A. Optimization of the Performance of a Double-Chamber Microbial Fuel Cell through Factorial Design of Experiments and Response Surface Methodology. Fuel 2015, 150, 434–440. [Google Scholar] [CrossRef]
- Pandit, S.; Khilari, S.; Roy, S.; Pradhan, D.; Das, D. Improvement of Power Generation Using Shewanella Putrefaciens Mediated Bioanode in a Single Chambered Microbial Fuel Cell: Effect of Different Anodic Operating Conditions. Bioresour. Technol. 2014, 166, 451–457. [Google Scholar] [CrossRef]
- Jannelli, N.; Anna Nastro, R.; Cigolotti, V.; Minutillo, M.; Falcucci, G. Low PH, High Salinity: Too Much for Microbial Fuel Cells? Appl. Energy 2017, 192, 543–550. [Google Scholar] [CrossRef] [Green Version]
- Sajana, T.K.; Ghangrekar, M.M.; Mitra, A. Effect of Operating Parameters on the Performance of Sediment Microbial Fuel Cell Treating Aquaculture Water. Aquac. Eng. 2014, 61, 17–26. [Google Scholar] [CrossRef]
- Pandit, S.; Savla, N.; Jung, S.P. 16—Recent advancements in scaling up microbial fuel cells. In Integrated Microbial Fuel Cells for Wastewater Treatment; Abbassi, R., Yadav, A.K., Khan, F., Garaniya, V., Eds.; Butterworth-Heinemann: Oxford, UK, 2020; pp. 349–368. ISBN 978-0-12-817493-7. [Google Scholar]
- Yadav, M.; Sehrawat, N.; Singh, M.; Kumar, V.; Sharma, A.K.; Kumar, S. Chapter 11—Thermophilic microbes-based fuel cells: An eco-friendly approach for sustainable energy production. In Bioremediation for Environmental Sustainability; Kumar, V., Saxena, G., Shah, M.P., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 235–246. ISBN 978-0-12-820318-7. [Google Scholar]
- Choi, Y.-J.; Jung, E.-K.; Park, H.-J.; Paik, S.R.; Jung, S.-H.; Kim, S.-H. Construction of Microbial Fuel Cells Using Thermophilic Microorganisms, Bacillus Licheniformis and Bacillus Thermoglucosidasius. Bull. Korean Chem. Soc. 2004, 25, 813–818. [Google Scholar] [CrossRef] [Green Version]
- Lefebvre, O.; Tan, Z.; Kharkwal, S.; Ng, H.Y. Effect of Increasing Anodic NaCl Concentration on Microbial Fuel Cell Performance. Bioresour. Technol. 2012, 112, 336–340. [Google Scholar] [CrossRef] [PubMed]
- Najafpour, G.; Rahimnejad, M.; Ghoreshi, A. The Enhancement of a Microbial Fuel Cell for Electrical Output Using Mediators and Oxidizing Agents. Energy Sour. Part A Recovery Util. Environ. Eff. 2011, 33, 2239–2248. [Google Scholar] [CrossRef]
- Niessen, J.; Schröder, U.; Rosenbaum, M.; Scholz, F. Fluorinated Polyanilines as Superior Materials for Electrocatalytic Anodes in Bacterial Fuel Cells. Electrochem. Commun. 2004, 6, 571–575. [Google Scholar] [CrossRef]
- Miyatake, K.; Chikashige, Y.; Watanabe, M. Novel Sulfonated Poly(Arylene Ether): A Proton Conductive Polymer Electrolyte Designed for Fuel Cells. Macromolecules 2003, 36, 9691–9693. [Google Scholar] [CrossRef]
- Li, Y.; Khanal, S.K. Bioenergy: Principles and Applications; John Wiley & Sons: New York, NY, USA, 2016; ISBN 978-1-118-56831-6. [Google Scholar]
- Bond, D.R.; Holmes, D.E.; Tender, L.M.; Lovley, D.R. Electrode-Reducing Microorganisms That Harvest Energy from Marine Sediments. Science 2002, 295, 483–485. [Google Scholar] [CrossRef] [Green Version]
- Trapero, J.R.; Horcajada, L.; Linares, J.J.; Lobato, J. Is Microbial Fuel Cell Technology Ready? An Economic Answer towards Industrial Commercialization. Appl. Energy 2017, 185, 698–707. [Google Scholar] [CrossRef]
- Logan, B.E. Scaling up Microbial Fuel Cells and Other Bioelectrochemical Systems. Appl. Microbiol. Biotechnol. 2010, 85, 1665–1671. [Google Scholar] [CrossRef] [PubMed]
- Abourached, C.; Catal, T.; Liu, H. Efficacy of Single-Chamber Microbial Fuel Cells for Removal of Cadmium and Zinc with Simultaneous Electricity Production. Water Res. 2014, 51, 228–233. [Google Scholar] [CrossRef]
- Adekunle, A.; Raghavan, V.; Tartakovsky, B. On-Line Monitoring of Heavy Metals-Related Toxicity with a Microbial Fuel Cell Biosensor. Biosens. Bioelectron. 2019, 132, 382–390. [Google Scholar] [CrossRef] [PubMed]
- Ghadge, A.N.; Ghangrekar, M.M. Performance of Low Cost Scalable Air–Cathode Microbial Fuel Cell Made from Clayware Separator Using Multiple Electrodes. Bioresour. Technol. 2015, 182, 373–377. [Google Scholar] [CrossRef] [PubMed]
- Ghadge, A.N.; Jadhav, D.A.; Ghangrekar, M.M. Wastewater Treatment in Pilot-Scale Microbial Fuel Cell Using Multielectrode Assembly with Ceramic Separator Suitable for Field Applications. Environ. Prog. Sustain. Energy 2016, 35, 1809–1817. [Google Scholar] [CrossRef]
- Hiegemann, H.; Herzer, D.; Nettmann, E.; Lübken, M.; Schulte, P.; Schmelz, K.-G.; Gredigk-Hoffmann, S.; Wichern, M. An Integrated 45L Pilot Microbial Fuel Cell System at a Full-Scale Wastewater Treatment Plant. Bioresour. Technol. 2016, 218, 115–122. [Google Scholar] [CrossRef]
- Huang, L.; Yang, X.; Quan, X.; Chen, J.; Yang, F. A Microbial Fuel Cell–Electro-Oxidation System for Coking Wastewater Treatment and Bioelectricity Generation. J. Chem. Technol. Biotechnol. 2010, 85, 621–627. [Google Scholar] [CrossRef]
- Reguera, G.; Speers, A.; Young, J. Biofuel and Electricity Producing Fuel Cells and Systems and Methods Related to Same. 2017. Available online: https://patents.google.com/patent/US9716287B2/en?oq=US9716287B2 (accessed on 28 August 2021).
- Martin, D.J.; Annamalai, P.K.; Amiralian, N. Nanocellulose. 2016. Available online: https://patents.google.com/patent/EP3071517A1/en?oq=lignocellulosic+biomass+%2b+MFCs (accessed on 31 March 2021).
- May, H.D.; Shimotori, T. Apparatus and Methods for the Production of Ethanol, Hydrogen and Electricity. 2009. Available online: https://patents.google.com/patent/US20090017512A1/en?q=lignocellulosic+biomass+%2b+MFC&oq=lignocellulosic+biomass+%2b+MFC (accessed on 31 March 2021).
- Reguera, G.; Speers, A.; Young, J. Biofuel and Electricity Producing Fuel Cells and Systems and Methods Related to Same. 2020. Available online: https://patents.google.com/patent/US10686205B2/en?q=lignocellulosic+biomass+%2b+MFC&oq=lignocellulosic+biomass+%2b+MFC (accessed on 1 April 2021).
- Singh, A.; Pant, D.; Korres, N.E.; Nizami, A.-S.; Prasad, S.; Murphy, J.D. Key Issues in Life Cycle Assessment of Ethanol Production from Lignocellulosic Biomass: Challenges and Perspectives. Bioresour. Technol. 2010, 101, 5003–5012. [Google Scholar] [CrossRef]
- Lam, M.K.; Lee, K.T.; Mohamed, A.R. Life Cycle Assessment for the Production of Biodiesel: A Case Study in Malaysia for Palm Oil versus Jatropha Oil. Biofuels Bioprod. Biorefin. 2009, 3, 601–612. [Google Scholar] [CrossRef]
- Vlasopoulos, N.; Memon, F.A.; Butler, D.; Murphy, R. Life Cycle Assessment of Wastewater Treatment Technologies Treating Petroleum Process Waters. Sci. Total Environ. 2006, 367, 58–70. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, V.B.; Simões, M.; Melo, L.F.; Pinto, A.M.F.R. Overview on the Developments of Microbial Fuel Cells. Biochem. Eng. J. 2013, 73, 53–64. [Google Scholar] [CrossRef]
- Pandit, S.; Chandrasekhar, K.; Kakarla, R.; Kadier, A.; Jeevitha, V. Basic Principles of Microbial Fuel Cell: Technical Challenges and Economic Feasibility. In Microbial Applications Vol. 1: Bioremediation and Bioenergy; Kalia, V.C., Kumar, P., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 165–188. ISBN 978-3-319-52666-9. [Google Scholar]
MFC Configuration | MFC vol. (L) | Type of Operation | Anode Material | Cathode Material | Power Output | References |
---|---|---|---|---|---|---|
Single chamber | 20 | Continuous | Activated Carbon | Carbon cloth | 0.35–0.9 W/m3 | [57] |
250 | Continuous | Carbon brush | Carbon mesh | 0.47 W/m3 | [58] | |
Two chamber | 40 | Continuous | Carbon cloth | 0.44 W/m3 | [59] | |
50 | Batch | Activated semicoke | 43.1 W/m3 | [60] | ||
Stack | 10 | Continuous | Carbon felt | MEA | 6 W/m3 | [61] |
60 | Granular graphite | 4 W/m3 | [62] | |||
72 | Activated carbon | 50.9 W/m3 | [63] | |||
94 | Stainless steel mesh | 2 W/m3 | [62] | |||
200 | Carbon brush | Carbon cloth | 0.009 W/m3 | [64] | ||
1000 | Activated carbon | 7–60 W/m3 | [65] |
Wastewater Type | MFC Type | Feeding Mode | Volume (mL) | COD Removal (%) | CE (%) | Reference |
---|---|---|---|---|---|---|
Cassava mill wastewater | Two-chamber MFC | Continuous | 1500 | 72 | 20 | [78] |
Cereal processing wastewater | Dual-chamber MFC | Batch | 310 | 95 | 40.5 | [79] |
Mustard tuber wastewater | Dual-chamber MFC | Batch | 150 | 57.1 | 67.7 | [74] |
Olive mill wastewater mixed with domestic wastewater (1:14) | Air-cathode single-chamber MFC | Batch | 28 | 60 | 29 | [80] |
Starch extract (potatoes) | Mediator-less two-chamber MFC | Batch | 100 | 61 | 18.5 | [81] |
Raw corn stover | Bottle-type air cathode MFC | Batch | 250 | 42 ± 8 (cellulose) 17% ± 7 (hemicellulose) | 3.6 | [8] |
Rice milling | Earthen pot MFC | Batch | 400 | 96.5 | 21 | [82] |
Steam exploded corn stover | Batch | Batch | 250 | 60 ± 4 (cellulose) 15 ± 4 (hemicellulose) | 1.6 | [8] |
Rice straw hydrolysate | Air-cathode single-chambered | Batch | 220 | 49–72 | 8.5–17 | [83] |
Steam exploded corn stover | Single-chambered air-cathode MFC | Batch | 28 | 60–70 | 20–30 | [84] |
Substrate | MFC Configuration | Volume (mL) | Power Density | CE (%) | COD (%) | References |
---|---|---|---|---|---|---|
For types of food industry wastewaters | ||||||
Brewery wastewater diluted with domestic wastewater | Single chambered MFC | 100 | 30 mW/m2 | __ | 90.4 | [123] |
Dairy wastewater | Single chambered MFC | 480 | 1.1 W/m3 (~36 mW/m2) | 7.5 | 95.49 | [120] |
Dairy wastewater | Annular single chamber MFC | 90 | 20.2 W/m2 | 26.87 | 91 | [124] |
Dairy wastewater | Dual Chambered MFC | 300 | 161 mW/m2 | NA | 90 | [125] |
Cheese whey | Dual chambered Tubular MFC | 500 | l.3 ± 0.5 W/m2 | 3.9 ± 1.7 | 59.0 ± 9.3 | [126] |
Chocolate industry wastewater | Dual Chambered MFC | 400 | 1500 mW/m2 | __ | 74.77 | [127] |
Molasses wastewater | Single chambered cuboid MFC | 650 | 1410 mW/m2 | −1 | 53,2 | [128] |
Distillery wastewater (Molasses based) | Single chambered MFC | 400 | 124.35 mW/m2 | Ft | 72.84 | [129] |
Molasses wastewater mixedwith sewage | Single chambered MFC | 800 | 382 mW/m2 | __ | 59 | [130] |
Palm oil mill effluent | Cylindrical MFC | 2360 | 41.8 mW/m2 | __ | −60 | [72,73] |
44.6 mW/m2 | __ | −90 | ||||
Vegetable waste | Single chambered MFC | 400 | 57.38 mW/m2 | __ | 62.86 | [131] |
Fermented vegetable waste | Single chambered MFC | 400 | 111.76 mW/m2 | __ | 80 | [132] |
Cereal-processing wastewater | Dual Chambered MFC | 310 | 81 ± 7 mW/m2 | 40.5 | 95 | [79] |
For types of agricultural wastes | ||||||
Dairy cow waste slurry | Air cathode Double chamber MFC | __ | 0.34 mW/m2 | 0.22 | 84 (BOD) | [133] |
Manure | Air cathode single chamber | __ | 67 mW/m2 | 1.3–5.2 | __ | [134] |
Manure wash water | Air cathode single chamber | __ | 215 mW/m2 | __ | __ | [134] |
Soil organic matter | Solid-phase Soil MFC | __ | 0.72 mW/m2 | __ | __ | [135] |
Bean residue, ground coffee waste and rice hull | Solid-phase Compost MFC | __ | 264 mW/m2 | __ | __ | [136] |
Powdered rice straw | H type MFC | __ | 145 mW/m2 | 54.3% to 45.3% | __ | [137] |
Cattle manure slurry | Air cathode Cassette-electrode microbial fuel cell | __ | 765 mW/m2 | 28.8 | 41.9–56.7 | [106] |
Cow manure | Single chamber Compost MFC (Pt in cathode) | __ | 349 ± 39 mW/m2 | __ | ~50 (carbon) | [138] |
Wheat straw hydrolysate | H-type double chamber MFC | __ | 123 mW/m2 | 15.5–37.1 | __ | [139] |
Diluted wheat straw hydrolysate | Double chamber MFC | __ | 148 mW/m2 | 17 ± 2 | 95% (xylan and glucan) | [140] |
Steam exploded corn stover hydrolysate | Air cathode Single chamber MFC (Pt/C cathode) | __ | 371 ± 13 mW/m2 (neutral) 367 ± 13 mW/m2 (acid) | 20–30 | 93 ± 2 (Neutral pH)94 ± 1 (Acidic pH) | [84] |
Sr. No. | MFC Configuration | Substrate | Substrate Conc. (COD mg/L) | pH | COD (%) | Power Density | Ref. |
---|---|---|---|---|---|---|---|
1. | Dual Chambered MFC | Dairy wastewater | 1600 | 7 | 91 | 2.7 mW/m2 | [125] |
2. | Food waste leachate | 39,048 | 6.3–7.6 | 84.5 | 5.591 mW/m2 | [146] | |
3. | Wastewater | 1587 | 6.3 | 41 | 461 mW/m2 | [147] | |
4. | Single Chambered MFC | __ | 1000 | 9.5–11.50 | 91 | 20.2 mW/m2 | [124] |
5. | Lactate | __ | 8 | 80 | 4.8 mW/m2 | [148] | |
6. | Single Chambered tubular MFC | Fruit and Vegetable slurry | 48,320 | 3.0 ± 0.5 | 45 | 55 mW/m2 | [149] |
7. | Sediment MFC | Aquaculture wastewater | 170–185 | 8.5 | 96 | 4.52 mW/m2 | [150] |
Sr. No | Head Quarter | Company Name | Website/Information Link | Foundation Year | Services | Specific Product |
---|---|---|---|---|---|---|
1. | USA | Cambrian Innovation Inc., | https://www.cambrianinnovation.com/ (accessed date—13 August 2021) | 2006 | wastewater treatment technology | EcoVolt; EcoVolt MBR |
2. | Israel | Fluence Corporation Limited (earlier Emefcy) | https://www.fluencecorp.com/emefcy-and-rwl-water-merge-to-create-fluence/ (accessed date—13 August 2021) | 2008 | wastewater treatment | electrogenic bioreactors (EBR) |
3. | USA | Zigco LLC, | http://www.zigcollc.com/ (accessed date—13 August 2021) | 2010 | soil powered battery | - |
4. | Magical microbes | https://www.magicalmicrobes.com/ (accessed date—13 August 2021) | educational kit | MudWatt; MudWatt Core Kit; MudWatt DeepDig Kit | ||
5. | Canada | Pron-gineer | http://prongineer.com/ (accessed date—13 August 2021) | water and wastewater treatment technology | - | |
6. | CASCADE Clean Energy, Inc. | http://www.ccleanenergy.com/ (accessed date—13 August 2021) | clean energy production | Wastewater Works (WWW) |
Patent No. | Description | Reference |
---|---|---|
US9716287B2 | A fuel cell with an anode electrode, a cathode electrode, and a reference electrode that are all electronically connected to each other; a first biocatalyst with a consolidated bioprocessing organism; and a second biocatalyst with a consolidated bioprocessing organism. (e.g., a Cellulomonasor clostridium or related strains, like Cellulomonas uda (C. uda), C. lentocellum, A. cellolulyticus, C. cellobioparum, alcohol-tolerant C. cellobioparum, alcohol-tolerant C. uda, Clostridium cellobioparum (C. cellobioparum) and combinations thereof) capable of fermenting biomass (e.g., cellulosic biomass or glycerin-containing biomass) to produce a fermentation byproduct; and a second biocatalyst comprising an electricigen (e.g., Geobacter sulfurreducens) suitable for transferring nearly all the electrons in the fermentation byproduct (e.g., hydrogen, one or more organic acids, or a combination thereof) to the anode electrode to produce electricity is disclosed. A consolidated bioprocessing organism is also disclosed, as well as systems and methods relevant to it. | [168] |
EP3071517A1 | A plant-derived nanocellulose material that consists of nanocellulose particles or fibers derived from a plant material with a hemicellulose content of 30% or more (w/w) (calculated as a weight percentage of the lignocellulosic components of the material). Aspect ratios of more than 250 are possible for nanocellulose. Plant materials with a C4 leaf morphology could be used to make the nanocellulose. Arid Spinifex is a good source of plant material. Mild processing conditions can be used to create nanocellulose. | [169] |
US20090017512A1 | In other implementations, the invention relates to a method for generating ethanol and electricity or ethanol and hydrogen that involves supplying a microbial catalyst and a fuel source to a fermentation vessel in operable connection with a microbial fuel cell or a BEAMR device, where the microbial catalyst has cellulolytic, ethanologenic, and electricigenic operation, and the microbial catalyst has a cellulolytic, ethanologenic, and electricigenic activity. Compositions and apparatus for carrying out the invention are examples of other embodiments. | [170] |
US10686205B2 | An electrochemical cell with an anode electrode, a cathode electrode, and a reference electrode that are all electronically connected; the first biocatalyst with a consolidated bioprocessing organism. (e.g., a Cellulomonad or Clostridium or related strains, such as Cellulomonas uda (C. uda), Clostridium lentocellum (C. lentocellum), Acetivibriocelluloyticus (A. cellulolyticus) Clostridium cellobioparum (C. cellobioparum), alcohol-tolerant C. cellobioparum, alcohol-tolerant C. uda, and combinations thereof) capable of fermenting biomass (e.g., cellulosic biomass or glycerin-containing biomass) to produce a fermentation byproduct; and a second biocatalyst comprising an electricigen (e.g., Geobacter sulfurreducens) capable of transferring substantially all the electrons in the fermentation byproduct (e.g., hydrogen, one or more organic acids, or a combination thereof) to the anode electrode to produce electricity is disclosed. A consolidated bioprocessing organism is also revealed by systems and methods relevant to it. | [171] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pandit, S.; Savla, N.; Sonawane, J.M.; Sani, A.M.; Gupta, P.K.; Mathuriya, A.S.; Rai, A.K.; Jadhav, D.A.; Jung, S.P.; Prasad, R. Agricultural Waste and Wastewater as Feedstock for Bioelectricity Generation Using Microbial Fuel Cells: Recent Advances. Fermentation 2021, 7, 169. https://doi.org/10.3390/fermentation7030169
Pandit S, Savla N, Sonawane JM, Sani AM, Gupta PK, Mathuriya AS, Rai AK, Jadhav DA, Jung SP, Prasad R. Agricultural Waste and Wastewater as Feedstock for Bioelectricity Generation Using Microbial Fuel Cells: Recent Advances. Fermentation. 2021; 7(3):169. https://doi.org/10.3390/fermentation7030169
Chicago/Turabian StylePandit, Soumya, Nishit Savla, Jayesh M. Sonawane, Abubakar Muh’d Sani, Piyush Kumar Gupta, Abhilasha Singh Mathuriya, Ashutosh Kumar Rai, Dipak A. Jadhav, Sokhee P. Jung, and Ram Prasad. 2021. "Agricultural Waste and Wastewater as Feedstock for Bioelectricity Generation Using Microbial Fuel Cells: Recent Advances" Fermentation 7, no. 3: 169. https://doi.org/10.3390/fermentation7030169
APA StylePandit, S., Savla, N., Sonawane, J. M., Sani, A. M., Gupta, P. K., Mathuriya, A. S., Rai, A. K., Jadhav, D. A., Jung, S. P., & Prasad, R. (2021). Agricultural Waste and Wastewater as Feedstock for Bioelectricity Generation Using Microbial Fuel Cells: Recent Advances. Fermentation, 7(3), 169. https://doi.org/10.3390/fermentation7030169