Nutritionally Enhanced Probioticated Whole Pineapple Juice
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Whole Pineapple Juice Preparation
2.3. Bacterial Strain and Culture Medium
2.4. Inoculum Preparation
2.5. Experimental Setup
2.5.1. Whole Pineapple Juice Fermentation
2.5.2. Effect of Ethanol Supplementation and the Storage Period
2.6. Analyses
2.6.1. Viable Cell Count
2.6.2. Determination of Total Sugar
2.6.3. Sugars, Ethanol, and Organic Acids
2.6.4. Culture pH and Total Nitrogen
2.6.5. Determination of Vitamins
2.6.6. Color Measurements
2.6.7. Sensory Evaluation
2.6.8. Nutrition Analysis
2.6.9. Statistical Analysis
3. Results and Discussion
3.1. Fermentation Profiles of Whole Pineapple Juice
3.2. Vitamins in the Fermented Whole Pineapple Juice
3.3. Effect of Ethanol Concentration on Product Stability during Storage
3.4. Color Assessment of the WPJ Recipes
3.5. Sensory Analysis
3.6. Nutrition
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Debnath, B.; Singh, W.S.; Manna, K. A phytopharmacological review on Ananas comosus. Adv. Tradit. Med. 2021, 2021, 1–8. [Google Scholar] [CrossRef]
- Gil, C.R.; Bolivar, C. Ananas comosus. Available online: https://www.colegiobolivar.edu.co/garden/wp-content/uploads/2017/06/Crosas-Ananas-comosus-2017.pdf (accessed on 22 June 2021).
- Sun, G.-M.; Zhang, X.-M.; Soler, A.; Marie-Alphonsine, P.A. Nutritional composition of pineapple (Ananas comosus (L.) Merr.). In Nutritional Composition of Fruit Cultivars; Simmonds, M.S.J., Preedy, V.R., Eds.; Academic Press: London, UK, 2016; pp. 609–637. [Google Scholar] [CrossRef]
- Ali, M.M.; Hashim, N.; Abd Aziz, S.; Lasekan, O. Pineapple (Ananas comosus): A comprehensive review of nutritional values, volatile compounds, health benefits, and potential food products. Food Res. Int. 2020, 2020, 109675. [Google Scholar] [CrossRef]
- da Silva, D.I.; Nogueira, G.D.; Duzzioni, A.G.; Barrozo, M.A. Changes of antioxidant constituents in pineapple (Ananas comosus) residue during drying process. Ind. Crops Prod. 2013, 50, 557–562. [Google Scholar] [CrossRef]
- Li, T.; Shen, P.; Liu, W.; Liu, C.; Liang, R.; Yan, N.; Chen, J. Major polyphenolics in pineapple peels and their antioxidant interactions. Int. J. Food Prop. 2014, 17, 1805–1817. [Google Scholar] [CrossRef]
- Difonzo, G.; Vollmer, K.; Caponio, F.; Pasqualone, A.; Carle, R.; Steingass, C. Characterisation and classification of pineapple (Ananas comosus [L.] Merr.) juice from pulp and peel. Food Control 2019, 96, 260–270. [Google Scholar] [CrossRef]
- Steingass, C.B.; Glock, M.P.; Schweiggert, R.M.; Carle, R. Studies into the phenolic patterns of different tissues of pineapple (Ananas comosus [L.] Merr.) infructescence by HPLC-DDAD-ESI-MS and GC-MSn analysis. Anal. Bioanal. Chem. 2015, 407, 6463–6479. [Google Scholar] [CrossRef]
- Huang, Y.-L.; Tsai, Y.-H.; Chow, C.-J. Water-insoluble fiber-rich fraction from pineapple peel improves intestinal function in hamsters: Evidence from cecal and fecal indicators. Nutr. Res. 2014, 34, 346–354. [Google Scholar] [CrossRef]
- Lebaka, V.R.; Wee, Y.J.; Narala, V.R.; Joshi, V.K. Development of new probiotic foods—a case study on probiotic juices. In Therapeutic, Probiotic, and Unconventional Foods; Grumezescu, A.M., Holban, A.M., Eds.; Academic Press: London, UK, 2018; pp. 55–78. [Google Scholar] [CrossRef]
- Shah, N.; Ding, W.; Fallourd, M.; Leyer, G. Improving the stability of probiotic bacteria in model fruit juices using vitamins and antioxidants. J. Food Sci. 2010, 75, M278–M282. [Google Scholar] [CrossRef]
- AdebayoTayo, B.; Akpeji, S. Probiotic viability, physicochemical and sensory properties of probiotic pineapple juice. Fermentation 2016, 2, 20. [Google Scholar] [CrossRef]
- Costa, M.G.M.; Fonteles, T.V.; de Jesus, A.L.T.; Rodrigues, S. Sonicated pineapple juice as substrate for L. casei cultivation for probiotic beverage development: Process optimisation and product stability. Food Chem. 2013, 139, 261–266. [Google Scholar] [CrossRef] [Green Version]
- Islam, M.Z.; Tabassum, S.; Harun-ur-Rashid, M.; Vegarud, G.E.; Alam, M.S.; Islam, M.A. Development of probiotic beverage using whey and pineapple (Ananas comosus) juice: Sensory and physico-chemical properties and probiotic survivability during in-vitro gastrointestinal digestion. J. Agric. Food Res. 2021, 4, 100144. [Google Scholar] [CrossRef]
- Dipjyoti, C.; Sourangshu, C.; Mohanasrinivasan, V. Fermentation of Psidiumguajava juice by using probiotic lactic acid bacteria Lactobacillus plantarum. J. Nutr. Food Sci. 2015, 5, 1000398. [Google Scholar] [CrossRef] [Green Version]
- Kantachote, D.; Ratanaburee, A.; Hayisama-ae, W.; Sukhoom, A.; Nunkaew, T. The use of potential probiotic Lactobacillus plantarum DW12 for producing a novel functional beverage from mature coconut water. J. Funct. Foods 2017, 32, 401–408. [Google Scholar] [CrossRef]
- Hashemi, S.M.B.; Khaneghah, A.M.; Barba, F.J.; Nemati, Z.; Shokofti, S.S.; Alizadeh, F. (2017). Fermented sweet lemon juice (Citrus limetta) using Lactobacillus plantarum LS5: Chemical composition, antioxidant and antibacterial activities. J. Funct. Foods 2017, 38, 409–414. [Google Scholar] [CrossRef]
- Ajit, A.; Sulaiman, A.Z.; Chisti, Y. Production of bioethanol by Zymomonas mobilis in high-gravity extractive fermentations. Food Bioprod. Process. 2017, 102, 123–135. [Google Scholar] [CrossRef]
- Ingram, L.O. Ethanol tolerance in bacteria. Crit. Rev. Biotechnol. 1990, 9, 305–319. [Google Scholar] [CrossRef] [PubMed]
- Silva, L.; Schmidt, G.; Alves, L.; Oliveira, V.S.; Laureano-Melo, R.; Stutz, E.; Martins, J.F.P.; Paula, B.P.; Luchese, R.H.; Guerra, A.F.; et al. Use of probiotic strains to produce beers by axenic or semi-separated co-culture system. Food Bioprod. Process. 2020, 124, 408–418. [Google Scholar] [CrossRef]
- Goswami, R.P.; Jayaprakasha, G.; Shetty, K.; Patil, B.S. Lactobacillus plantarum and natural fermentation-mediated biotransformation of flavor and aromatic compounds in horse gram sprouts. Process Biochem. 2018, 66, 7–18. [Google Scholar] [CrossRef]
- Kaprasob, R.; Kerdchoechuen, O.; Laohakunjit, N.; Somboonpanyakul, P. B vitamins and prebiotic fructooligosaccharides of cashew apple fermented with probiotic strains Lactobacillus spp., Leuconostoc mesenteroides and Bifidobacterium longum. Process Biochem. 2018, 70, 9–19. [Google Scholar] [CrossRef]
- Palachum, W.; Choorit, W.; Manurakchinakorn, S.; Chisti, Y. Guava pulp fermentation and processing to a vitamin B12-enriched product. J. Food Process. Preserv. 2020, 44, e14566. [Google Scholar] [CrossRef]
- Roberts, D.; Reyes, V.; Bonilla, F.; Dzandu, B.; Liu, C.; Chouljenko, A.; Sathivel, S. Viability of Lactobacillus plantarum NCIMB 8826 in fermented apple juice under simulated gastric and intestinal conditions. LWT 2018, 97, 144–150. [Google Scholar] [CrossRef]
- Srisukchayakul, P.; Charalampopoulos, D.; Karatzas, K.A. (2018). Study on the effect of citric acid adaptation toward the subsequent survival of Lactobacillus plantarum NCIMB 8826 in low pH fruit juices during refrigerated storage. Food Res. Int. 2018, 111, 198–204. [Google Scholar] [CrossRef] [Green Version]
- Behera, S.S.; Ray, R.C.; Zdolec, N. Lactobacillus plantarum with functional properties: An approach to increase safety and shelf-life of fermented foods. BioMed Res. Int. 2018, 2018, 9361614. [Google Scholar] [CrossRef] [Green Version]
- O’Leary, F.; Samman, S. Vitamin B12 in health and disease. Nutrients 2010, 2010, 299–316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- LeBlanc, J.G.; Laiño, J.E.; Juarez del Valle, M.; Vannini, V.; van Sinderen, D.; Taranto, M.P.; Font de Valdez, G.; Savoy de Giori, G.; Sesma, F. B-Group vitamin production by lactic acid bacteria—current knowledge and potential applications. J. Appl. Microbiol. 2011, 111, 1297–1309. [Google Scholar] [CrossRef] [PubMed]
- LeBlanc, J.G.; Milani, C.; De Giori, G.S.; Sesma, F.; Van Sinderen, D.; Ventura, M. Bacteria as vitamin suppliers to their host: A gut microbiota perspective. Curr. Opin. Biotechnol. 2013, 24, 160–168. [Google Scholar] [CrossRef]
- Palachum, W.; Chisti, Y.; Choorit, W. In-vitro assessment of probiotic potential of Lactobacillus plantarum WU-P19 isolated from a traditional fermented herb. Ann. Microbiol. 2018, 68, 79–91. [Google Scholar] [CrossRef]
- Palachum, W.; Choorit, W.; Chisti, Y. Accumulation of conjugated linoleic acid in Lactobacillus plantarum WU-P19 is enhanced by induction with linoleic acid and chitosan treatment. Ann. Microbiol. 2018, 68, 611–624. [Google Scholar] [CrossRef]
- Rathamat, Z.; Choorit, W.; Chisti, Y.; Prasertsan, P. Two-step isolation of hemicellulose from oil palm empty fruit bunch fibers and its use in production of xylooligosaccharide prebiotic. Ind. Crops Prod. 2021, 160, 113124. [Google Scholar] [CrossRef]
- Płonka, J.; Toczek, A.; Tomczyk, V. Multivitamin analysis of fruits, fruit–vegetable juices, and diet supplements. Food Anal. Methods 2012, 5, 1167–1176. [Google Scholar] [CrossRef] [Green Version]
- Amorim, J.C.; Piccoli, R.H.; Duarte, W.F. Probiotic potential of yeasts isolated from pineapple and their use in the elaboration of potentially functional fermented beverages. Food Res. Int. 2018, 107, 518–527. [Google Scholar] [CrossRef]
- Dubois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.A.; Smith, F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- Mutlu, C.; Tontul, S.A.; Erbaş, M. Production of a minimally processed jelly candy for children using honey instead of sugar. LWT 2018, 93, 499–505. [Google Scholar] [CrossRef]
- Salmerón, I.; Thomas, K.; Pandiella, S.S. Effect of potentially probiotic lactic acid bacteria on the physicochemical composition and acceptance of fermented cereal beverages. J. Funct. Foods 2015, 15, 106–115. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis of AOAC International, 20th ed.; AOAC: Rockville, MD, USA, 2016. [Google Scholar]
- Sullivan, D.M.; Carpenter, D.E. (Eds.) Methods of Analysis for Nutrition Labeling; AOAC International: Arlington, TX, USA, 1993. [Google Scholar]
- Chen, Y.; Huang, Y.; Bai, Y.; Fu, C.; Zhou, M.; Gao, B.; Wang, C.; Li, D.; Hu, Y.; Xu, N. Effects of mixed cultures of Saccharomyces cerevisiae and Lactobacillus plantarum in alcoholic fermentation on the physicochemical and sensory properties of citrus vinegar. LWT 2017, 84, 753–763. [Google Scholar] [CrossRef]
- Southgate, H.W. The dietetic value of barley, malt and malted liquors as determined by their vitamin content. Biochem. J. 1924, 18, 769–776. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, B.T.; Bujna, E.; Fekete, N.; Tran, A.; Rezessy-Szabo, J.M.; Prasad, R.; Nguyen, Q.D. Probiotic beverage from pineapple juice fermented with Lactobacillus and Bifidobacterium strains. Front. Nutr. 2019, 6, 54. [Google Scholar] [CrossRef] [Green Version]
- Horáčková, Š.; Sedláčková, P.; Slukova, M.; Plockova, M. The influence of whey, whey component and malt on the growth and acids production of lactobacilli in milk. Czech. J. Food Sci. 2015, 32, 526–531. [Google Scholar] [CrossRef] [Green Version]
- Mousavi, Z.; Mousavi, S.; Razavi, S.; Emam-Djomeh, Z.; Kiani, H. Fermentation of pomegranate juice by probiotic lactic acid bacteria. World J. Microbiol. Biotechnol. 2011, 27, 123–128. [Google Scholar] [CrossRef]
- Perricone, M.; Bevilacqua, A.; Altieri, C.; Sinigaglia, M.; Corbo, M.R. Challenges for the production of probiotic fruit juices. Beverages 2015, 1, 95–103. [Google Scholar] [CrossRef] [Green Version]
- Succi, M.; Pannella, G.; Tremonte, P.; Tipaldi, L.; Coppola, R.; Iorizzo, M.; Lombardi, S.J.; Sorrentino, E. Sub-optimal pH preadaptation improves the survival of Lactobacillus plantarum strains and the malic acid consumption in wine-like medium. Front. Microbiol. 2017, 8, 470. [Google Scholar] [CrossRef]
- de Ancos, B.; Sánchez-Moreno, C.; González-Aguilar, G.A. Pineapple composition and nutrition. In Handbook of Pineapple Technology: Production, Postharvest Science, Processing and Nutrition; Lobo, M.G., Paull, R.E., Eds.; Wiley: Hoboken, NJ, USA, 2017; pp. 221–239. [Google Scholar]
- Septembre-Malaterre, A.; Remize, F.; Poucheret, P. Fruits and vegetables, as a source of nutritional compounds and phytochemicals: Changes in bioactive compounds during lactic fermentation. Food Res. Int. 2018, 104, 86–99. [Google Scholar] [CrossRef] [PubMed]
- USDA. Pineapple, Raw, Food Code 63141010; United States Department of Agriculture: FDC published 30 October 2020. Available online: https://fdc.nal.usda.gov/fdc-app.html#/food-details/1102688/nutrients (accessed on 22 June 2021).
- USDHHS. Vitamin A—Fact Sheet for Health Professionals. National Institutes of Health, Office of Dietary Supplements, U.S. Department of Health & Human Services. Available online: https://ods.od.nih.gov/factsheets/VitaminA-HealthProfessional/ (accessed on 22 June 2021).
- Hounhouigan, M.H.; Linnemann, A.R.; Soumanou, M.M.; Van Boekel, M.A. Effect of processing on the quality of pineapple juice. Food Rev. Int. 2014, 30, 112–133. [Google Scholar] [CrossRef]
- Khalid, N.; Suleria, H.A.R.; Ahmed, I. Pineapple juice. In Handbook of Functional Beverages and Human Health; Shahidi, F., Alasalvar, C., Eds.; CRC Press: Boca Raton, FL, USA, 2016; pp. 489–500. [Google Scholar]
- Nualkaekul, S.; Charalampopoulos, D. Survival of Lactobacillus plantarum in model solutions and fruit juices. Int. J. Food Microbiol. 2011, 146, 111–117. [Google Scholar] [CrossRef]
- ANSES, CIQUAL. French Food Composition Table. Available online: https://ciqual.anses.fr/#/aliments/2073/pineapple-juice-pure-juice (accessed on 22 June 2021).
- USDA. Pineapple Juice, 100%, Food Code 64124020; United States Department of Agriculture, FDC Published 30 October 2020. Available online: https://fdc.nal.usda.gov/fdc-app.html#/food-details/1102756/nutrients (accessed on 22 June 2021).
- USDHHS. Thiamin—Fact Sheet for Health Professionals. National Institutes of Health, Office of Dietary Supplements, U.S. Department of Health & Human Services. Available online: https://ods.od.nih.gov/factsheets/Thiamin-HealthProfessional/ (accessed on 22 June 2021).
- Levit, R.; de Giori, G.S.; de Moreno de LeBlanc, A.; LeBlanc, J. Evaluation of the effect of soymilk fermented by a riboflavin-producing Lactobacillus plantarum strain in a murine model of colitis. Beneficial Microbes 2017, 8, 65–72. [Google Scholar] [CrossRef]
- Yoshii, K.; Hosomi, K.; Sawane, K.; Kunisawa, J. Metabolism of dietary and microbial vitamin B family in the regulation of host immunity. Front. Nutr. 2019, 6, 48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- USDHHS. Riboflavin—Fact Sheet for Health Professionals. National Institutes of Health, Office of Dietary Supplements, U.S. Department of Health & Human Services. Available online: https://ods.od.nih.gov/factsheets/Riboflavin-HealthProfessional/ (accessed on 22 June 2021).
- Hamzehlou, P.; Sepahy, A.A.; Mehrabian, S.; Hosseini, F. Production of vitamins B3, B6 and B9 by Lactobacillus isolated from traditional yogurt samples from 3 cities in Iran, winter 2016. Appl. Food Biotechnol. 2018, 5, 107–120. [Google Scholar] [CrossRef]
- Rekha, C.; Vijayalakshmi, G. Bioconversion of isoflavone glycosides to aglycones, mineral bioavailability and vitamin B complex in fermented soymilk by probiotic bacteria and yeast. J. Appl. Microbiol. 2010, 109, 1198–1208. [Google Scholar] [CrossRef]
- USDHHS. Niacin—Fact Sheet for Health Professionals. National Institutes of Health, Office of Dietary Supplements. U.S. Department of Health & Human Services. Available online: https://ods.od.nih.gov/factsheets/Niacin-HealthProfessional/ (accessed on 22 June 2021).
- USDHHS. Vitamin B6—Fact Sheet for Health Professionals. National Institutes of Health, Office of Dietary Supplements. U.S. Department of Health & Human Services. Available online: https://ods.od.nih.gov/factsheets/VitaminB6-HealthProfessional/ (accessed on 22 June 2021).
- Santos, F. Vitamin B12 Synthesis in Lactobacillus reuteri. PhD Thesis, Wageningen University, Wageningen, The Netherlands, 2008. [Google Scholar]
- Taranto, M.P.; Vera, J.L.; Hugenholtz, J.; De Valdez, G.F.; Sesma, F. Lactobacillus reuteri CRL1098 produces cobalamin. J. Bacteriol. 2003, 185, 5643–5647. [Google Scholar] [CrossRef] [Green Version]
- Bhushan, B.; Tomar, S.K.; Chauhan, A. Techno-functional differentiation of two vitamin B12 producing Lactobacillus plantarum strains: An elucidation for diverse future use. Appl. Microbiol. Biotechnol. 2017, 101, 697–709. [Google Scholar] [CrossRef]
- Iyer, B.K.; Singhal, R.S.; Ananthanarayan, L. Characterization and in vitro probiotic evaluation of lactic acid bacteria isolated from idli batter. J. Food Sci. Technol. 2013, 50, 1114–1121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, P.; Gu, Q.; Yang, L.; Yu, Y.; Wang, Y. Characterization of extracellular vitamin B12 producing Lactobacillus plantarum strains and assessment of the probiotic potentials. Food Chem. 2017, 234, 494–501. [Google Scholar] [CrossRef] [PubMed]
- Madhu, A.N.; Giribhattanavar, P.; Narayan, M.S.; Prapulla, S.G. Probiotic lactic acid bacterium from kanjika as a potential source of vitamin B12: Evidence from LC-MS, immunological and microbiological techniques. Biotechnol. Lett. 2010, 32, 503–506. [Google Scholar] [CrossRef]
- USDHHS. Vitamin B12—Fact Sheet for Health Professionals. National Institutes of Health, Office of Dietary Supplements, U.S. Department of Health & Human Services. Available online: https://ods.od.nih.gov/factsheets/VitaminB12-HealthProfessional/ (accessed on 22 June 2021).
- G-Alegría, E.; López, I.; Ruiz, J.I.; Sáenz, J.; Fernández, E.; Zarazaga, M.; Dizy, M.; Torres, C.; Ruiz-Larrea, F. High tolerance of wild Lactobacillus plantarum and Oenococcus oeni strains to lyophilisation and stress environmental conditions of acid pH and ethanol. FEMS Microbiol. Lett. 2004, 230, 53–61. [Google Scholar] [CrossRef]
- Martins, S.I.F.S.; Jongen, W.M.F.; van Boekel, M.A.J.S. A review of Maillard reaction in food and implications to kinetic modelling. Trends Food Sci. Technol. 2001, 11, 364–373. [Google Scholar] [CrossRef]
- Rodríguez, H.; Curiel, J.A.; Landete, J.M.; de las Rivas, B.; de Felipe, F.L.; Gómez-Cordovés, C.; Mancheño, J.M.; Muñoz, R. Food phenolics and lactic acid bacteria. Int. J. Food Microbiol. 2009, 132, 79–90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, Y.; Wang, R.; Zhang, Y.; Yang, Y.; Sun, X.; Zhang, Q.; Yang, N. Biotransformation of phenolics and metabolites and the change in antioxidant activity in kiwifruit induced by Lactobacillus plantarum fermentation. J. Sci. Food Agric. 2020, 100, 3283–3290. [Google Scholar] [CrossRef]
Recipe £ | Shelf-Life (day) | Appearance | Color Parameter ¥ | ||
---|---|---|---|---|---|
L* | a* | b* | |||
R2 | 0 | 41.73 ± 0.24 a | −0.83 ± 0.06 a | 8.08 ± 0.25 a | |
7 | 42.12 ± 0.28 a | −0.80 ± 0.12 a | 8.14 ± 0.04 a | ||
14 | 42.08 ± 0.25 a | −0.81 ± 0.09 a | 8.19 ± 0.01 a | ||
21 | 42.05 ± 0.15 a | −0.82 ± 0.11 a | 8.20 ± 0.08 a | ||
R2-E1 | 0 | 41.51 ± 0.18 a | −0.86 ± 0.11 a | 7.49 ± 0.10 a | |
7 | 41.81 ± 0.05 a,b | −0.74 ± 0.09 a | 7.65 ± 0.34 a,b | ||
14 | 41.82 ± 0.06 a,b | −0.79 ± 0.08 a | 7.84 ± 0.07 b | ||
21 | 41.87 ± 0.13 b | −0.80 ± 0.08 a | 7.85 ± 0.06 b | ||
R2-E2 | 0 | 41.56 ± 0.10 a | −1.03 ± 0.10 a | 7.24 ± 0.14 a | |
7 | 41.79 ± 0.13 a,b | −0.98 ± 0.11 a | 7.48 ± 0.08 a,b | ||
14 | 41.81 ± 0.16 b | −0.99 ± 0.07 a | 7.65 ± 0.06 b | ||
21 | 41.89 ± 0.08 b | −1.00 ± 0.09 a | 7.66 ± 0.08 b |
Test Item | Unit/100 mL a | Sterilized Whole Pineapple Juice | Fermented Whole Pineapple Juice Recipe 2 (R2) |
---|---|---|---|
Energy | kcal | 52.63 ± 0.00 | 56.94 ± 0.00 |
Protein | g | 0.47 ± 0.01 | 1.31 ± 0.02 |
Fat | g | 0.27 ± 0.01 | 0.69 ± 0.02 |
Total carbohydrate | g | 12.07 ± 0.49 | 11.22 ± 0.17 |
Total sugars | g | 10.84 ± 0.19 | 10.01 ± 0.04 |
Total dietary fiber | g | 0.70 ± 0.02 | 0.70 ± 0.01 |
Ash | g | 0.29 ± 0.00 | 0.31 ± 0.01 |
Minerals | |||
Calcium (Ca) | mg | 16.20 ± 0.02 | 16.60 ± 0.01 |
Magnesium (Mg) | mg | 11.30 ± 0.00 | 12.00 ± 0.00 |
Potassium (K) | mg | 178.00 ± 0.15 | 178.00 ± 0.10 |
Sodium (Na) | mg | 0.4 ± 0.00 | 1.8 ± 0.00 |
Phosphorus (P) | mg | 13.1 ± 0.06 | 16.4 ± 0.05 |
Iron (Fe) | mg | 0.41 ± 0.03 | 0.38 ± 0.02 |
Copper (Cu) | mg | 0.097 ± 0.00 | 0.092 ± 0.00 |
Manganese (Mn) | mg | 0.43 ± 0.00 | 0.63 ± 0.00 |
Zinc (Zn) | mg | 1.76 ± 0.00 | 1.65 ± 0.00 |
Vitamins | |||
Vitamin A (retinol) | μg | 0.069 ± 0.00 | 0.068 ± 0.00 |
Vitamin C (ascorbic acid) | mg | 28.38 ± 0.28 | 28.07 ± 0.13 |
Vitamin B1 (thiamin) | mg | 0.066 ± 0.00 | 0.045 ± 0.00 |
Vitamin B2 (riboflavin) | mg | 0.042 ± 0.00 | 0.047 ± 0.00 |
Vitamin B3 (niacin) | mg | 0.16 ± 0.00 | 0.49 ± 0.00 |
Vitamin B6 (pyridoxine) | mg | 0.14 ± 0.00 | 0.31 ± 0.00 |
Vitamin B12 (cyanocobalamin) | mg | 0.00 ± 0.00 | 1.96 ± 0.00 |
Total phenolic content | mg GAE b | 90.97 ± 0.12 | 135.82 ± 0.15 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Palachum, W.; Choorit, W.; Chisti, Y. Nutritionally Enhanced Probioticated Whole Pineapple Juice. Fermentation 2021, 7, 178. https://doi.org/10.3390/fermentation7030178
Palachum W, Choorit W, Chisti Y. Nutritionally Enhanced Probioticated Whole Pineapple Juice. Fermentation. 2021; 7(3):178. https://doi.org/10.3390/fermentation7030178
Chicago/Turabian StylePalachum, Wilawan, Wanna Choorit, and Yusuf Chisti. 2021. "Nutritionally Enhanced Probioticated Whole Pineapple Juice" Fermentation 7, no. 3: 178. https://doi.org/10.3390/fermentation7030178
APA StylePalachum, W., Choorit, W., & Chisti, Y. (2021). Nutritionally Enhanced Probioticated Whole Pineapple Juice. Fermentation, 7(3), 178. https://doi.org/10.3390/fermentation7030178