Survivability of Collagen-Peptide Microencapsulated Lactic Acid Bacteria during Storage and Simulated Gastrointestinal Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microbial Strains and Growth Conditions
2.2. Cryoprotective Agent for Strains
2.3. Conditions of the Freeze-Drying Process
2.4. Analysis of the Cell Viability of Strains
2.5. Conditions for the Accelerated Stability Test Using the Different Strains
2.6. Survivability under Simulated GI Tract Conditions
2.7. Heat Tolerance of Freeze-Dried LAB
2.8. Determination of Microbial Morphological Characteristics
2.9. Statistical Analysis
3. Results and Discussion
3.1. Stability under Accelerated Stress Condition Due to the Addition of Different Collagen Types
3.2. Survival of Probiotic Strains under Simulated GI Conditions
3.3. Heat Resistance of Probiotic Strains through the Addition of LCP
3.4. Microbial Morphological Characteristics Based on SEM
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- De Roos, N.M.; Katan, M.B. Effects of probiotic bacteria on diarrhea, lipid metabolism, and carcinogenesis: A review of papers published between 1988 and 1998. Am. J. Clin. Nutr. 2000, 71, 405–411. [Google Scholar] [CrossRef] [PubMed]
- Holmes, E.; Li, J.V.; Marchesi, J.R.; Nicholson, J.K. Gut microbiota composition and activity in relation to host metabolic phenotype and disease risk. Cell Metab. 2012, 16, 559–564. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Opazo, M.C.; Ortega-Rocha, E.M.; Coronado-Arrázola, I.; Bonifaz, L.C.; Boudin, H.; Neunlist, M.; Bueno, S.M.; Kalergis, A.M.; Riedel, C.A. Intestinal Microbiota Influences Non-intestinal Related Autoimmune Diseases. Front. Microbiol. 2018, 9, 432. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rahbar Saadat, Y.; Yari Khosroushahi, A.; Pourghassem Gargari, B. A comprehensive review of anticancer, immunomodulatory and health beneficial effects of the lactic acid bacteria exopolysaccharides. Carbohydr. Polym. 2019, 217, 79–89. [Google Scholar] [CrossRef] [PubMed]
- Bosch, M.; Nart, J.; Audivert, S.; Bonachera, M.A.; Alemany, A.S.; Fuentes, M.C.; Cuñé, J. Isolation and characterization of probiotic strains for improving oral health. Arch. Oral Biol. 2012, 57, 539–549. [Google Scholar] [CrossRef]
- Santos, C.M.A.; Pires, M.C.V.; Leão, T.L.; Hernández, Z.P.; Rodriguez, M.L.; Martins, A.K.S.; Miranda, L.S.; Martins, F.S.; Nicoli, J.R. Selection of Lactobacillus strains as potential probiotics for vaginitis treatment. Microbiology 2016, 162, 1195–1207. [Google Scholar] [CrossRef] [PubMed]
- Kaur, I.P.; Chopra, K.; Saini, A. Probiotics: Potential pharmaceutical applications. Eur. J. Pharm. Sci. Off. J. Eur. Fed. Pharm. Sci. 2002, 15, 1–9. [Google Scholar] [CrossRef]
- Maleki, D.; Azizi, A.; Vaghef, E.; Balkani, S.; Homayouni, A. Methods of Increasing Probiotic Survival in Food and Gastrointestinal Conditions. Prensa Med. 2015, 101, 1–9. [Google Scholar]
- Minelli, E.B.; Benini, A. Relationship between number of bacteria and their probiotic effects. Microb. Ecol. Health Dis. 2008, 20, 180–183. [Google Scholar]
- Reddy, K.B.P.K.; Awasthi, S.P.; Madhu, A.N.; Prapulla, S.G. Role of Cryoprotectants on the Viability and Functional Properties of Probiotic Lactic Acid Bacteria during Freeze Drying. Food Biotechnol. 2009, 23, 243–265. [Google Scholar] [CrossRef]
- Nguyen, T.H.; Kim, Y.; Kim, J.-S.; Jeong, Y.; Park, H.M.; Kim, J.W.; Kim, J.-E.; Kim, H.; Paek, N.-S.; Kang, C.-H. Evaluating the Cryoprotective Encapsulation of the Lactic Acid Bacteria in Simulated Gastrointestinal Conditions. Biotechnol. Bioprocess Eng. 2020, 25, 287–292. [Google Scholar] [CrossRef]
- De Giulio, B.; Orlando, P.; Barba, G.; Coppola, R.; De Rosa, M.; Sada, A.; De Prisco, P.P.; Nazzaro, F. Use of alginate and cryo-protective sugars to improve the viability of lactic acid bacteria after freezing and freeze-drying. World J. Microbiol. Biotechnol. 2005, 21, 739–746. [Google Scholar] [CrossRef]
- Chen, X.; Li, L.; Yang, F.; Wu, J.; Wang, S. Effects of gelatin-based antifreeze peptides on cell viability and oxidant stress of Streptococcus thermophilus during cold stage. Food Chem. Toxicol. 2020, 136, 111056. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Wu, J.; Li, L.; Wang, S. Cryoprotective Activity and Action Mechanism of Antifreeze Peptides Obtained from Tilapia Scales on Streptococcus thermophilus during Cold Stress. J. Agric. Food Chem. 2019, 67, 1918–1926. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Du, G.-C.; Zhang, Y.; Liao, X.-Y.; Wang, M.; Li, Y.; Chen, J. Glutathione Protects Lactobacillus sanfranciscensis against Freeze-Thawing, Freeze-Drying, and Cold Treatment. Appl. Environ. Microbiol. 2010, 76, 2989–2996. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, N.; Mittler, R. Reactive oxygen species and temperature stresses: A delicate balance between signaling and destruction. Physiol. Plant. 2006, 126, 45–51. [Google Scholar] [CrossRef]
- Cabiscol, E.; Tamarit, J.; Ros, J. Oxidative stress in bacteria and protein damage by reactive oxygen species. Int. Microbiol. Off. J. Spanish Soc. Microbiol. 2000, 3, 3–8. [Google Scholar]
- Feng, T.; Wang, J. Oxidative stress tolerance and antioxidant capacity of lactic acid bacteria as probiotic: A systematic review. Gut Microbes 2020, 12, 1801944. [Google Scholar] [CrossRef]
- Carvalho, A.S.; Silva, J.; Ho, P.; Teixeira, P.; Malcata, F.X.; Gibbs, P. Relevant factors for the preparation of freeze-dried lactic acid bacteria. Int. Dairy J. 2004, 14, 835–847. [Google Scholar] [CrossRef]
- Li, B.; Tian, F.; Liu, X.; Zhao, J.; Zhang, H.; Chen, W. Effects of cryoprotectants on viability of Lactobacillus reuteri CICC6226. Appl. Microbiol. Biotechnol. 2011, 92, 609–616. [Google Scholar] [CrossRef]
- Stefanello, R.F.; Nabeshima, E.H.; Iamanaka, B.T.; Ludwig, A.; Fries, L.L.M.; Bernardi, A.O.; Copetti, M.V. Survival and stability of Lactobacillus fermentum and Wickerhamomyces anomalus strains upon lyophilisation with different cryoprotectant agents. Food Res. Int. 2019, 115, 90–94. [Google Scholar] [CrossRef]
- Mandal, S.; Puniya, A.K.; Singh, K. Effect of alginate concentrations on survival of microencapsulated Lactobacillus casei NCDC-298. Int. Dairy J. 2006, 16, 1190–1195. [Google Scholar] [CrossRef]
- Yoshida, K.; Ono, F.; Chouno, T.; Nakada, S.; Ikegami, Y.; Shirakigawa, N.; Sakai, Y.; Ijima, H. Creation of a novel lipid-trehalose derivative showing positive interaction with the cell membrane and verification of its cytoprotective effect during cryopreservation. J. Biosci. Bioeng. 2021, 132, 71–80. [Google Scholar] [CrossRef] [PubMed]
- Leslie, S.B.; Israeli, E.; Lighthart, B.; Crowe, J.H.; Crowe, L.M. Trehalose and sucrose protect both membranes and proteins in intact bacteria during drying. Appl. Environ. Microbiol. 1995, 61, 3592–3597. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, W.; Chen, M.; Wu, J.; Wang, S. Hypothermia protection effect of antifreeze peptides from pigskin collagen on freeze-dried Streptococcus thermophiles and its possible action mechanism. LWT-Food Sci. Technol. 2015, 63, 878–885. [Google Scholar] [CrossRef]
- Wang, S.; Zhao, J.; Chen, L.; Zhou, Y.; Wu, J. Preparation, isolation and hypothermia protection activity of antifreeze peptides from shark skin collagen. LWT-Food Sci. Technol. 2014, 55, 210–217. [Google Scholar] [CrossRef]
- Qiu, W.; Chen, X.; Tian, Y.; Wu, D.; Du, M.; Wang, S. Protection against oxidative stress and anti-aging effect in Drosophila of royal jelly-collagen peptide. Food Chem. Toxicol. 2020, 135, 110881. [Google Scholar] [CrossRef] [PubMed]
- Cao, H.; Zheng, X.; Liu, H.; Yuan, M.; Ye, T.; Wu, X.; Yin, F.; Li, Y.; Yu, J.; Xu, F. Cryo-protective effect of ice-binding peptides derived from collagen hydrolysates on the frozen dough and its ice-binding mechanisms. LWT 2020, 131, 109678. [Google Scholar] [CrossRef]
- Chang-Ho, K.; Kim, Y.; Han, S.H.; Kim, J.; Jeong, Y.; Nam-Soo, P. Effect of Pumpkin Powder as Cryoprotectant to Improve the Viability of Freeze Dried Lactic Acid Bacteria. KSBB J. 2017, 32, 251–255. [Google Scholar]
- Ying, D.; Sanguansri, L.; Weerakkody, R.; Bull, M.; Singh, T.K.; Augustin, M.A. Effect of encapsulant matrix on stability of microencapsulated probiotics. J. Funct. Foods 2016, 25, 447–458. [Google Scholar] [CrossRef]
- Tokatlı, M.; Gülgör, G.; Bağder Elmacı, S.; Arslankoz İşleyen, N.; Özçelik, F. In Vitro Properties of Potential Probiotic Indigenous Lactic Acid Bacteria Originating from Traditional Pickles. Biomed Res. Int. 2015, 2015, 315819. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Halim, M.; Mohd Mustafa, N.A.; Othman, M.; Wasoh, H.; Kapri, M.R.; Ariff, A.B. Effect of encapsulant and cryoprotectant on the viability of probiotic Pediococcus acidilactici ATCC 8042 during freeze-drying and exposure to high acidity, bile salts and heat. LWT-Food Sci. Technol. 2017, 81, 210–216. [Google Scholar] [CrossRef]
- Sánchez, B.; Delgado, S.; Blanco-Míguez, A.; Lourenço, A.; Gueimonde, M.; Margolles, A. Probiotics, gut microbiota, and their influence on host health and disease. Mol. Nutr. Food Res. 2017, 61, 1600240. [Google Scholar] [CrossRef] [Green Version]
- De Carvlho, K.G.; Kruger, M.F.; Nader Furtado, D.; Todorov, S.D.; Gombossy De Melo Franco, B.D. Evaluation of the role of environmental factors in the human gastrointestinal tract on the behaviour of probiotic cultures of Lactobacillus casei Shirota and Lactobacillus casei LC01 by the use of a semi-dynamicin vitro model. Ann. Microbiol. 2009, 59, 439–445. [Google Scholar] [CrossRef]
- Siaterlis, A.; Deepika, G.; Charalampopoulos, D. Effect of culture medium and cryoprotectants on the growth and survival of probiotic lactobacilli during freeze drying. Lett. Appl. Microbiol. 2009, 48, 295–301. [Google Scholar] [CrossRef] [PubMed]
- Jong-Bum, C.; Yong-Woo, S.; Nam-Soo, P.; Young-Man, K. Enfluence of Herbal Extract on Lactic Acid Bacteria Growth and Cryoprotectants. Korean J. Food Nutr. 2004, 17, 286–293. [Google Scholar]
- Liu, B.; Fu, N.; Woo, M.W.; Chen, X.D. Heat stability of Lactobacillus rhamnosus GG and its cellular membrane during droplet drying and heat treatment. Food Res. Int. 2018, 112, 56–65. [Google Scholar] [CrossRef]
Strain | Group | Concentration (%) | Viable Cell Counts (Log CFU/g) | Survival Rate (%) | |
---|---|---|---|---|---|
Time (Week) | |||||
0 | 1 | ||||
MG989 | LC | 1 | 11.59 ± 0.00 ** | 10.26 ± 0.03 | 4.81 ± 0.65 cd |
3 | 11.57 ± 0.01 *** | 10.54 ± 0.01 | 9.33 ± 0.27 bc | ||
5 | 11.59 ± 0.01 *** | 9.49 ± 0.03 | 0.79 ± 0.10 d | ||
LCP | 1 | 11.63 ± 0.01 ** | 10.80 ± 0.02 | 12.87 ± 2.02 b | |
3 | 11.60 ± 0.03 ** | 10.81 ± 0.00 | 14.67 ± 1.46 ab | ||
5 | 11.71 ± 0.00 *** | 11.04 ± 0.02 | 21.42 ± 1.02 a | ||
MG5125 | LC | 1 | 11.79 ± 0.04 ** | 11.20 ± 0.01 | 25.53 ± 0.80 |
3 | 11.63 ± 0.01 *** | 11.07 ± 0.01 | 27.21 ± 0.70 | ||
5 | 11.67 ± 0.01 *** | 11.11 ± 0.02 | 27.63 ± 2.16 | ||
LCP | 1 | 11.71 ± 0.01 *** | 11.04 ± 0.01 | 21.67 ± 1.27 | |
3 | 11.70 ± 0.01 *** | 11.17 ± 0.02 | 30.00 ± 3.40 | ||
5 | 11.72 ± 0.03 ** | 11.07 ± 0.01 | 22.26 ± 0.57 | ||
MG5232 | LC | 1 | 11.92 ± 0.00 *** | 11.69 ± 0.00 | 57.74 ± 0.60 ab |
3 | 11.90 ± 0.04 * | 11.58 ± 0.01 | 48.13 ± 3.13 b | ||
5 | 11.79 ± 0.04 | 11.66 ± 0.00 | 73.60 ± 1.60 a | ||
LCP | 1 | 11.87 ± 0.01 * | 11.74 ± 0.00 | 73.62 ± 1.41 a | |
3 | 11.83 ± 0.00 * | 11.64 ± 0.01 | 64.71 ± 2.94 ab | ||
5 | 11.77 ± 0.00 | 11.63 ± 0.02 | 72.51 ± 6.75 a | ||
MG741 | LC | 1 | 11.28 ± 0.02 | 11.16 ± 0.01 | 76.32 ± 2.63 |
3 | 11.34 ± 0.01 | 11.17 ± 0.04 | 68.18 ± 13.64 | ||
5 | 11.27 ± 0.03 | 10.96 ± 0.06 | 50.00 ± 13.16 | ||
LCP | 1 | 11.22 ± 0.01 | 11.19 ± 0.01 | 93.33 ± 3.64 | |
3 | 11.27 ± 0.01 | 11.23 ± 0.01 | 91.89 ± 5.41 | ||
5 | 11.27 ± 0.02 | 11.12 ± 0.04 | 72.97 ± 13.51 | ||
MG5140 | LC | 1 | 11.58 ± 0.04 *** | 8.74 ± 0.02 | 0.14 ± 0.01 c |
3 | 11.62 ± 0.06 ** | 9.55 ± 0.02 | 0.83 ± 0.07 c | ||
5 | 11.52 ± 0.01 *** | 9.52 ± 0.03 | 1.02 ± 0.14 c | ||
LCP | 1 | 11.60 ± 0.03 *** | 9.12 ± 0.06 | 0.33 ± 0.09 c | |
3 | 11.45 ± 0.02 *** | 10.09 ± 0.01 | 4.29 ± 0.36 b | ||
5 | 11.61 ± 0.01 *** | 10.52 ± 0.01 | 8.05 ± 0.49 a |
Strain | Group | Conditions of Simulated GI Juices | Viable Cell Counts (Log CFU/g) | Survival Rate (%) | |
---|---|---|---|---|---|
Initial | Final | ||||
MG989 | Control | pH 3 | 11.74 ± 0.04 * | 11.54 ± 0.03 | 63.64 ± 4.50 b |
SM | 11.79 ± 0.03 | 11.79 ± 0.01 | 100.82 ± 0.40 a | ||
LCP | 11.64 ± 0.02 | 11.66 ± 0.01 | 103.13 ± 0.90 a | ||
Control | pH 7 | 11.74 ± 0.04 | 11.74 ± 0.06 | 100.00 ± 13.60 | |
SM | 11.79 ± 0.03 | 11.79 ± 0.05 | 101.84 ± 11.60 | ||
LCP | 11.64 ± 0.02 | 11.67 ± 0.01 | 105.11 ± 2.80 | ||
MG5125 | Control | pH 3 | 11.98 ± 0.04 *** | 9.23 ± 0.02 | 0.18 ± 0.01 b |
SM | 11.82 ± 0.02 *** | 8.83 ± 0.00 | 0.10 ± 0.00 b | ||
LCP | 11.60 ± 0.03 *** | 9.19 ± 0.04 | 0.39 ± 0.03 a | ||
Control | pH 7 | 11.98 ± 0.04 * | 11.76 ± 0.02 | 59.74 ± 2.60 | |
SM | 11.82 ± 0.02 | 11.80 ± 0.04 | 96.23 ± 9.43 | ||
LCP | 11.60 ± 0.03 | 11.59 ± 0.04 | 96.88 ± 9.38 | ||
MG5232 | Control | pH 3 | 12.21 ± 0.01 * | 11.96 ± 0.05 | 56.15 ± 6.90 b |
SM | 12.12 ± 0.02 * | 11.98 ± 0.02 | 73.33 ± 2.90 ab | ||
LCP | 11.64 ± 0.10 | 11.65 ± 0.01 | 100.00 ± 2.80 a | ||
Control | pH 7 | 12.21 ± 0.01 | 12.11 ± 0.03 | 80.00 ± 6.20 | |
SM | 12.12 ± 0.02 | 12.13 ± 0.03 | 101.91 ± 6.70 | ||
LCP | 11.64 ± 0.10 | 11.67 ± 0.01 | 102.78 ± 2.80 | ||
MG741 | Control | pH 3 | 11.87 ± 0.01 | 11.53 ± 0.13 | 47.46 ± 13.60 |
SM | 11.77 ± 0.03 | 11.70 ± 0.02 | 85.11 ± 4.30 | ||
LCP | 11.32 ± 0.15 | 11.21 ± 0.01 | 73.18 ± 0.60 | ||
Control | pH 7 | 11.87 ± 0.01 | 11.75 ± 0.03 | 76.27 ± 5.10 | |
SM | 11.77 ± 0.03 | 11.66 ± 0.04 | 77.45 ± 7.70 | ||
LCP | 11.32 ± 0.15 | 11.24 ± 0.14 | 81.01 ± 25.10 | ||
MG5140 | Control | pH 3 | 11.56 ± 0.05 *** | 6.06 ± 0.05 | 0.0003 ± 0.00 c |
SM | 11.40 ± 0.03 *** | 6.17 ± 0.01 | 0.0006 ± 0.00 b | ||
LCP | 11.19 ± 0.02 *** | 6.28 ± 0.01 | 0.0012 ± 0.00 a | ||
Control | pH 7 | 11.56 ± 0.05 ** | 11.04 ± 0.04 | 30.34 ± 2.80 | |
SM | 11.40 ± 0.03 * | 11.00 ± 0.05 | 39.41 ± 4.90 | ||
LCP | 11.19 ± 0.02 ** | 10.88 ± 0.01 | 49.59 ± 0.80 |
Strain | Group | Viable Cell Counts (Log CFU/g) | Survival Rate (%) | |
---|---|---|---|---|
Initial | Final | |||
MG989 | Control | 11.88 ± 0.12 *** | 7.40 ± 0.02 | 0.003 ± 0.00 b |
SM | 11.84 ± 0.02 *** | 8.44 ± 0.04 | 0.04 ± 0.01 b | |
LCP | 11.67 ± 0.05 ** | 10.43 ± 0.09 | 5.82 ± 1.24 a | |
MG5125 | Control | 11.98 ± 0.01 *** | 7.79 ± 0.09 | 0.01 ± 0.00 b |
SM | 11.95 ± 0.05 *** | 8.78 ± 0.02 | 0.07 ± 0.00 a | |
LCP | 11.73 ± 0.03 *** | 8.75 ± 0.05 | 0.11 ± 0.01 a | |
MG5232 | Control | 12.20 ± 0.01 ** | 11.64 ± 0.03 | 27.86 ± 1.83 b |
SM | 12.20 ± 0.05 ** | 11.67 ± 0.01 | 29.38 ± 0.63 b | |
LCP | 11.89 ± 0.05 * | 11.67 ± 0.01 | 59.84 ± 0.48 a | |
MG741 | Control | 11.88 ± 0.01 *** | 11.19 ± 0.02 | 20.49 ± 0.82 |
SM | 11.77 ± 0.03 ** | 11.29 ± 0.03 | 33.40 ± 2.34 | |
LCP | 11.39 ± 0.09 * | 10.94 ± 0.07 | 35.00 ± 5.00 | |
MG5140 | Control | 11.54 ± 0.03 *** | 8.23 ± 0.04 | 0.05 ± 0.01 |
SM | 11.62 ± 0.02 *** | 7.85 ± 0.01 | 0.02 ± 0.00 | |
LCP | 11.44 ± 0.01 ** | 8.82 ± 0.12 | 0.25 ± 0.07 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.-I.; Kim, J.-W.; Kim, K.-T.; Kang, C.-H. Survivability of Collagen-Peptide Microencapsulated Lactic Acid Bacteria during Storage and Simulated Gastrointestinal Conditions. Fermentation 2021, 7, 177. https://doi.org/10.3390/fermentation7030177
Kim S-I, Kim J-W, Kim K-T, Kang C-H. Survivability of Collagen-Peptide Microencapsulated Lactic Acid Bacteria during Storage and Simulated Gastrointestinal Conditions. Fermentation. 2021; 7(3):177. https://doi.org/10.3390/fermentation7030177
Chicago/Turabian StyleKim, Sun-Il, Jin-Woo Kim, Ki-Tae Kim, and Chang-Ho Kang. 2021. "Survivability of Collagen-Peptide Microencapsulated Lactic Acid Bacteria during Storage and Simulated Gastrointestinal Conditions" Fermentation 7, no. 3: 177. https://doi.org/10.3390/fermentation7030177
APA StyleKim, S. -I., Kim, J. -W., Kim, K. -T., & Kang, C. -H. (2021). Survivability of Collagen-Peptide Microencapsulated Lactic Acid Bacteria during Storage and Simulated Gastrointestinal Conditions. Fermentation, 7(3), 177. https://doi.org/10.3390/fermentation7030177