Characterization of Novel Lactobacillus paracasei HY7017 Capable of Improving Physiological Properties and Immune Enhancing Effects Using Red Ginseng Extract
Abstract
:1. Introduction
2. Materials and Methods
2.1. Characterization of HY7017
2.1.1. Isolation and Identification of Endophytic LAB Strains
2.1.2. Measurement of the Bacterial Number in Medium Supplemented with RGE during the Fermentation Process
2.1.3. HPLC Measurement of Ginsenosides in HY7017
2.2. Assay for Immune Activity
2.2.1. Analysis of NO Production on RAW 264.7 Cells
2.2.2. Quantitative Reverse-Transcription Polymerase Chain Reaction Analysis
2.2.3. Determination of Cytokines by ELISA In Vitro
2.2.4. Analysis of Splenic NK Cell Activity
2.2.5. Animal Experiment
2.2.6. Analysis of Immune-Enhancing Effects in Immunosuppressed Mice
2.3. Probiotic Properties of HY7017
2.3.1. Resistance to the Effects of the GI Tract
2.3.2. Adhesion to Caco-2 Cells
2.4. Statistical Analysis
3. Results
3.1. Characteristics of HY7017 in Response to RGE
3.1.1. Endophytic LABs Isolation and Identification
3.1.2. Growth Performance of HY7017 in RGE-Supplemented Medium
3.1.3. Analysis of the Ginsenoside Content in HY7017
3.2. The Immune-Enhancing Effect of HY7017
3.2.1. HY7017-Mediated Production of NO and Cytokines in RAW 264.7 Cells
3.2.2. HY7017-Mediated Cytokine Production and NK Cell Activity in Splenocytes
3.2.3. Effect of Bacterial Fractions
3.2.4. The Effect of Oral Administration of HY7017 to Immunosuppressed Mice
3.3. Probiotic Properties
3.3.1. Stability in the Gastrointestinal Tract
3.3.2. Adhesion Rate
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lee, S.M.; Bae, B.S.; Park, H.W.; Ahn, N.G.; Cho, B.G.; Cho, Y.L.; Kwak, Y.S. Characterization of korean red ginseng (Panax ginseng Meyer): History, preparation method, and chemical composition. J. Ginseng Res. 2015, 39, 384–391. [Google Scholar] [CrossRef] [Green Version]
- Yu, T.; Rhee, M.H.; Lee, J.; Kim, S.H.; Yang, Y.; Kim, H.G.; Kim, Y.; Kim, C.; Kwak, Y.-S.; Kim, J.-H.; et al. Ginsenoside Rc from korean red ginseng (Panax ginseng C.A. Meyer) attenuates inflammatory symptoms of gastritis, hepatitis and arthritis. Am. J. Chin. Med. 2016, 44, 595–615. [Google Scholar] [CrossRef]
- Xie, J.-T.; McHendale, S.; Yuan, C.-S. Ginseng and diabetes. Am. J. Chin. Med. 2005, 33, 397–404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, Y.-J.; Yamabe, N.; Choi, P.; Lee, J.W.; Ham, J.; Kang, K.S. Efficient thermal deglycosylation of ginsenoside Rd and its contribution to the improved anticancer activity of ginseng. J. Agric. Food Chem. 2013, 61, 9185–9191. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.H.; Lee, D.; Lee, H.L.; Kim, C.-E.; Jung, K.; Kang, K.S. Beneficial effects of Panax ginseng for the treatment and prevention of neurodegenerative diseases: Past findings and future directions. J. Ginseng Res. 2018, 42, 239–247. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.; Min, H. Ginseng, the ‘Immunity Boost’: The effects of Panax ginseng on immune system. J. Ginseng Res. 2012, 36, 354–368. [Google Scholar] [CrossRef] [Green Version]
- Sohn, E.-H.; Jang, S.-A.; Lee, C.-H.; Jang, K.-H.; Kang, S.-C.; Park, H.-J.; Pyo, S. Effects of korean red ginseng extract for the treatment of atopic dermatitis-like skin lesions in mice. J. Ginseng Res. 2011, 35, 479–486. [Google Scholar] [CrossRef] [Green Version]
- Lee, F.C. Facts about Ginseng: The Elixir of Life; Hollym International Corp.: Elizabeth, NJ, USA, 1992; p. 104. [Google Scholar]
- Park, J.D. Recent studies on the chemical constituents of korean ginseng (Panax ginseng C. A. Meyer). J. Ginseng Res. 1996, 20, 389–415. [Google Scholar]
- Hill, C.; Guarner, F.; Reid, G.; Gibson, G.R.; Merenstein, D.J.; Pot, B.; Morelli, L.; Canani, R.B.; Flint, H.J.; Salminen, S.; et al. The international scientific association for probiotics and prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol. 2014, 11, 506–514. [Google Scholar] [CrossRef] [Green Version]
- Shahidi, F. Functional Foods: Their role in health promotion and disease prevention. J. Food Sci. 2004, 69, R146–R149. [Google Scholar] [CrossRef]
- Conway, P.L. Prebiotics and human health: The state-of-the-art and future perspectives. Food Nutr. Res. 2001, 45, 13–21. [Google Scholar] [CrossRef] [Green Version]
- Sarao, L.K.; Arora, M. Probiotics, prebiotics, and microencapsulation: A review. Crit. Rev. Food Sci. Nutr. 2017, 57, 344–371. [Google Scholar] [CrossRef]
- David, L.A.; Maurice, C.F.; Carmody, R.N.; Gootenberg, D.B.; Button, J.E.; Wolfe, B.E.; Ling, A.V.; Devlin, A.S.; Varma, Y.; Fischbach, M.A.; et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 2014, 505, 559–563. [Google Scholar] [CrossRef] [Green Version]
- Ouwehand, A.C.; Kirjavainen, P.V.; Shortt, C.; Salminen, S. Probiotics: Mechanisms and established effects. Int. Dairy J. 1999, 9, 43–52. [Google Scholar] [CrossRef]
- Macfarlane, G.T.; Cummings, J.H. Probiotics, infection and immunity. Curr. Opin. Infect. Dis. 2002, 15, 501–506. [Google Scholar] [CrossRef]
- Song, X.; Wu, H.; Yin, Z.; Lian, M.; Yin, C. Endophytic bacteria isolated from Panax ginseng improves ginsenoside accumulation in adventitious ginseng root culture. Molecules 2017, 22, 837. [Google Scholar] [CrossRef] [Green Version]
- Lee, N.-K.; Han, K.J.; Son, S.-H.; Eom, S.J.; Lee, S.-K.; Paik, H.-D. Multifunctional effect of probiotic Lactococcus lactis KC24 isolated from kimchi. LWT-Food Sci. Technol. 2015, 64, 1036–1041. [Google Scholar] [CrossRef]
- Jang, S.-E.; Joh, E.-H.; Lee, H.-Y.; Ahn, Y.-T.; Lee, J.-H.; Huh, C.-S.; Han, M.-J.; Kim, D.-H. Lactobacillus plantarum HY7712 ameliorates cyclophosphamide-induced immunosuppression in mice. J. Microbiol. Biotechnol. 2013, 23, 414–421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jung, S.H.; Hong, D.K.; Bang, S.-J.; Heo, K.; Sim, J.-J.; Lee, J.-L. The Functional properties of Lactobacillus casei HY2782 are affected by the fermentation time. Appl. Sci. 2021, 11, 2481. [Google Scholar] [CrossRef]
- Jacobsen, C.N.; Nielsen, V.R.; Hayford, A.E.; Møller, P.L.; Michaelsen, K.F.; Pærregaard, A.; Sandström, B.; Tvede, M.; Jakobsen, M. Screening of probiotic activities of forty-seven strains of Lactobacillus spp. by in vitro techniques and evaluation of the colonization ability of five selected strains in humans. Appl. Environ. Microbiol. 1999, 65, 4949–4956. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, L.; Huang, Y.; Yin, G.; Wang, J.; Wang, P.; Chen, Z.-Y.; Wang, T.; Ren, G. Antimicrobial activities of asian ginseng, american ginseng, and notoginseng. Phytother. Res. 2020, 34, 1226–1236. [Google Scholar] [CrossRef]
- Bae, H.-C.; Lee, J.-Y.; Nam, M.S. Effect of red ginseng, extract on growth of Lactobacillus sp., Escherichia coli and Listeria monocytogenes in pH controled medium. Korean J. Food Sci. Anim. Resour. 2005, 25, 257–264. [Google Scholar]
- Nwodo, U.U.; Green, E.; Okoh, A.I. Bacterial exopolysaccharides: Functionality and prospects. Int. J. Mol. Sci. 2012, 13, 14002–14015. [Google Scholar] [CrossRef] [Green Version]
- Masood, M.I.; Qadir, M.I.; Shirazi, J.H.; Khan, I.U. Beneficial effects of lactic acid bacteria on human beings. Crit. Rev. Microbiol. 2011, 37, 91–98. [Google Scholar] [CrossRef] [PubMed]
- Foligné, B.; Deutsch, S.-M.; Breton, J.; Cousin, F.J.; Dewulf, J.; Samson, M.; Pot, B.; Jan, G. Promising immunomodulatory effects of selected strains of dairy propionibacteria as evidenced in vitro and in vivo. Appl. Environ. Microbiol. 2010, 76, 8259–8264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paturi, G.; Phillips, M.; Jones, M.; Kailasapathy, K. Immune enhancing effects of Lactobacillus acidophilus LAFTI L10 and Lactobacillus paracasei LAFTI L26 in mice. Int. J. Food Microbiol. 2007, 115, 115–118. [Google Scholar] [CrossRef] [PubMed]
- Tsai, Y.-T.; Cheng, P.-C.; Liao, J.-W.; Pan, T.-M. Effect of the administration of Lactobacillus paracasei subsp. paracasei NTU 101 on peyer’s patch-mediated mucosal immunity. Int. Immunopharmacol. 2010, 10, 791–798. [Google Scholar] [CrossRef] [PubMed]
- Hirayama, D.; Iida, T.; Nakase, H. The phagocytic function of macrophage-enforcing innate immunity and tissue homeostasis. Int. J. Mol. Sci. 2017, 19, 92. [Google Scholar] [CrossRef] [Green Version]
- Chiou, W.F.; Chou, C.J.; Chen, C.F. Camptothecin suppresses nitric oxide biosynthesis in RAW 264.7 macrophages. Life Sci. 2001, 69, 625–635. [Google Scholar] [CrossRef]
- Lawrence, T.; Willoughby, D.A.; Gilroy, D.W. Anti-inflammatory lipid mediators and insights into the resolution of inflammation. Nat. Rev. Immunol. 2002, 2, 787–795. [Google Scholar] [CrossRef]
- Murakami, A.; Ohigashi, H. Targeting NOX, INOS and COX-2 in inflammatory cells: Chemoprevention using food phytochemicals. Int. J. Cancer 2007, 121, 2357–2363. [Google Scholar] [CrossRef]
- Trinchieri, G. Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nat. Rev. Immunol. 2003, 3, 133–146. [Google Scholar] [CrossRef]
- Nakayamada, S.; Kanno, Y.; Takahashi, H.; Jankovic, D.; Lu, K.T.; Johnson, T.A.; Sun, H.-W.; Vahedi, G.; Hakim, O.; Handon, R.; et al. Early Th1 cell differentiation is marked by a Tfh cell-like transition. Immunity 2011, 35, 919–931. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smeltz, R.B.; Chen, J.; Ehrhardt, R.; Shevach, E.M. Role of IFN-γ in Th1 differentiation: IFN-γ regulates IL-18Rα expression by preventing the negative effects of IL-4 and by inducing/maintaining IL-12 receptor β2 expression. J. Immunol. 2002, 168, 6165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hunter, C.A.; Gabriel, K.E.; Radzanowski, T.; Neyer, L.E.; Remington, J.S. Type I interferons enhance production of IFN-γ by NK cells. Immunol. Lett. 1997, 59, 1–5. [Google Scholar] [CrossRef]
- Vivier, E.; Nunès, J.A.; Vély, F. Natural killer cell signaling pathways. Science 2004, 306, 1517–1519. [Google Scholar] [CrossRef] [PubMed]
- Jie, Y.H.; Cammisuli, S.; Baggiolini, M. Immunomodulatory effects of Panax Ginseng C.A. Meyer in the mouse. Agents Actions 1984, 15, 386–391. [Google Scholar] [CrossRef]
- Lewis, S.M.; Williams, A.; Eisenbarth, S.C. Structure and function of the immune system in the spleen. Sci. Immunol. 2019, 4, 33. [Google Scholar] [CrossRef]
- Park, H.-E.; Lee, W.-K. Immune enhancing effects of Weissella cibaria JW15 on BALB/c mice immunosuppressed by cyclophosphamide. J. Funct. Foods 2018, 49, 518–525. [Google Scholar] [CrossRef]
- Sharma, G.; Baranwal, A.K.; Mehra, N.K. Chapter 17—The human leukocyte antigen system in human disease and transplantation medicine. In Clinical Molecular Medicine; Kumar, D., Ed.; Academic Press: Cambridge, MA, USA, 2020; pp. 309–325. [Google Scholar]
- Trakhtenberg, E.C. The Effects of guided imagery on the immune system: A critical review. Int. J. Neurosci. 2008, 118, 839–855. [Google Scholar] [CrossRef]
- Ye, J.; Ortaido, J.R.; Conlon, K.; Winkler-Pickett, R.; Young, H.A. Cellular and molecular mechanisms of IFN-γ production induced by IL-2 and IL-12 in a human NK cell line. J. Leukoc. Biol. 1995, 58, 225–233. [Google Scholar] [CrossRef]
- Liu, Y.W.; Fu, T.Y.; Peng, W.S.; Chen, Y.H.; Cao, Y.M.; Chen, C.C.; Hung, W.L.; Tsai, Y.C. Evaluation of the potential anti-allergic effects of heat-inactivated Lactobacillus paracasei V0151 in vitro, ex vivo, and in vivo. Benef. Microbes 2015, 6, 697–705. [Google Scholar] [CrossRef]
- Lee, A.; Lee, Y.J.; Yoo, H.J.; Kim, M.; Chang, Y.; Lee, D.S.; Lee, J.H. Consumption of dairy yogurt containing Lactobacillus paracasei ssp. paracasei, Bifidobacterium animalis ssp. lactis and heat-treated Lactobacillus plantarum improves immune function including natural killer cell activity. Nutrients 2017, 9, 558. [Google Scholar] [CrossRef]
- Kim, K.-S.; Pyo, S.; Sohn, E.-H. Immunomodulation of NK cell activity by red ginseng acidic polysaccharide (RGAP) in ovariectomized rats. J. Ginseng Res. 2009, 33, 99–103. [Google Scholar] [CrossRef]
- Andersson, H.; Asp, N.-G.; Bruce, Å.; Roos, S.; Wadström, T.; Wold, A.E. Health effects of probiotics and prebiotics A literature review on human studies. Food Nutr. Res. 2001, 45, 58–75. [Google Scholar] [CrossRef]
- Shi, L.H.; Balakrishnan, K.; Thiagarajah, K.; Mohd Ismail, N.I.; Yin, O.S. Beneficial properties of probiotics. Trop. Life Sci. Res. 2016, 27, 73–90. [Google Scholar] [CrossRef]
- Ruas-Madiedo, P.; Gueimonde, M.; de los Reyes-Gavilán, C.G.; Salminen, S. Short communication: Effect of exopolysaccharide isolated from “Viili” on the adhesion of probiotics and pathogens to intestinal mucus. J. Dairy Sci. 2006, 89, 2355–2358. [Google Scholar] [CrossRef] [Green Version]
Strain | Red Ginseng Extract (%) | Bacterial Number (CFU/mL) |
---|---|---|
L. paracasei ATCC25302 | 0 | 1.58 × 109 ± 0.07 |
1 | 1.23 × 109 ± 0.15 | |
3 | 2.67 × 108 ± 0.35 ** | |
5 | 2.13 × 108 ± 0.15 ** | |
10 | 2.07 × 108 ± 0.12 ** | |
L. paracasei HY7017 | 0 | 1.54 × 109 ± 0.05 |
1 | 1.64 × 109 ± 0.15 | |
3 | 2.08 × 109 ± 0.06 * | |
5 | 1.54 × 109 ± 0.21 | |
10 | 1.42 × 109 ± 0.25 |
Strain | Growth Condition | Manufacturing process (CFU/mL) | |||
---|---|---|---|---|---|
Inoculation | Fermentation | Concentration | Lyophilization | ||
L. paracasei ATCC25302 | MRS | 4.67 × 109 ± 0.55 | 1.31 × 1010 ± 0.31 | 2.15 × 1011 ± 0.95 | 3.47 × 1011 ± 0.51 |
+3% RGE | 4.67 × 109 ± 0.55 | 8.73 × 109 ± 0.54 | 1.33 × 1011 ± 0.49 * | 1.93 × 1011 ± 0.9 * | |
L. paracasei HY7017 | MRS | 5.03 × 109 ± 0.35 | 1.50 × 1010 ± 0.18 | 9.73 × 1010 ± 0.64 | 1.80 × 1011 ± 0.47 |
+3% RGE | 5.03 × 109 ± 0.35 | 1.74 × 1010 ± 0.13 | 2.11 × 1011 ± 0.11 * | 3.57 × 1011 ± 0.4 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mo, S.-J.; Nam, B.; Bae, C.-H.; Park, S.-D.; Shim, J.-J.; Lee, J.-L. Characterization of Novel Lactobacillus paracasei HY7017 Capable of Improving Physiological Properties and Immune Enhancing Effects Using Red Ginseng Extract. Fermentation 2021, 7, 238. https://doi.org/10.3390/fermentation7040238
Mo S-J, Nam B, Bae C-H, Park S-D, Shim J-J, Lee J-L. Characterization of Novel Lactobacillus paracasei HY7017 Capable of Improving Physiological Properties and Immune Enhancing Effects Using Red Ginseng Extract. Fermentation. 2021; 7(4):238. https://doi.org/10.3390/fermentation7040238
Chicago/Turabian StyleMo, Sung-Joon, Bora Nam, Chu-Hyun Bae, Soo-Dong Park, Jae-Jung Shim, and Jung-Lyoul Lee. 2021. "Characterization of Novel Lactobacillus paracasei HY7017 Capable of Improving Physiological Properties and Immune Enhancing Effects Using Red Ginseng Extract" Fermentation 7, no. 4: 238. https://doi.org/10.3390/fermentation7040238
APA StyleMo, S. -J., Nam, B., Bae, C. -H., Park, S. -D., Shim, J. -J., & Lee, J. -L. (2021). Characterization of Novel Lactobacillus paracasei HY7017 Capable of Improving Physiological Properties and Immune Enhancing Effects Using Red Ginseng Extract. Fermentation, 7(4), 238. https://doi.org/10.3390/fermentation7040238