Effect of Storage Period on the Fermentation Profile and Bacterial Community of Silage Prepared with Alfalfa, Whole-Plant Corn and Their Mixture
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ensiling
2.2. Analyses
2.3. Statistical Analysis
3. Results
3.1. Fermentation Profile of Silage during Storage
3.2. Bacterial Community of Silage during Storage
4. Discussion
4.1. Fermentation Profile of Silage during Storage
4.2. Bacterial Community of Silage during Storage
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- McDonald, P.; Henderson, N.; Heron, S. The Biochemistry of Silage; Chalcombe Publications: Shedfield, UK, 1991. [Google Scholar]
- Woolford, M.K. The Silage Fermentation; Marcel Dekker Incorporation: New City, NY, USA, 1984. [Google Scholar]
- Ashbell, G.; Weinberg, Z.G. Silage Production and Utilization; Food and Agriculture Organization, FAO Electronic Library: Rome, Italy, 2006. [Google Scholar]
- Savoie, P.; Jofriet, J.C. Silage storage. In Silage Science and Technology; Buxton, D.R., Muck, R.E., Harrison, J.H., Eds.; Agronomy Monograph 42; American Society of Agronomy: Madison, WI, USA, 2003; pp. 405–467. [Google Scholar]
- Wang, M.; Gao, R.; Franco, M.; Hannaway, D.B.; Ke, W.; Ding, Z.; Yu, Z.; Guo, X. Effect of mixing alfalfa with whole-plant corn in different proportions on fermentation characteristics and bacterial community of silage. Agriculture 2021, 11, 174. [Google Scholar] [CrossRef]
- Guo, X.; Ke, W.; Ding, W.; Ding, L.; Xu, D.; Wang, W.; Zhang, P.; Yang, F. Profiling of metabolome and bacterial community dynamics in ensiled Medicago sativa inoculated without or with Lactobacillus plantarum or Lactobacillus buchneri. Sci. Rep. 2018, 8, 357. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.; Yao, D.; Lin, Y.; Bureenok, S.; Ni, K.; Yang, F. Effects of lactic acid bacteria isolated from rumen fluid and feces of dairy cows on fermentation quality, microbial community, and in vitro digestibility of alfalfa silage. Front. Microbiol. 2020, 10, 2998. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Jiang, D.; Zheng, M.; Tian, P.; Zheng, M.; Xu, C. Microbial community dynamics during alfalfa silage with or without clostridial fermentation. Sci. Rep. 2020, 10, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Bai, J.; Huang, W.; Li, F.; Ke, W.; Zhang, Y.; Xie, D.; Zhang, B.; Guo, X. Characterization of a novel beta-cypermethrin-degrading strain of Lactobacillus pentosus 3-27 and its effects on bioremediation and the bacterial community of contaminated alfalfa silage. J. Hazard. Mater. 2022, 423, 127101. [Google Scholar] [CrossRef]
- Drouin, P.; Tremblay, J.; Chaucheyras-Durand, F. Dynamic succession of microbiota during ensiling of whole plant corn following inoculation with Lactobacillus buchneri and Lactobacillus hilgardii alone or in combination. Microorganisms 2019, 7, 595. [Google Scholar] [CrossRef]
- Ferrero, F.; Piano, S.; Tabacco, E.; Borreani, G. Effects of conservation period and Lactobacillus hilgardii inoculum on the fermentation profile and aerobic stability of whole corn and sorghum silages. J. Sci. Food Agric. 2019, 99, 2530–2540. [Google Scholar] [CrossRef]
- Nazar, M.; Wang, S.; Zhao, J.; Dong, Z.; Li, J.; Kaka, N.A.; Shao, T. The feasibility and effects of exogenous epiphytic microbiota on the fermentation quality and microbial community dynamics of whole crop corn. Bioresour. Technol. 2020, 306, 123106. [Google Scholar] [CrossRef]
- Saylor, B.A.; McCary, C.L.; Diepersloot, E.C.; Heinzen, C.; Pupo, M.R.; Gusmão, J.O.; Ghizzi, L.G.; Sultana, H.; Ferraretto, L.F. Effect of forage processor roll gap width and storage length on fermentation profile, nutrient composition, kernel processing score, and starch disappearance of whole-plant maize silage harvested at three different maturities. Agriculture 2021, 11, 574. [Google Scholar] [CrossRef]
- Xu, D.; Wang, N.; Rinne, M.; Ke, W.; Weinberg, Z.G.; Da, M.; Bai, J.; Zhang, Y.; Li, F.; Guo, X. The bacterial community and metabolome dynamics and their interactions modulate fermentation process of whole crop corn silage prepared with or without inoculants. Microb. Biotechnol. 2021, 14, 561–576. [Google Scholar] [CrossRef]
- Silva, N.C.; Nascimento, C.F.; Campos, V.M.A.; Alves, M.A.P.; Resende, F.D.; Daniel, J.L.P.; Siqueira, G.R. Influence of storage length and inoculation with Lactobacillus buchneri on the fermentation, aerobic stability, and ruminal degradability of high-moisture corn and rehydrated corn grain silage. Anim. Feed Sci. Technol. 2019, 251, 124–133. [Google Scholar] [CrossRef]
- Weinberg, Z.G.; Chen, Y. Effects of storage period on the composition of whole crop wheat and corn silages. Anim. Feed Sci. Technol. 2013, 185, 196–200. [Google Scholar] [CrossRef]
- Fernandes, T.; Paula, E.M.; Sultana, H.; Ferraretto, L.F. Influence of sorghum cultivar, ensiling storage length, and microbial inoculation on fermentation profile, N fractions, ruminal in situ starch disappearance and aerobic stability of whole-plant sorghum silage. Anim. Feed Sci. Technol. 2020, 266, 114535. [Google Scholar] [CrossRef]
- Li, X.; Chen, F.; Wang, X.; Sun, L.; Guo, L.; Xiong, Y.; Wang, Y.; Zhou, H.; Jia, S.; Yang, F.; et al. Impacts of low temperature and ensiling period on the bacterial community of oat silage by SMRT. Microorganisms 2021, 9, 274. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Wang, S.; Dong, Z.; Li, J.; Jia, Y.; Shao, T. Effect of storage time and the level of formic acid on fermentation characteristics, epiphytic microflora, carbohydrate components and in vitro digestibility of rice straw silage. Anim. Biosci. 2021, 34, 1038–1048. [Google Scholar] [CrossRef]
- Muraro, G.B.; Carvalho-Estrada, P.A.; Pasetti, M.H.O.; Santos, M.C.; Nussio, L.G. Bacterial dynamics of sugarcane silage in the tropics. Environ. Microbiol. 2021, 23, 5979–5991. [Google Scholar] [CrossRef]
- Ren, F.; He, R.; Zhou, X.; Gu, Q.; Xia, Z.; Liang, M.; Zhou, J.; Zou, C. Dynamic changes in fermentation profiles and bacterial community composition during sugarcane top silage fermentation: A preliminary study. Bioresour. Technol. 2019, 285, 121315. [Google Scholar] [CrossRef]
- Wang, C.; Nishino, N. Effects of storage temperature and ensiling period on fermentation products, aerobic stability and microbial communities of total mixed ration silage. J. Appl. Microbiol. 2013, 114, 1687–1695. [Google Scholar] [CrossRef]
- Chen, L.; Qu, H.; Bai, S.; Yan, L.; You, M.; Gou, W.; Li, P.; Gao, F. Effect of wet sea buckthorn pomace utilized as an additive on silage fermentation profile and bacterial community composition of alfalfa. Bioresour. Technol. 2020, 314, 123773. [Google Scholar] [CrossRef]
- Mu, L.; Wang, Q.; Cao, X.; Zhang, Z. Effects of fatty acid salts on fermentation characteristics, bacterial diversity and aerobic stability of mixed silage prepared with alfalfa, rice straw and wheat bran. J. Sci. Food Agric. 2022, 102, 1475–1487. [Google Scholar] [CrossRef]
- Wang, M.; Franco, M.; Cai, Y.; Yu, Z. Dynamics of fermentation profile and bacterial community of silage prepared with alfalfa, whole-plant corn and their mixture. Anim. Feed Sci. Technol. 2020, 270, 114702. [Google Scholar] [CrossRef]
- Broderick, G.A.; Kang, J.H. Automated simultaneous determination of ammonia and total amino acids in ruminal fluid and in vitro media. J. Dairy Sci. 1980, 63, 64–75. [Google Scholar] [CrossRef]
- Murphy, R.P. A method for the extraction of plant samples and the determination of total soluble carbohydrates. J. Sci. Food Agric. 1958, 9, 714–717. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis; Association of Official Analytical Chemists: Gaithersburg, MD, USA, 2001. [Google Scholar]
- Wang, M.; Wang, L.; Yu, Z. Fermentation dynamics and bacterial diversity of mixed lucerne and sweet corn stalk silage ensiled at six ratios. Grass Forage Sci. 2019, 74, 264–273. [Google Scholar] [CrossRef]
- Dunière, L.; Sindou, J.; Chaucheyras-Durand, F.; Chevallier, I.; Thévenot-Sergentet, D. Silage processing and strategies to prevent persistence of undesirable microorganisms. Anim. Feed Sci. Technol. 2013, 182, 1–15. [Google Scholar] [CrossRef]
- Kung, L.; Robinson, J.R.; Ranjit, N.K.; Chen, J.H.; Golt, C.M.; Pesek, J.D. Microbial populations, fermentation end-products, and aerobic stability of corn silage treated with ammonia or a propionic acid-based preservative. J. Dairy Sci. 2000, 83, 1479–1486. [Google Scholar] [CrossRef]
- Zheng, M.; Niu, D.; Jiang, D.; Zuo, S.; Xu, C. Dynamics of microbial community during ensiling direct-cut alfalfa with and without LAB inoculant and sugar. J. Appl. Microbiol. 2017, 122, 1456–1470. [Google Scholar] [CrossRef]
- Pahlow, G.; Muck, R.E.; Driehuis, F.; Oude Elferink, S.J.W.H.; Spoelstr, S.F. Microbiology of ensiling. In Silage Science and Technology; Buxton, D.R., Muck, R.E., Harrison, J.H., Eds.; American Society of Agronomy: Madison, WI, USA, 2003; pp. 31–94. [Google Scholar]
- Beck, T. The quantitative and qualitative composition of the lactic acid bacteria flora of silage. Landwirt Forsch Sonderheft 1972, 27, 55–63. [Google Scholar]
- Entani, E.; Masai, H.; Suzuki, K.I. Lactobacillus acetotolerans, a new species from fermented vinegar broth. Int. J. Syst. Evol. Microbiol. 1986, 36, 544–549. [Google Scholar] [CrossRef]
- Haruta, S.; Ueno, S.; Egawa, I.; Hashiguchi, K.; Fujii, A.; Nagano, M. Succession of bacterial and fungal communities during a traditional pot fermentation of rice vinegar assessed by PCR-mediated denaturing gradient gel electrophoresis. Int. J. Food Microbiol. 2006, 109, 79–87. [Google Scholar] [CrossRef]
Storage Period (d) 3 | p Value 5 | |||||||
---|---|---|---|---|---|---|---|---|
Item 1 | Treatment 2 | 30 | 60 | 90 | SEM 4 | T | S | T × S |
pH | Alfalfa | 4.61 aC | 4.76 aB | 4.83 aA | 0.07 | <0.001 | <0.001 | <0.001 |
M1 | 4.06 bB | 4.13 bAB | 4.19 bA | |||||
M2 | 3.90 cA | 3.87 cB | 3.86 cB | |||||
Corn | 3.61 dB | 3.62 dAB | 3.65 dA | |||||
LA (g/kg DM) | Alfalfa | 68.78 bA | 53.28 cB | 47.04 cB | 4.05 | <0.001 | 0.002 | <0.001 |
M1 | 111.03 aA | 97.44 bAB | 83.89 aB | |||||
M2 | 120.26 aA | 115.34 aA | 83.32 aB | |||||
Corn | 78.48 bA | 74.72 bAB | 63.12 bB | |||||
AA (g/kg DM) | Alfalfa | 29.33 aB | 52.65 aA | 56.49 aA | 2.34 | <0.001 | <0.001 | 0.101 |
M1 | 17.29 bC | 29.37 bB | 37.22 bA | |||||
M2 | 19.59 bB | 30.81 bA | 37.95 bA | |||||
Corn | 13.28 bB | 17.56 cB | 23.58 cA | |||||
PA (g/kg DM) | Alfalfa | 23.98 aB | 44.43 aA | 44.71 aA | 2.51 | <0.001 | <0.001 | 0.006 |
M1 | 15.83 bC | 33.48 bB | 41.88 aA | |||||
M2 | 12.42 bC | 29.77 bB | 41.93 aA | |||||
Corn | 3.50 cC | 8.79 cB | 14.01 bA | |||||
BA (g/kg DM) | Alfalfa | 9.77 aB | 12.73 aA | 13.49 aA | 0.89 | <0.001 | 0.001 | <0.001 |
M1 | 0.00 b | 0.00 b | 0.00 b | |||||
M2 | 0.00 b | 0.00 b | 0.00 b | |||||
Corn | 0.00 b | 0.00 b | 0.00 b | |||||
NH3-N (g/kg TN) | Alfalfa | 99.01 aB | 110.42 aA | 120.16 aA | 4.44 | <0.001 | <0.001 | 0.239 |
M1 | 73.64 bB | 76.19 bB | 87.16 bA | |||||
M2 | 50.74 cB | 54.33 cAB | 61.43 cA | |||||
Corn | 38.68 dB | 42.60 dAB | 48.90 dA |
Storage Period (d) 3 | p Value 5 | |||||||
---|---|---|---|---|---|---|---|---|
Item 1 | Treatment 2 | 30 | 60 | 90 | SEM 4 | T | S | T × S |
DM (g/kg FW) | Alfalfa | 207.04 dA | 201.22 dB | 200.44 dB | 5.07 | <0.001 | 0.024 | 0.796 |
M1 | 228.33 c | 226.59 c | 224.61 c | |||||
M2 | 241.16 b | 238.14 b | 240.10 b | |||||
Corn | 286.89 a | 284.69 a | 282.46 a | |||||
DM loss (g/kg FW) | Alfalfa | 19.37 aC | 40.67 aB | 61.94 aA | 2.86 | <0.001 | <0.001 | 0.177 |
M1 | 17.50 bC | 38.58 abB | 58.72 abA | |||||
M2 | 17.33 bC | 36.39 bcB | 57.32 bA | |||||
Corn | 16.15 cC | 35.53 cB | 56.71 bA | |||||
WSC (g/kg DM) | Alfalfa | 14.62 dA | 12.20 dB | 9.49 dC | 3.31 | <0.001 | <0.001 | 0.449 |
M1 | 32.16 cA | 24.83 cB | 24.41 cB | |||||
M2 | 42.76 b | 41.13 b | 39.52 b | |||||
Corn | 68.80 aA | 64.40 aAB | 59.46 aB | |||||
CP (g/kg DM) | Alfalfa | 190.47 aB | 200.08 aA | 202.81 aA | 7.91 | <0.001 | <0.001 | 0.002 |
M1 | 164.59 bB | 171.53 bA | 171.12 bA | |||||
M2 | 139.29 c | 138.14 c | 140.77 c | |||||
Corn | 70.83 d | 72.83 d | 72.64 d |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mao, K.; Yu, Z.; Huang, S.; Wang, M.; Hannaway, D.B. Effect of Storage Period on the Fermentation Profile and Bacterial Community of Silage Prepared with Alfalfa, Whole-Plant Corn and Their Mixture. Fermentation 2022, 8, 486. https://doi.org/10.3390/fermentation8100486
Mao K, Yu Z, Huang S, Wang M, Hannaway DB. Effect of Storage Period on the Fermentation Profile and Bacterial Community of Silage Prepared with Alfalfa, Whole-Plant Corn and Their Mixture. Fermentation. 2022; 8(10):486. https://doi.org/10.3390/fermentation8100486
Chicago/Turabian StyleMao, Kai, Zhu Yu, Shuai Huang, Musen Wang, and David B. Hannaway. 2022. "Effect of Storage Period on the Fermentation Profile and Bacterial Community of Silage Prepared with Alfalfa, Whole-Plant Corn and Their Mixture" Fermentation 8, no. 10: 486. https://doi.org/10.3390/fermentation8100486
APA StyleMao, K., Yu, Z., Huang, S., Wang, M., & Hannaway, D. B. (2022). Effect of Storage Period on the Fermentation Profile and Bacterial Community of Silage Prepared with Alfalfa, Whole-Plant Corn and Their Mixture. Fermentation, 8(10), 486. https://doi.org/10.3390/fermentation8100486