Effects of Maize Varieties on Biomass Yield and Silage Quality of Maize–Soybean Intercropping in the Qinghai–Tibet Plateau
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Field Experiment and Silage Preparation
2.3. Chemical Composition
2.4. pH and NH3-N
2.5. Statistical Analysis
3. Results
3.1. Effects of Maize Varieties on the Yield and Plant Height in Maize–Soybean Intercropping
3.2. Effects of Maize Varieties on the Chemical Composition of Maize and Soybeans in Maize–Soybean Intercropping
3.3. Effects of Maize Varieties on the Silage Quality of Maize–Soybean Intercropping
3.4. Comprehensive Evaluation
4. Discussion
4.1. Effects of Maize Varieties on Yield, Plant Height, and Chemical Composition in Maize–Soybean Intercropping
4.2. Effects of Maize Varieties on the Silage Quality of Maize–Soybean Intercropping
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, K.; Mehmood, K.; Zhang, H.; Jiang, X.; Shahzad, M.; Dong, X.; Li, J. Characterization of fungus microbial diversity in healthy and diarrheal yaks in Gannan region of Tibet Autonomous Prefecture. Acta Trop. 2018, 182, 14–26. [Google Scholar] [CrossRef] [PubMed]
- Shi, Q.; Guo, Y.; Engelhardt, S.; Weladji, R.; Zhou, Y.; Long, M.; Meng, X. Endangered wild yak (Bos grunniens) in the Tibetan plateau and adjacent regions: Population size, distribution, conservation perspectives and its relation to the domestic subspecies. J. Nat. Conserv. 2016, 32, 35–43. [Google Scholar] [CrossRef]
- Joshi, S.; Shrestha, L.; Bisht, N.; Wu, N.; Ismail, M.; Dorji, T.; Dangol, G.; Long, R. Ethnic and cultural diversity amongst yak herding communities in the Asian highlands. Sustainability 2020, 12, 957. [Google Scholar] [CrossRef]
- Li, P.; Li, S.; Shen, Y.; Bai, S. Research process in forage silage in Alpine Pasture of Northwest Sichuan Province. J. Grassl. Forage Sci. 2017, 236, 4–11. (In Chinese) [Google Scholar]
- Zeng, T.; Wu, Y.; Xin, Y.; Chen, C.; Du, Z.; Li, X.; Zhong, J.; Tahir, M.; Kang, B.; Jiang, D.; et al. Silage quality and output of different maize-soybean strip intercropping patterns. Fermentation 2022, 8, 174. [Google Scholar] [CrossRef]
- Pang, H.; Tan, Z.; Qin, G.; Wang, Y.; Li, Z.; Jin, Q.; Cai, Y. Phenotypic and phylogenetic analysis of lactic acid bacteria isolated from forage crops and grasses in the Tibetan Plateau. J. Microbiol. 2012, 50, 63–71. [Google Scholar] [CrossRef]
- Uher, D.; Svečnjak, Z.; Dujmović-Purgar, D.; Jareš, D.; Horvatić, I. Influence of intercropping maize with climbing bean on forage yield and quality. Agrofor Int. J. 2019, 4, 60–67. [Google Scholar] [CrossRef]
- Sahoo, A. Silage for climate resilient small ruminant production. Rumin. Husb. Econ. Health Asp. 2018, 11, 11–39. [Google Scholar] [CrossRef] [Green Version]
- Zeng, T.; Li, X.; Guan, H.; Yang, W.; Liu, W.; Liu, J.; Du, Z.; Li, X.; Xiao, Q.; Wang, X. Dynamic microbial diversity and fermentation quality of the mixed silage of corn and soybean grown in strip intercropping system. Bioresour. Technol. 2020, 313, 123655. [Google Scholar] [CrossRef]
- Du, J.; Han, T.; Gai, J.; Yong, T.; Sun, X.; Wang, X.; Yang, F.; Liu, J.; Shu, K.; Liu, W.; et al. Maize-soybean strip intercropping: Achieved a balance between high productivity and sustainability. J. Integr. Agric. 2018, 17, 747–754. [Google Scholar] [CrossRef] [Green Version]
- Iqbal, N.; Hussain, S.; Ahmed, Z.; Yang, F.; Wang, X.; Liu, W.; Yong, T.; Du, J.; Shu, K.; Yang, W.; et al. Comparative analysis of maize-soybean strip intercropping systems: A review. Plant Prod. Sci. 2019, 22, 131–142. [Google Scholar] [CrossRef]
- Li, L.; Zhang, F.; Li, X.; Christie, P.; Sun, J.; Yang, S.; Tang, C. Inter specific facilitation of nutrient uptake by intercropped maize and faba bean. Nutr. Cycl. Agroecosyst. 2003, 68, 67–71. [Google Scholar] [CrossRef]
- Yang, W.; Miao, J.; Wang, X.; Xu, J.; Lu, M.; Li, Z. Corn-soybean intercropping and nitrogen rates affected crop nitrogen and carbon uptake and C:N ratio in upland red soil. J. Plant Nutr. 2018, 41, 1890–1902. [Google Scholar] [CrossRef]
- Gao, Y.; Duan, A.; Qiu, X.; Sun, J.; Zhang, J.; Liu, H.; Wang, H. Distribution and use efficiency of photosynthetically active radiation in strip intercropping of maize and soybean. Agron. J. 2010, 102, 1149–1157. [Google Scholar] [CrossRef]
- Aydemir, S. Maize and soybean intercropping under different seed rates of soybean under ecological condition of Bilecik, Turkey. Int. J. Environ. Sci. Technol. 2019, 16, 5163–5170. [Google Scholar] [CrossRef]
- Baghdadi, A.; Halim, M.; Ghasemzadeh, A.; Ebrahimi, M.; Othman, R.; Yusoff, M. Effect of intercropping of corn and soybean on dry matter yield and nutritive value of forage corn. Legume Res.-Int. J. 2016, 39, 976–981. [Google Scholar] [CrossRef]
- Bolson, D.; Jacovaci, F.; Gritti, V.; Bueno, A.; Daniel, J.; Nussio, L.; Jobim, C. Intercropped maize-soybean silage: Effects on forage yield, fermentation pattern and nutritional composition. Grassl. Sci. 2022, 68, 3–12. [Google Scholar] [CrossRef]
- Yang, S.; Chen, W.; Chen, F.; Tian, C.; Sui, X.; Chen, W. Influence of rhizobial inoculation and crop variety on dry matter accumulation of crops in maize-soybean intercropping system. Int. J. Adv. Agric. Res. 2018, 6, 101–105. [Google Scholar] [CrossRef]
- Simion, T.; Markos, S.; Samuel, T. Evaluation of midland maize (Zea mays L.) varieties in selected districts of southern Ethiopia. Cogent Food Agric. 2019, 5, 1704136. [Google Scholar] [CrossRef]
- Gupta, M.; Bhagat, S.; Kumar, S.; Kour, S.; Gupta, V. Production potential and quality of fodder maize (Zea mays) varieties under varying intercropping systems with cowpea (Vigna unguiculata). Range Manag. Agrofor. 2019, 40, 243–249. [Google Scholar]
- AOAC. AOAC Official Methods of Analysis; Association of Official Analytical Chemists: Arlington, VA, USA, 1990. [Google Scholar]
- Van Soest, P.; Robertson, J.; Lewis, B. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Rohweder, D.; Barnes, R.; Jorgensen, N. Proposed hay grading standards based on laboratory analyses for evaluating quality. J. Anim. Sci. 1978, 47, 747–759. [Google Scholar] [CrossRef]
- Broderick, G.; Kang, J. Automated simultaneous determination of ammonia and total amino acids in ruminal fluid and in vitro media. J. Dairy Sci. 1980, 63, 64–75. [Google Scholar] [CrossRef]
- Petr, J.; Černý, V.; Hruška, L. Yield Formation in the Main Field Crops; Elsevier Science Publishers BV: Amsterdam, The Netherlands, 1988. [Google Scholar]
- Raza, M.; Cui, L.; Khan, I.; Din, A.; Chen, G.; Ansar, M.; Ahmed, M.; Ahmed, S.; Manaf, A.; Titriku, J.; et al. Compact maize canopy improves radiation use efficiency and grain yield of maize/soybean relay intercropping system. Environ. Sci. Pollut. Res. 2021, 28, 41135–41148. [Google Scholar] [CrossRef]
- Gąsiorowska, B.; Płaza, A.; Rzążewska, E.; Waranica, M. Yield and feed value of maize (Zea mays L.) green forage obtained from European cultivars grown in Poland. Appl. Ecol. Environ. Res. 2019, 17, 9881–9887. [Google Scholar] [CrossRef]
- Titterton, M.; Maasdorp, B. Nutritional improvement of maize silage for dairying: Mixed-crop silages from sole and intercropped legumes and a long-season variety of maize. Anim. Feed Sci. Technol. 1997, 69, 263–270. [Google Scholar] [CrossRef]
- Liu, X.; Rahman, T.; Song, C.; Su, B.; Yang, F.; Yong, T.; Wu, Y.; Zhang, C.; Yang, W. Changes in light environment, morphology, growth and yield of soybean in maize-soybean intercropping systems. Field Crop. Res. 2017, 200, 38–46. [Google Scholar] [CrossRef]
- Javanmard, A.; Nasab, A.; Javanshir, A.; Moghaddam, M.; Janmohammadi, H. Forage yield and quality in intercropping of maize with different legumes as double-cropped. J. Food Agric. Environ. 2009, 7, 163–166. [Google Scholar]
- Huber, J.; Graf, G.; Engel, R. Effect of maturity on nutritive value of corn silage for lactating cows. J. Dairy Sci. 1965, 48, 1121–1123. [Google Scholar] [CrossRef]
- Filya, I. Nutritive value and aerobic stability of whole crop maize silage harvested at four stages of maturity. Anim. Feed Sci. Technol. 2004, 116, 141–150. [Google Scholar] [CrossRef]
- Johnson, L.; Harrison, J.; Hunt, C.; Shinners, K.; Doggett, C.; Sapienza, D. Nutritive value of corn silage as affected by maturity and mechanical processing: A contemporary review. J. Dairy Sci. 1999, 82, 2813–2825. [Google Scholar] [CrossRef]
- Hao, Y.; Pan, J.; Zhang, Q.; Zhang, L. Study on variation of some characters of maize leaves located near the ear in different periods. J. Maize Sci. 2002, 10, 32–34. (In Chinese) [Google Scholar]
- Soe Htet, M.; Hai, J.; Bo, P.; Gong, X.; Liu, C.; Ke, D.; Tian, L.; Soomro, R.; Aung, K.; Feng, B. Evaluation of nutritive values through comparison of forage yield and silage quality of mono-cropped and intercropped maize-soybean harvested at two maturity stages. Agriculture 2021, 11, 452. [Google Scholar] [CrossRef]
- Liu, W.; Deng, Y.; Hussain, S.; Zou, J.; Yuan, J.; Luo, L.; Yang, C.; Yuan, X.; Yang, Y. Relationship between cellulose accumulation and lodging resistance in the stem of relay intercropped soybean [Glycine max (L.) Merr.]. Field Crop. Res. 2016, 196, 261–267. [Google Scholar] [CrossRef]
- Schmitt, J.; Stinchcombe, J.; Heschel, M.; Huber, H. The adaptive evolution of plasticity: Phytochrome-mediated shade avoidance responses. Integr. Comp. Biol. 2003, 43, 459–469. [Google Scholar] [CrossRef] [PubMed]
- Costa, P.; Villela, S.; Leonel, F.; Araújo, S.; Araújo, K.; Ruas, J.; Coelho, F.; Andrade, V. Intercropping of corn, brachiaria grass and leguminous plants: Productivity, quality and composition of silages. Rev. Bras. Zootec. 2012, 41, 2144–2149. [Google Scholar] [CrossRef] [Green Version]
- Hartwig, E.; Kuo, T.; Kenty, M. Seed protein and its relationship to soluble sugars in soybean. Crop Sci. 1997, 37, 770–773. [Google Scholar] [CrossRef]
- Terler, G.; Resch, R.; Gappmaier, S.; Gruber, L. Nutritive value for ruminants of different fresh and ensiled sorghum (Sorghum bicolor (L.) Moench) varieties harvested at varying maturity stages. Arch. Anim. Nutr. 2021, 75, 167–182. [Google Scholar] [CrossRef] [PubMed]
- Batista, V.; Adami, P.; Moraes, P.; Oligini, K.; Giacomel, C.; Link, L. Row arrangements of maize and soybean intercrop on silage quality and grain yield. J. Agric. Sci. 2019, 11, 286–300. [Google Scholar] [CrossRef]
- Pahlow, G.; Muck, R.; Driehuis, F.; Elferink, S.; Spoelstra, S. Microbiology of Ensiling. Silage Sci. Technol. 2003, 42, 31–93. [Google Scholar] [CrossRef]
- Lynch, J.; Kiely, P.; Doyle, E. Yield, quality and ensilage characteristics of whole-crop maize and of the cob and stover components: Harvest date and hybrid effects. Grass Forage Sci. 2012, 67, 472–487. [Google Scholar] [CrossRef]
- Morrison, I. Changes in the cell wall components of laboratory silages and the effect of various additives on these changes. J. Agric. Sci. 1979, 93, 581–586. [Google Scholar] [CrossRef]
- Serbester, U.; Akkaya, M.; Yucel, C.; Gorgulu, M. Comparison of yield, nutritive value, and in vitro digestibility of monocrop and intercropped corn-soybean silages cut at two maturity stages. Ital. J. Anim. Sci. 2015, 14, 3636. [Google Scholar] [CrossRef]
- Htet, M.; Rab, N.; Hai, J. Effect of different planting structure of maize and soybean intercropping on fodder production and silage quality. Curr. Agric. Res. J. 2016, 4, 125–130. [Google Scholar] [CrossRef]
- Baghdadi, A.; Halim, R.; Radziah, O.; Martini, M.; Ebrahimi, M. Fermentation characteristics and nutritive value of corn silage intercropped with soybean under different crop combination ratios. J. Anim. Plant Sci. 2016, 26, 1710–1717. [Google Scholar]
Month | Minimum T (°C) | Maximum T (°C) | Mean T (°C) | Rainfall (mm) |
---|---|---|---|---|
April | 1.2 | 14.6 | 7.9 | 24 |
May | 5.6 | 18.5 | 12.0 | 53 |
June | 9.6 | 20.2 | 14.9 | 104 |
July | 11.2 | 20.6 | 15.9 | 174 |
August | 10.4 | 20.1 | 15.3 | 106 |
September | 9.1 | 18.0 | 13.5 | 132 |
Treatments | Fresh Matter Yield (t ha−1) | Dry Matter Yield (t ha−1) | ||||
---|---|---|---|---|---|---|
M | S | MS | M | S | MS | |
M1S | 41.67 a | 9.86 a | 51.53 a | 15.36 a | 2.67 a | 18.03 a |
M2S | 46.83 a | 3.65 d | 50.48 a | 10.71 b | 0.68 c | 11.39 b |
M3S | 48.70 a | 3.89 c | 52.59 a | 11.04 b | 1.25 b | 12.29 b |
M4S | 42.98 a | 8.98 b | 51.96 a | 14.23 a | 2.69 a | 16.91 a |
SEM | 1.42 | 1.42 | 0.38 | 1.00 | 0.44 | 1.43 |
Treatments | DM% | CP/%DM | WSC/%DM | NDF/%DM | ADF/%DM | RFV |
---|---|---|---|---|---|---|
M1S | 36.86 a | 6.52 c | 10.40 c | 50.42 c | 30.60 b | 120.04 a |
M2S | 22.88 c | 7.54 b | 13.19 b | 55.55 a | 35.00 a | 103.26 b |
M3S | 22.68 d | 8.46 a | 14.59 a | 52.21 b | 27.45 c | 120.32 a |
M4S | 33.10 b | 6.81 c | 10.77 c | 49.60 c | 29.25 bc | 124.00 a |
SEM | 3.12 | 0.37 | 0.86 | 1.14 | 1.39 | 4.02 |
Treatments | DM% | CP/%DM | WSC/%DM | NDF/%DM | ADF/%DM | RFV |
---|---|---|---|---|---|---|
M1S | 27.04 c | 21.04 b | 6.90 b | 44.00 c | 29.10 b | 140.15 b |
M2S | 18.63 d | 23.79 a | 3.81 d | 49.10 a | 32.14 a | 121.10 c |
M3S | 32.01 a | 18.27 d | 8.55 a | 30.49 d | 21.50 c | 220.29 a |
M4S | 30.42 b | 19.35 c | 5.73 c | 46.75 b | 32.58 a | 126.43 c |
SEM | 2.58 | 1.04 | 0.86 | 3.61 | 2.22 | 20.02 |
Treatments | DM% | CP /%DM | WSC /%DM | NDF /%DM | ADF /%DM | RFV | pH | NH3-N/TN /% | |
---|---|---|---|---|---|---|---|---|---|
M | M1 | 33.71 a | 7.08 d | 7.16 b | 43.00 d | 26.04 d | 148.44 a | 4.22 a | 3.15 a |
M2 | 22.19 c | 7.83 b | 2.79 d | 52.13 a | 33.01 a | 112.76 d | 3.96 c | 4.29 a | |
M3 | 20.92 d | 9.12 a | 8.08 a | 48.81 b | 29.10 b | 126.28 c | 4.18 ab | 4.14 a | |
M4 | 32.54 b | 7.50 c | 4.15 c | 46.29 c | 27.09 c | 136.24 b | 4.11 b | 3.65 a | |
S | S1 | 27.12 c | 20.81 a | 1.30 b | 42.31 c | 31.55 b | 141.47 b | 5.45 b | 13.98 b |
S2 | 15.85 d | 17.44 b | 0.75 c | 47.83 a | 36.06 a | 118.36 c | 6.62 a | 37.56 a | |
S3 | 30.79 a | 20.63 a | 3.59 a | 26.62 d | 18.95 c | 259.41 a | 5.15 c | 5.46 c | |
S4 | 28.30 b | 19.02 b | 1.08 bc | 44.78 b | 34.60 a | 128.80 bc | 5.50 b | 14.78 b | |
MS | M1S1 | 24.53 b | 11.67 c | 4.00 b | 39.13 c | 25.15 c | 164.79 a | 4.22 bc | 6.69 a |
M2S2 | 20.29 d | 12.59 b | 1.63 d | 52.99 a | 34.80 a | 108.54 c | 4.11 c | 6.36 a | |
M3S3 | 23.10 c | 13.44 a | 4.45 a | 39.42 c | 25.42 c | 163.20 a | 4.46 a | 3.97 b | |
M4S4 | 31.55 a | 11.33 d | 2.68 c | 44.37 b | 27.89 b | 140.97 b | 4.29 b | 6.52 a | |
SEM | 1.56 | 1.41 | 0.64 | 1.94 | 1.39 | 11.06 | 0.23 | 2.68 |
Treatments | DMY | DM | WSC | CP | NDF | ADF | RFV | Average | Ranking | |
---|---|---|---|---|---|---|---|---|---|---|
M1S | M | 1.00 | 1.00 | 0.00 | 0.00 | 1.00 | 0.58 | 1.00 | 0.57 | 2 |
S | 0.99 | 0.63 | 0.48 | 0.50 | 0.27 | 0.31 | 0.19 | |||
M2S | M | 0.00 | 0.01 | 0.27 | 0.53 | 0.00 | 0.00 | 0.00 | 0.13 | 4 |
S | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.04 | 0.00 | |||
M3S | M | 0.07 | 0.00 | 1.00 | 1.00 | 0.36 | 1.00 | 0.48 | 0.66 | 1 |
S | 0.28 | 1.00 | 1.00 | 0.00 | 1.00 | 1.00 | 1.00 | |||
M4S | M | 0.76 | 0.74 | 0.04 | 0.15 | 0.65 | 0.76 | 0.58 | 0.44 | 3 |
S | 1.00 | 0.88 | 0.26 | 0.20 | 0.13 | 0.00 | 0.05 |
Treatments | DM | WSC | CP | NDF | ADF | RFV | PH | NH3-N/TN | Average | Ranking | |
---|---|---|---|---|---|---|---|---|---|---|---|
M1S | M | 1.00 | 0.83 | 0.00 | 0.26 | 0.26 | 1.00 | 0.00 | 1.00 | 0.63 | 2 |
S | 0.75 | 0.19 | 1.00 | 1.00 | 1.00 | 0.16 | 0.79 | 0.73 | |||
MS | 0.38 | 0.84 | 0.16 | 1.00 | 1.00 | 1.00 | 0.68 | 0.00 | |||
M2S | M | 0.10 | 0.00 | 0.37 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.15 | 4 |
S | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |||
MS | 0.00 | 0.00 | 0.59 | 0.00 | 0.00 | 0.00 | 1.00 | 0.12 | |||
M3S | M | 0.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.40 | 0.15 | 0.13 | 0.74 | 1 |
S | 1.00 | 1.00 | 0.94 | 0.36 | 0.56 | 1.00 | 1.00 | 1.00 | |||
MS | 0.25 | 1.00 | 1.00 | 0.98 | 0.97 | 0.97 | 0.00 | 1.00 | |||
M4S | M | 0.91 | 0.26 | 0.20 | 0.14 | 0.09 | 0.70 | 0.42 | 0.57 | 0.48 | 3 |
S | 0.83 | 0.12 | 0.47 | 0.64 | 0.85 | 0.66 | 0.07 | 0.71 | |||
MS | 1.00 | 0.37 | 0.00 | 0.62 | 0.72 | 0.58 | 0.49 | 0.06 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Wen, X.; Yang, J.; Yang, W.; Xin, Y.; Zhang, L.; Liu, H.; He, Y.; Yan, Y. Effects of Maize Varieties on Biomass Yield and Silage Quality of Maize–Soybean Intercropping in the Qinghai–Tibet Plateau. Fermentation 2022, 8, 542. https://doi.org/10.3390/fermentation8100542
Li J, Wen X, Yang J, Yang W, Xin Y, Zhang L, Liu H, He Y, Yan Y. Effects of Maize Varieties on Biomass Yield and Silage Quality of Maize–Soybean Intercropping in the Qinghai–Tibet Plateau. Fermentation. 2022; 8(10):542. https://doi.org/10.3390/fermentation8100542
Chicago/Turabian StyleLi, Jiayi, Xingjin Wen, Jizhi Yang, Wenyu Yang, Yafen Xin, Lei Zhang, Haiping Liu, Yaling He, and Yanhong Yan. 2022. "Effects of Maize Varieties on Biomass Yield and Silage Quality of Maize–Soybean Intercropping in the Qinghai–Tibet Plateau" Fermentation 8, no. 10: 542. https://doi.org/10.3390/fermentation8100542
APA StyleLi, J., Wen, X., Yang, J., Yang, W., Xin, Y., Zhang, L., Liu, H., He, Y., & Yan, Y. (2022). Effects of Maize Varieties on Biomass Yield and Silage Quality of Maize–Soybean Intercropping in the Qinghai–Tibet Plateau. Fermentation, 8(10), 542. https://doi.org/10.3390/fermentation8100542