An Approach for Incorporating Glycerol as a Co-Substrate into Unconcentrated Sugarcane Bagasse Hydrolysate for Improved Lipid Production in Rhodotorula glutinis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Oleaginous Yeast Strain and Its Propagation
2.2. Preparation of Sugarcane Bagasse Hydrolysate
2.3. Yeast Cultivation and Media Used for Lipid Production
2.3.1. Assessing Yeast’s Ability on Glycerol Use
2.3.2. Varying C/N Molar Ratio in the Hydrolysate-Based Media
2.3.3. Effect of Carbon Source Concentration on Growth and Lipid Production
2.3.4. Varying Types of Nitrogen Sources
2.4. Analytical Methods
3. Results and Discussion
3.1. Comparing Lipid Production by R. glutinis TISTR 5159 in Bagasse Hydrolysate and Glycerol
3.1.1. Growth, Substrate Consumption, and Lipid Production
3.1.2. Lipid Profiles from Different Carbon Sources
3.2. Effect of C/N Molar Ratio on Growth and Overall Lipid Production by R. glutinis TISTR 5159
3.2.1. Varying C/N Molar Ratio by Adding Nitrogen Sources or Glycerol (Accounting for Endogenous Nitrogen in the Hydrolysate)
3.2.2. Vary C/N Ratio of Hydrolysate Medium by Adding Yeast Extract
3.3. Effect of Increasing Carbon Source Concentration by Addition of Glycerol on Lipid Production
3.4. Growth and Lipid Production of R. glutinis TISTR 5159 in Different Nitrogen Sources
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xu, Y.; Wang, X.; Li, Z.; Cheng, S.; Jiang, J. Potential of food waste hydrolysate as an alternative carbon source for microbial oil synthesis. Bioresour. Technol. 2022, 344, 126312. [Google Scholar] [CrossRef] [PubMed]
- Ratledge, C. Microorganisms for lipids. Acta Biotechnol. 1991, 11, 429–438. [Google Scholar] [CrossRef]
- Vicente, G.; Bautista, L.F.; Rodríguez, R.; Gutiérrez, F.J.; Sádaba, I.; Ruiz-Vázquez, R.M.; Torres-Martínez, S.; Garre, V. Biodiesel production from biomass of an oleaginous fungus. Biochem. Eng. J. 2009, 48, 22–27. [Google Scholar] [CrossRef]
- Tomás-Pejó, E.; Morales-Palomo, S.; González-Fernández, C. Microbial lipids from organic wastes: Outlook and challenges. Bioresour. Technol. 2021, 323, 124612. [Google Scholar] [CrossRef] [PubMed]
- Kamineni, A.; Shaw, J. Engineering triacylglycerol production from sugars in oleaginous yeasts. Curr. Opin. Biotechnol. 2020, 62, 239–247. [Google Scholar] [CrossRef] [PubMed]
- Ali, S.S.; Al-Tohamy, R.; Mahmoud, Y.A.G.; Kornaros, M.; Sun, S.; Sun, J. Recent advances in the life cycle assessment of biodiesel production linked to azo dye degradation using yeast symbionts of termite guts: A critical review. Energy Rep. 2022, 8, 7557–7581. [Google Scholar] [CrossRef]
- Zhang, L.; Lee, J.T.E.; Ok, Y.S.; Dai, Y.; Tong, Y.W. Enhancing microbial lipids yield for biodiesel production by oleaginous yeast Lipomyces starkeyi fermentation: A review. Bioresour. Technol. 2022, 344, 126294. [Google Scholar] [CrossRef] [PubMed]
- Ryu, B.-G.; Kim, J.; Kim, K.; Choi, Y.-E.; Han, J.-I.; Yang, J.-W. High-cell-density cultivation of oleaginous yeast Cryptococcus curvatus for biodiesel production using organic waste from the brewery industry. Bioresour. Technol. 2013, 135, 357–364. [Google Scholar] [CrossRef]
- Sun, F.; Gu, Z.; Zhou, Q.; Sun, H.; Luo, J.; Liu, Z.; Guo, S.; Ren, H.; Zhang, Z.; Strong, P.J. Highly efficient microbial lipid synthesis from co-fermentation of enzymatic hydrolysate of sugarcane bagasse by a Trichosporon dermatis mutant. Ind. Crops Prod. 2021, 171, 113975. [Google Scholar] [CrossRef]
- Ivančić Šantek, M.; Grubišić, M.; Galić Perečinec, M.; Beluhan, S.; Šantek, B. Lipid production by Mortierella isabellina from pretreated corn cobs and effect of lignocellulose derived inhibitors on growth and lipid synthesis. Process Biochem. 2021, 109, 46–58. [Google Scholar] [CrossRef]
- Yu, Y.; Yu, J.; Wang, Z.; Yuan, X.; Chen, X.; Zhai, R.; Xu, Z.; Jin, M. Development of DLC and DLCA pretreatments with alkalis on rice straw for high titer microbial lipid production. Ind. Crops Prod. 2021, 72, 114086. [Google Scholar] [CrossRef]
- Vasaki, M.; Sithan, M.; Ravindran, G.; Paramasivan, B.; Ekambaram, G.; Karri, R.R. Biodiesel production from lignocellulosic biomass using Yarrowia lipolytica. Energy Convers. Manag. X 2022, 13, 100167. [Google Scholar] [CrossRef]
- Liu, Z.; Fels, M.; Dragone, G.; Mussatto, S.I. Effects of inhibitory compounds derived from lignocellulosic biomass on the growth of the wild-type and evolved oleaginous yeast Rhodosporidium toruloides. Ind. Crops Prod. 2021, 170, 113799. [Google Scholar] [CrossRef]
- Deeba, F.; Kiran Kumar, K.; Ali Wani, S.; Kumar Singh, A.; Sharma, J.; Gaur, N.A. Enhanced biodiesel and β-carotene production in Rhodotorula pacifica INDKK using sugarcane bagasse and molasses by an integrated biorefinery framework. Bioresour. Technol. 2022, 351, 127067. [Google Scholar] [CrossRef]
- Yook, S.D.; Kim, J.; Gong, G.; Ko, J.K.; Um, Y.; Han, S.O.; Lee, S. High-yield lipid production from lignocellulosic biomass using engineered xylose-utilizing Yarrowia lipolytica. GCB Bioenergy 2020, 12, 670–679. [Google Scholar] [CrossRef]
- Yu, Y.; Xu, Z.; Chen, S.; Jin, M. Microbial lipid production from dilute acid and dilute alkali pretreated corn stover via Trichosporon dermatis. Bioresour. Technol. 2020, 295, 122253. [Google Scholar] [CrossRef] [PubMed]
- Dai, L.; Jiang, W.; Zhou, X.; Xu, Y. Enhancement in xylonate production from hemicellulose pre-hydrolysate by powdered activated carbon treatment. Bioresour. Technol. 2020, 316, 123944. [Google Scholar] [CrossRef] [PubMed]
- Bansal, N.; Dasgupta, D.; Hazra, S.; Bhaskar, T.; Ray, A.; Ghosh, D. Effect of utilization of crude glycerol as substrate on fatty acid composition of an oleaginous yeast Rhodotorula mucilagenosa IIPL32: Assessment of nutritional indices. Bioresour. Technol. 2020, 309, 123330. [Google Scholar] [CrossRef]
- Polburee, P.; Limtong, S. Economical lipid production from crude glycerol using Rhodosporidiobolus fluvialis DMKU-RK253 in a two-stage cultivation under non-sterile conditions. Biomass Bioenergy 2019, 138, 105597. [Google Scholar] [CrossRef]
- Guerfali, M.; Ayadi, I.; Sassi, H.-E.; Belhassen, A.; Gargouri, A.; Belghith, H. Biodiesel-derived crude glycerol as alternative feedstock for single cell oil production by the oleaginous yeast Candida viswanathii Y-E4. Ind. Crops Prod. 2020, 145, 112103. [Google Scholar] [CrossRef]
- Aristya, G.R.; Lin, Y.J.; Chang, J.S.; Chang, J.J.; Yen, H.W. Polyhydroxybutyrate (PHB) production from crude glycerol by genetic engineering of Rhodotorula glutinis. Bioresour. Technol. Rep. 2022, 18, 101048. [Google Scholar] [CrossRef]
- Huang, X.; Wang, Y.; Liu, W.; Bao, J. Biological removal of inhibitors leads to the improved lipid production in the lipid fermentation of corn stover hydrolysate by Trichosporon cutaneum. Bioresour. Technol. 2011, 102, 9705–9709. [Google Scholar] [CrossRef] [PubMed]
- Poontawee, R.; Yongmanitchai, W.; Limtong, S. Lipid production from a mixture of sugarcane top hydrolysate and biodiesel-derived crude glycerol by the oleaginous red yeast, Rhodosporidiobolus fluvialis. Process Biochem. 2018, 66, 150–161. [Google Scholar] [CrossRef]
- Gong, Z.; Zhou, W.; Shen, H.; Zhao, Z.K.; Yang, Z.; Yan, J.; Zhao, M. Co-utilization of corn stover hydrolysates and biodiesel-derived glycerol by Cryptococcus curvatus for lipid production. Bioresour. Technol. 2016, 219, 552–558. [Google Scholar] [CrossRef] [PubMed]
- Gong, Z.; Zhao, M.; He, Q.; Zhou, W.; Tang, M.; Zhou, W. Synergistic effect of glucose and glycerol accelerates microbial lipid production from low-cost substrates by Cutaneotrichosporon oleaginosum. Biomass Convers. Biorefinery 2022. [Google Scholar] [CrossRef]
- Ngamsirisomsakul, M.; Reungsang, A.; Kongkeitkajorn, M.B. Assessing oleaginous yeasts for their potentials on microbial lipid production from sugarcane bagasse and the effects of physical changes on lipid production. Bioresour. Technol. Rep. 2020, 14, 100650. [Google Scholar] [CrossRef]
- Kongkeitkajorn, M.B.; Sae-Kuay, C.; Reungsang, A. Evaluation of Napier Grass for Bioethanol Production through a Fermentation Process. Processes 2020, 8, 567. [Google Scholar] [CrossRef]
- Lamers, D.; Van Biezen, N.; Martens, D.; Peters, L.; van de Zilver, E.; Dreumel, N.J.-V.; Wijffels, R.H.; Lokman, C. Selection of oleaginous yeasts for fatty acid production. BMC Biotechnol. 2016, 16, 45. [Google Scholar] [CrossRef] [Green Version]
- Do Yook, S.; Kim, J.; Woo, H.M.; Um, Y.; Lee, S. Efficient lipid extraction from the oleaginous yeast Yarrowia lipolytica using switchable solvents. Renew. Energy 2019, 132, 61–67. [Google Scholar] [CrossRef]
- Jin, M.; Slininger, P.J.; Dien, B.S.; Waghmode, S.; Moser, B.R.; Orjuela, A.; da Costa Sousa, L.; Balan, V. Microbial lipid-based lignocellulosic biorefinery: Feasibility and challenges. Trends Biotechnol. 2015, 33, 43–54. [Google Scholar] [CrossRef]
- Patel, A.; Sindhu, D.K.; Arora, N.; Singh, R.P.; Pruthi, V.; Pruthi, P.A. Bioresource Technology Biodiesel production from non-edible lignocellulosic biomass of Cassia fistula L. fruit pulp using oleaginous yeast Rhodosporidium kratochvilovae. Bioresour. Technol. 2015, 197, 91–98. [Google Scholar] [CrossRef] [PubMed]
- Gosalawit, C.; Imsoonthornruksa, S.; Gilroyed, B.H.; Mcnea, L.; Boontawan, A.; Ketudat-Cairns, M. The potential of the oleaginous yeast Rhodotorula paludigena CM33 to produce biolipids. J. Biotechnol. 2021, 329, 56–64. [Google Scholar] [CrossRef]
- da Cunha Abreu Xavier, M.; Teixeira Franco, T. Obtaining hemicellulosic hydrolysate from sugarcane bagasse for microbial oil production by Lipomyces starkeyi. Biotechnol. Lett. 2021, 43, 967–979. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Moreno, R.; Morales, P.; Gonzalez, R.; Mas, A.; Beltran, G. Biomass production and alcoholic fermentation performance of Saccharomyces cerevisiae as a function of nitrogen source. FEMS Yeast Res. 2012, 12, 477–485. [Google Scholar] [CrossRef] [PubMed]
- Maza, D.D.; Viñarta, S.C.; Su, Y.; Guillamón, J.M.; Aybar, M.J. Growth and lipid production of Rhodotorula glutinis R4, in comparison to other oleaginous yeasts. J. Biotechnol. 2020, 310, 21–31. [Google Scholar] [CrossRef] [Green Version]
- Bessadok, B.; Santulli, A.; Brück, T.; Sadok, S. Species disparity response to mutagenesis of marine yeasts for the potential production of biodiesel. Biotechnol. Biofuels 2019, 12, 129. [Google Scholar] [CrossRef] [Green Version]
- Bart, J.C.J.; Palmeri, N.; Cavallaro, S. Emerging new energy crops for biodiesel production. In Biodiesel Science and Technology; Woodhead Publishing: Sawston, UK, 2010; pp. 226–284. [Google Scholar] [CrossRef]
- Siwina, S.; Leesing, R. Bioconversion of durian (Durio zibethinus Murr.) peel hydrolysate into biodiesel by newly isolated oleaginous yeast Rhodotorula mucilaginosa. Renew. Energy 2021, 163, 237–245. [Google Scholar] [CrossRef]
- Chebbi, H.; Leiva-Candia, D.; Carmona-Cabello, M.; Jaouani, A.; Dorado, M.P. Biodiesel production from microbial oil provided by oleaginous yeasts from olive oil mill wastewater growing on industrial glycerol. Ind. Crops Prod. 2019, 139, 111535. [Google Scholar] [CrossRef]
- Chen, J.; Yan, S.; Zhang, X.; Tyagi, R.D.; Surampalli, R.Y.; Valéro, J.R. Chemical and biological conversion of crude glycerol derived from waste cooking oil to biodiesel. Waste Manag. 2018, 71, 164–175. [Google Scholar] [CrossRef]
- Klein, M.; Swinnen, S.; Thevelein, J.M.; Nevoigt, E. Glycerol metabolism and transport in yeast and fungi: Established knowledge and ambiguities. Environ. Microbiol. 2017, 19, 878–893. [Google Scholar] [CrossRef] [Green Version]
- Aslankoohi, E.; Rezaei, M.N.; Vervoort, Y.; Courtin, C.M.; Verstrepen, K.J. Glycerol Production by Fermenting Yeast Cells Is Essential for Optimal Bread Dough Fermentation. PLoS ONE 2015, 10, 0119364. [Google Scholar] [CrossRef] [PubMed]
- Fei, Q.; O’Brien, M.; Nelson, R.; Chen, X.; Lowell, A.; Dowe, N. Enhanced lipid production by Rhodosporidium toruloides using different fed-batch feeding strategies with lignocellulosic hydrolysate as the sole carbon source. Biotechnol. Biofuels 2016, 9, 130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calvey, C.H.; Su, Y.K.; Willis, L.B.; McGee, M.; Jeffries, T.W. Nitrogen limitation, oxygen limitation, and lipid accumulation in Lipomyces starkeyi. Bioresour. Technol. 2016, 200, 780–788. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yen, H.W.; Chang, J.T.; Chang, J.S. The growth of oleaginous Rhodotorula glutinis in an internal-loop airlift bioreactor by using mixture substrates of rice straw hydrolysate and crude glycerol. Biomass Bioenergy 2015, 80, 38–43. [Google Scholar] [CrossRef]
- ter Schure, E.G.; van Riel, N.A.W.; Verrips, C.T. The role of ammonia metabolism in nitrogen catabolite repression in Saccharomyces cerevisiae. FEMS Microbiol. Rev. 2000, 24, 67–83. [Google Scholar] [CrossRef] [Green Version]
- Zhu, L.Y.; Zong, M.H.; Wu, H. Efficient lipid production with Trichosporonfermentans and its use for biodiesel preparation. Bioresour. Technol. 2008, 99, 7881–7885. [Google Scholar] [CrossRef]
- Chaiyaso, T.; Manowattana, A.; Techapun, C.; Watanabe, M. Efficient bioconversion of enzymatic corncob hydrolysate into biomass and lipids by oleaginous yeast Rhodosporidium paludigenum KM281510. Prep. Biochem. Biotechnol. 2019, 49, 545–556. [Google Scholar] [CrossRef]
- Matsakas, L.; Giannakou, M.; Vörös, D. Effect of synthetic and natural media on lipid production from Fusarium oxysporum. Electron. J. Biotechnol. 2017, 30, 95–102. [Google Scholar] [CrossRef]
Media | Biomass (g/L) | Lipid Content (%) | Lipid Concentration (g/L) |
---|---|---|---|
HDL | 15.70 ± 0.49 b | 26.06 ± 1.41 b | 4.09 ± 0.09 b |
GLY | 7.20 ± 0.19 c | 12.06 ± 0.67 c | 0.87 ± 0.03 c |
HDL + GLY | 25.15 ± 0.35 a | 33.03 ± 0.04 a | 8.31 ± 0.13 a |
Media * | C/N Molar Ratios ** | Initial C Source (g/L) (% Used, Individual) | Total C Source Used (%) | Yp/s# (g/g) | Yx/s# (g/g) | |||
---|---|---|---|---|---|---|---|---|
In + Ex | Ex | Glucose | Xylose | Glycerol | ||||
HDL | 42 | - | 85.33 (73%) | 23.47 (45%) | - | 66.88 | 0.06 | 0.22 |
GLY | 42 | 42 | - | - | 119.29 (21%) | 21.28 | 0.03 | 0.28 |
HDL + GLY | 42 | 141 | 73.61 (46%) | 14.06 (53%) | 37.37 (42%) | 62.95 | 0.12 | 0.37 |
Percent of Fatty Acid (%) | Media | ||
---|---|---|---|
Hydrolysate | Glycerol | Hydrolysate + Glycerol | |
C14:0 | 1.1 ± 0.4 b | 2.2 ± 0.0 a | 1.2 ± 0.1 b |
C14:1 | 0.1 ± 0.1 a | 0.1 ± 0.1 a | 0.3 ± 0.4 a |
C16:0 | 25.2 ± 2.5 a | 28.2 ± 1.6 a | 24.5 ± 1.8 a |
C16:1 | 0.1 ± 0.1 b | 2.6 ± 0.4 a | 2.2 ± 0.1 a |
C18:0 | 8.9 ± 1.8 a | 4.2 ± 1.0 b | 8.4 ± 0.3 a |
C18:1 | 56.0± 0.9 a | 23.8 ± 0.0 c | 48.5 ± 1.2 b |
C18:2 | 8.1 ± 1.9 b | 33.8 ± 4.3 a | 11.4 ± 0.3 b |
C18:3 | 0.1 ± 0.1 b | 4.4 ± 1.3 a | 2.8 ± 0.8 a |
C20:0 | 0.3 ± 0.0 a | 0.0 ± 0.0 a | 0.1 ± 0.2 a |
Biodiesel Properties | Media Used for Lipid Production | B100 Specification (EN14212) | ||
---|---|---|---|---|
Hydrolysate | Glycerol | Hydrolysate + Glycerol | ||
SFA | 35.40 | 34.60 | 34.20 | - |
MUFA | 56.10 | 26.40 | 50.70 | - |
PUFA | 8.20 | 38.20 | 14.20 | - |
DU | 72.50 | 102.80 | 79.10 | - |
SV | 203.24 | 204.50 | 202.56 | - |
CN | 58.44 | 51.11 | 56.57 | >51 (ASTM D613) |
IV | 65.40 | 97.26 | 74.12 | <120 (EN14111) |
LCSF | 7.17 | 4.92 | 6.75 | - |
CFPP | 6.05 | 1.02 | 4.73 | Report |
CP | 8.26 | 9.84 | 7.90 | Report |
PP | 2.15 | 3.86 | 1.75 | - |
APE | 72.40 | 100.20 | 76.90 | - |
BAPE | 8.70 | 42.60 | 17.20 | - |
OS | 16.97 | 5.68 | 10.90 | >10 (EN 15751) |
HHV | 39.39 | 39.04 | 39.11 | - |
υ | 3.99 | 3.62 | 3.86 | 3.5 to 5.0 (ASTM D 1298) |
ρ | 0.87 | 0.87 | 0.87 | 0.86 to 0.90 (ASTM D 445) |
Media * | C/N Molar Ratios ** | Initial C Source (g/L) (% Used, Individual) | C Source Use | Yp/s# (g/g) | Yx/s # (g/g) | |||
---|---|---|---|---|---|---|---|---|
In + Ex | Ex | Glucose | Xylose | Glycerol | (%) | |||
H + YE + NH4Cl | 17 | 28 | 68.54 (99%) | 21.68 (100%) | - | 99.45 | 0.11 | 0.34 |
H+YE | 25 | 61 | 72.73 (99%) | 17.15 (75%) | - | 93.48 | 0.16 | 0.29 |
H % | 42 | - | 45.90 (62%) | 8.58 (37%) | - | 55.70 | 0.13 | 0.21 |
90H + 10G + YE | 51 | 118 | 60.96 (98%) | 14.38 (73%) | 21.43 (17%) | 47.42 | 0.15 | 0.26 |
80H + 20G + YE | 81 | 175 | 39.30 (66%) | 5.82 (34%) | 35.07 (14%) | 24.42 | 0.05 | 0.15 |
70H + 30G + YE | 116 | 232 | 17.17 (35%) | 4.81 (33%) | 46.29 (13%) | 16.84 | 0.01 | 0.07 |
Yeast Extract (g/L) | C/N Molar Ratios | Initial C Source (g/L) (% Used, Individual) | C Source Use | Yp/s# (g/L) | Yx/s # (g/L) | |
---|---|---|---|---|---|---|
Glucose | Xylose | (%) | ||||
0.01 | 8709 | 58.32 (77%) | 11.91 (51%) | 70.67% | 0.10 | 0.19 |
0.5 | 348 | 70.01 (92%) | 14.60 (63%) | 85.47% | 0.10 | 0.19 |
1.0 | 87 | 68.85 (94%) | 18.08 (74%) | 88.61% | 0.12 | 0.23 |
1.5 | 58 | 70.97 (99%) | 19.42 (86%) | 96.30% | 0.13 | 0.25 |
3.13 | 27 | 67.94 (99%) | 22.54 (100%) | 99.72% | 0.17 | 0.33 |
Glycerol Concentration (%) | Initial C Source (g/L) (% Used, Individual) | C Source Use | Yp/s# (g/g) | Yx/s# (g/g) | ||
---|---|---|---|---|---|---|
Glucose | Xylose | Glycerol | (%) | |||
0 | 73.08 (100%) | 24.27 (100%) | - | 100 | 0.12 | 0.26 |
5 | 70.64 (100%) | 22.60 (100%) | 40.58 (74%) | 92 | 0.14 | 0.30 |
10 | 68.30 (100%) | 20.91 (99%) | 85.72 (44%) | 73 | 0.15 | 0.31 |
15 | 65.48 (100%) | 20.43 (96%) | 131.23 (28%) | 56 | 0.11 | 0.26 |
20 | 60.81 (100%) | 20.06 (91%) | 172.91 (23%) | 47 | 0.07 | 0.19 |
25 | 58.15 (100%) | 19.32 (76%) | 224.22 (12%) | 33 | 0.05 | 0.14 |
N Source | Lipid Produced | Cost of Nitrogen Source * | ||
---|---|---|---|---|
(g/L) | (bht/100 g) | (bht/Lmedium) | (bht/glipid) | |
YE (AR) | 17.45 | 250.40 | 16.03 | 0.92 |
NH4Cl | 12.75 | 75.00 | 11.01 | 0.86 |
AYP | 18.70 | 92.00 | 22.97 | 1.22 |
Urea | 15.50 | 89.00 | 7.33 | 0.49 |
DAP | 13.35 | 126.40 | 22.90 | 2.02 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ngamsirisomsakul, M.; Kongkeitkajorn, M.B.; Amnuaypanich, S.; Reungsang, A. An Approach for Incorporating Glycerol as a Co-Substrate into Unconcentrated Sugarcane Bagasse Hydrolysate for Improved Lipid Production in Rhodotorula glutinis. Fermentation 2022, 8, 543. https://doi.org/10.3390/fermentation8100543
Ngamsirisomsakul M, Kongkeitkajorn MB, Amnuaypanich S, Reungsang A. An Approach for Incorporating Glycerol as a Co-Substrate into Unconcentrated Sugarcane Bagasse Hydrolysate for Improved Lipid Production in Rhodotorula glutinis. Fermentation. 2022; 8(10):543. https://doi.org/10.3390/fermentation8100543
Chicago/Turabian StyleNgamsirisomsakul, Marika, Mallika Boonmee Kongkeitkajorn, Sittipong Amnuaypanich, and Alissara Reungsang. 2022. "An Approach for Incorporating Glycerol as a Co-Substrate into Unconcentrated Sugarcane Bagasse Hydrolysate for Improved Lipid Production in Rhodotorula glutinis" Fermentation 8, no. 10: 543. https://doi.org/10.3390/fermentation8100543
APA StyleNgamsirisomsakul, M., Kongkeitkajorn, M. B., Amnuaypanich, S., & Reungsang, A. (2022). An Approach for Incorporating Glycerol as a Co-Substrate into Unconcentrated Sugarcane Bagasse Hydrolysate for Improved Lipid Production in Rhodotorula glutinis. Fermentation, 8(10), 543. https://doi.org/10.3390/fermentation8100543