Effects of Different Aging Methods on the Phenolic Compounds and Antioxidant Activity of Red Wine
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Samples
2.3. Color Analysis
2.4. Detection of Anthocyanins in Red Wine
2.5. Detection of Nonanthocyanin Phenolic Compounds in Red Wine
2.6. Determination of DPPH Free Radical Scavenging Ability
2.7. Determination of ABTS Free Radical Scavenging Ability
2.8. Determination of FRAP Reduction of Ion Ability
2.9. Statistical Analysis
3. Results and Discussion
3.1. Determination of Color Parameters of Red Wine
3.2. Qualitative and Quantitative Analysis of Anthocyanins
3.3. Qualitative and Quantitative Analysis of Nonanthocyanidins
3.4. Analysis of Antioxidant Activity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Garrido, J.; Borges, F. Wine and grape polyphenols-a chemical perspective. Food Res. Int. 2013, 54, 1844–1858. [Google Scholar] [CrossRef] [Green Version]
- Visioli, F.; Panaite, S.A.; Tomé-Carneiro, J. Wine’s phenolic compounds and health: A pythagorean view. Molecules 2020, 25, 4105. [Google Scholar] [CrossRef] [PubMed]
- Tang, C.H.; Peng, Z.Y. Grape polyphenol compounds and its physiological functions. Sino-Overseas Grapevine Wine 2000, 2, 12–15. [Google Scholar]
- Gutiérrez-Escobar, R.; Aliao-González, M.; Cantos-Villar, E. Wine polyphenol content and its influence on wine quality and properties: A review. Molecules 2021, 26, 718. [Google Scholar] [CrossRef]
- Chen, Z.S. Healthy effects of polyphenols in red grape wine. Liquor-Mak. Sci. Technol. 2001, 2, 77–78. [Google Scholar]
- Poulsen, M.M.; Jørgensen, J.O.L.; Jessen, N.; Richelsen, B.; Pedersen, S.B. Resveratrol in metabolic health: An overview of the current evidence and perspectives. Ann. N. Y. Acad. Sci. 2013, 1290, 74–82. [Google Scholar] [CrossRef]
- Jang, M.; Pezzuto, J.M. Cancer chemopreventive activity of resveratrol. DRUG. EXP. CLIN. RES. 1999, 25, 65–77. [Google Scholar]
- Hao, X.Y.; Wang, H.; Zhang, J.X. Research progress of influence of phenolic compounds on color of grape wine. Mod. Food Sci. Technol. 2013, 29, 1192–1197. [Google Scholar]
- Brouillard, R.; Chassaing, S.; Fougerousse, A. Why are grape/fresh wine anthocyanins so simple and why is it that red wine color lasts so long. Phytochemistry 2003, 64, 1179–1186. [Google Scholar] [CrossRef]
- Darias-Martín, J.; Carrillo-López, M.; Echavarri-Granado, J.F.; Díaz-Romero, C. The magnitude of copigmentation in the colour of aged red wines made in the Canary Islands. Eur. Food Res. Technol. 2007, 224, 643–648. [Google Scholar] [CrossRef]
- Liu, T.; Wen, L.V.; Yan, J.; Xing, K. Research on the influence and role of oak barrel on aging red wine. Liquor Mak. 2008, 6, 77–79. [Google Scholar]
- Sun, J.P.; Zhi, X.D.; Zhang, H.; Zhao, S.L. Effects of grape wine aging in oak barrels on grape wine quality. Liquor-Mak. Sci. Technol. 2008, 10, 81–85. [Google Scholar]
- Yang, C.Q. Introduction to oak barrels aging technology application. Liquor Mak. 2013, 40, 49–52. [Google Scholar]
- Rossetti, F.; Boselli, E. Effects of in-amphorae winemaking on the chemical and sensory profile of Chardonnay wine. Sci. Agric. Bohem. 2017, 48, 39–46. [Google Scholar] [CrossRef] [Green Version]
- Baiano, A.; Mentana, A.; Quinto, M.; Centonze, D.; Longobardi, F.; Ventrella, A.; Agostiano, A.; Varva, G.; Gianni, A.D.; Terracone, C. The effect of in-amphorae aging on oenological parameters, phenolic profile and volatile composition of Minutolo white wine. Food Ence. 2015, 74, 294–305. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, M.J.; Pereira, V.; Pereira, A.C.; Pinto, J.L.; Marques, J.C. Evaluation of wine colour under accelerated and oak-cask ageing using CIELab and chemometric approaches. FoodBioprocess Technol. 2015, 8, 2309–2318. [Google Scholar] [CrossRef]
- Fei, W.; Fang, L.; Zhang, Y.; Zhang, A.; Cao, Y.; Li, J.; Zhang, S. The study of applying CIE 1976(L*a*b*) colour space in the measurement of colour of wine. Sino-Overseas Grapevine Wine 2015, 4, 6–11. [Google Scholar]
- Tang, K.; Zhang, X.; Li, J.M.; Jiang, W.G.; Xu, Y. Characteristics of anthocyanins in Cabernet Sauvignon wines from different regions of China based on UPLC-MS/MS. Food Ferment. Ind. 2019, 45, 208–212. [Google Scholar]
- Tang, K.; Li, J.M.; Jiang, W.G.; Xu, Y. Effect of co-pigment on monomeric anthocyanin and color of wine. Food Ferment. Ind. 2019, 45, 54–59. [Google Scholar]
- Floegel, A.; Kim, D.O.; Chung, S.J.; Koo, S.I.; Chun, O.K. Comparison of ABTS/DPPH assays to measure antioxidant capacity in popular antioxidant-rich US foods. J. Food Compos. Anal. 2011, 24, 1043–1048. [Google Scholar] [CrossRef]
- Berg, R.V.D.; Haenen, G.R.M.M.; Berg, H.V.D.; Bast, A. Applicability of an improved Trolox equivalent antioxidant capacity (TEAC) assay for evaluation of antioxidant capacity measurements of mixtures. Food Chem. 1999, 66, 511–517. [Google Scholar] [CrossRef]
- Kong, Y.; Wei, Z.F.; Fu, Y.J.; Gu, C.B.; Zhao, C.J.; Yao, X.H.; Efferth, T. Negative-pressure cavitation extraction of cajaninstilbene acid and pinostrobin from pigeon pea [Cajanus cajan (L.) Millsp.] leaves and evaluation of antioxidant activity. Food Chem. 2011, 128, 596–605. [Google Scholar] [CrossRef]
- Li, Z.J.; Zhang, J.G.; Liu, Y.D. The qualitative and quantitative analysis of anthocyanins. J. Shandong Inst. Commer. Technol. 2011, 11, 99–101. [Google Scholar]
- Pericles, M. (Ed.) Anthocyanins as Food Colors; Pericles Markakis; Academic Press: East Lansing, MI, USA, 1982; ISBN 01-247-25503. [Google Scholar]
- Deng, J.; Chen, S.; Yin, X.J.; Wang, K.; Liu, Y.L.; Li, S.H.; Yang, P.F. Systematic qualitative and quantitative assessment of anthocyanins, flavones and flavonols in the petals of 108 lotus (Nelumbo nucifera) cultivars-ScienceDirect. Food Chem. 2013, 139, 307–312. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Dong, X.; Liu, Y. Analysis of polyphenol and anthocyanin composition in dry red wines of Cabernet Sauvignon grown in three regions. Sino-Overseas Grapevine Wine 2010, 11, 12–15. [Google Scholar]
- Vivas, N.; Glories, Y. Role of Oak Wood Ellagitannins in the Oxidation Process of Red Wines During Aging. Am. J. Enol. Vitic. 1996, 47, 103–107. [Google Scholar]
- Oliveira, C.M.; Ferreira, A.C.S.; Paula, P.G.D.; Hogg, T.A. Development of a potentiometric method to measure the resistance to oxidation of white wines and the antioxidant power of their constituents. J. Agric. Food. Chem. 2002, 50, 2121–2124. [Google Scholar] [CrossRef]
- Zhang, Q.F.; Fu, Y.J.; Huang, Z.W. Aqueous Stability of Astilbin: Effects of pH, Temperature, and Solvent. J. Agric. Food. Chem. 2013, 61, 12085–12091. [Google Scholar] [CrossRef]
- Baiano, A.; Varva, G. Evolution of physico-chemical and sensory characteristics of Minutolo white wines during aging in amphorae: A comparison with stainless steel tanks. LWT 2019, 103, 78–87. [Google Scholar] [CrossRef]
- Dou, Y.; Tan, D.; Dong, X. Effects of different ageing methods on phenols in Manasi Cabernet Sauvignon dry red wine. Sino-Overseas Grapevine Wine 2010, 9, 27–30. [Google Scholar]
- Fang, Y.L.; Meng, J.F.; Zhang, A.; Zhang, Z.W.; Liu, J.C.; Han, G.M.; Liu, S.W. Effect of storage time on phenolic components and antioxidant activity of red wine. Food Sci. 2011, 32, 14–20. [Google Scholar]
- Yan, L.I.; Liang, G.W. Oak barrel and grape wine. Liquor-Mak. Sci. Technol. 2007, 12, 40–42. [Google Scholar]
- Kallithraka, S.; Salacha, M.I.; Tzourou, I. Changes in phenolic composition and antioxidant activity of white wine during bottle storage: Accelerated browning test versus bottle storage. Food Chem. 2009, 113, 500–505. [Google Scholar] [CrossRef]
- Zafrilla, P.; Morillas, J.; Mulero, J.; Cayuela, J.M.; Nicolás, J. Changes during storage in conventional and ecological wine: Phenolic content and antioxidant activity. Food Chem. 2003, 51, 4694–4700. [Google Scholar] [CrossRef] [PubMed]
Sample | Variety | Region | Aging Vessel | Sampling Time |
---|---|---|---|---|
Day0 | Cabernet Sauvignon | Ningxia | None | Day 0 |
O-270 | Cabernet Sauvignon | Ningxia | Oak barrel | Day 270 |
T-270 | Cabernet Sauvignon | Ningxia | Unglazed pottery altar | Day 270 |
Y-270 | Cabernet Sauvignon | Ningxia | Glazed pottery altar | Day 270 |
G-270 | Cabernet Sauvignon | Ningxia | Stainless-steel tank | Day 270 |
Number | Monomer Phenolic Compounds | Remaining Time (min) | Standard Curves | R2 | Linear Range (mg∙L−1) |
---|---|---|---|---|---|
1 | CAT | 2.89 | y = 1.96365 × 105x + 2.80011 × 105 | 0.99531 | 7.62–131.12 |
2 | Salicylic acid | 3.78 | y = 2.88810 × 106x + 1.05181 × 107 | 0.99673 | 4.51–17.79 |
3 | Rutin | 3.27 | y = 1.99758 × 106x − 5.90991 × 105 | 0.99759 | 0.35–1.46 |
4 | Gallic acid | 1.28 | y = 1.92804 × 106x − 9.96384 × 105 | 0.99592 | 6.46–206.84 |
5 | Protocatechuic acid | 2.43 | y = 3.69943 × 106x − 4.48883 × 106 | 0.99358 | 0.97–4.03 |
6 | 4-Hydroxybenzoic acid | 2.84 | y = 2.97624 × 106x + 2.03029 × 106 | 0.99026 | 0.57–3.98 |
7 | Vanillic acid | 3.06 | y = 2.70277 × 106x − 1.95991 × 105 | 0.99897 | 3.07–24.82 |
8 | Syringic acid | 3.11 | y = 8.73529 × 104x − 3.78496 × 104 | 0.99510 | 3.01–61.43 |
9 | EC | 3.07 | y = 5.13096 × 105x − 2.57807 × 105 | 0.99568 | 1.51–58.94 |
10 | EGC | 2.76 | y = 1.44898 × 106x − 1.46819 × 106 | 0.99912 | 1.23–9.92 |
11 | 2,5-Dihydroxybenzoic acid | 2.86 | y = 6.86815 × 106x − 5.07039 × 106 | 0.99911 | 0.99–3.66 |
12 | Caffeic acid | 3.03 | y = 2.17934 × 105x − 1.52866 × 105 | 0.99777 | 2.44–39.49 |
13 | EGCG | 3.07 | y = 1.44283 × 106x − 1.14893 × 106 | 0.99937 | 0.48–3.78 |
Sample Name | L* | a* | b* | C* | hab |
---|---|---|---|---|---|
Day0 | 54.49 ± 0.00 | 32.04 ± 0.00 | 14.65 ± 0.00 | 35.23 ± 0.00 | 2.03 ± 0.00 |
O-270 | 51.17 ± 0.40 | 33.14 ± 0.21 | 16.89 ± 0.02 | 37.20 ± 0.17 | 1.79 ± 0.01 |
T-270 | 50.45 ± 0.25 | 31.59 ± 0.25 | 28.40 ± 0.26 | 42.48 ± 0.18 | 0.80 ± 0.02 |
Y-270 | 50.21 ± 0.32 | 35.33 ± 0.03 | 63.19 ± 0.02 | 72.40 ± 0.05 | 0.22 ± 0.01 |
G-270 | 48.21 ± 0.03 | 38.63 ± 0.02 | 8.16 ± 0.01 | 39.48 ± 0.04 | 4.66 ± 0.01 |
Sample Name | Dp | Cy | Pt | Pn | Mv | Dp-acl | Ma-acl-pyr | Pt-acl | Dp-cou | Pn-acl | Ma-acl | Ma-cou-pyu | Pt-cou | Ma-cou | Ma-vin | Total |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Day0 | 28.98 ± 0.97 | 7.00 ± 0.32 | 40.76 ± 1.44 | 19.93 ± 0.75 | 346.69 ± 9.22 | 15.42 ± 0.80 | 2.07 ± 0.07 | 17.62 ± 0.74 | 1.65 ± 0.12 | 13.42 ± 0.58 | 135.52 ± 4.73 | 2.63 ± 0.39 | 5.01 ± 0.83 | 69.31 ± 3.52 | 1.435 ± 0.07 | 707.43 ± 24.55 |
O-270 | 2.89 ± 0.16 | 3.15 ± 0.28 | 6.72 ± 0.72 | 2.89 ± 0.05 | 98.42 ± 1.46 | 3.89 ± 0.10 | - | 7.05 ± 0.21 | - | 4.06 ± 0.30 | 49.49 ± 2.16 | 6.3 ± 0.49 | 0.79 ± 0.09 | 23.81 ± 1.05 | - | 209.46 ± 7.07 |
T-270 | - | 2.98 ± 0.38 | 22.86 ± 0.93 | 2.89 ± 0.04 | 85.33 ± 2.32 | 3.55 ± 0.14 | - | 5.22 ± 0.03 | - | - | 66.62 ± 2.61 | 5.25 ± 0.11 | - | 32.99 ± 0.74 | - | 227.68 ± 7.30 |
Y-270 | - | 3.33 ± 0.09 | 2.15 ± 0.13 | - | 24.67 ± 1.88 | 1.03 ± 0.03 | - | - | - | - | 17.54 ± 0.56 | 6.83 ± 0.79 | - | 19.18 ± 1.01 | - | 74.71 ± 4.49 |
G-270 | 2.88 ± 0.06 | 3.50 ± 0.10 | 10.54 ± 0.45 | 2.56 ± 0.02 | 93.97 ± 3.82 | 7.05 ± 0.66 | - | 5.65 ± 0.61 | - | 5.89 ± 0.19 | 59.80 ± 2.26 | 5.60 ± 0.53 | 1.30 ± 0.09 | 23.20 ± 1.32 | - | 221.92 ± 10.11 |
Significant difference | ** | * | ** | ** | ** | ** | ns | ** | ns | ** | ** | * | * | ** | ns | ** |
Monomer Phenolic Compounds | Base Wine | Unglazed Pottery Altar | Glazed Pottery Altar | Stainless-Steel Tank | Oak Barrel | Significant Difference |
---|---|---|---|---|---|---|
CAT | 117.75 ± 0.65 | 80.38 ± 1.88 | 49.02 ± 1.61 | 83.54 ± 1.25 | 66.61 ± 1.34 | ** |
Salicylic acid | 4.27 ± 0.43 | 5.38 ± 0.05 | 5.64 ± 0.10 | 5.42 ± 0.04 | 5.50 ± 0.04 | * |
Rutin | 1.07 ± 0.25 | 0.48 ± 0.11 | 0.45 ± 0.11 | 0.49 ± 0.06 | 0.47 ± 0.07 | ** |
Gallic acid | 27.20 ± 3.90 | 93.95 ± 14.15 | 29.68 ± 10.64 | 31.81 ± 4.60 | 103.52 ± 14.98 | ** |
Protocatechuic acid | 1.42 ± 0.10 | 1.41 ± 0.16 | 1.48 ± 0.17 | 1.40 ± 0.12 | 1.40 ± 0.16 | ns |
4-Hydroxybenzoic acid | 0.72 ± 0.20 | 2.17 ± 0.23 | 3.03 ± 0.30 | 1.08 ± 0.20 | 1.53 ± 0.22 | ** |
Vanillic acid | 7.06 ± 0.22 | 12.68 ± 0.69 | 18.12 ± 0.94 | 8.41 ± 0.39 | 13.23 ± 0.94 | ** |
Syringic acid | 5.78 ± 1.57 | 25.35 ± 5.08 | 44.56 ± 7.27 | 11.19 ± 3.23 | 21.65 ± 5.76 | ** |
EC | 49.05 ± 1.75 | 25.06 ± 0.21 | 14.16 ± 0.42 | 32.85 ± 0.54 | 22.57 ± 0.92 | ** |
EGC | 8.39 ± 0.10 | 5.49 ± 0.15 | 3.50 ± 0.05 | 6.87 ± 0.05 | 4.98 ± 0.15 | ** |
2,5-Dihydroxybenzoic acid | 1.27 ± 0.15 | 1.80 ± 0.12 | 1.01 ± 0.18 | 2.21 ± 0.05 | 2.32 ± 0.09 | ** |
Caffeic acid | 13.96 ± 0.01 | 33.90 ± 1.50 | 32.97 ± 1.80 | 27.06 ± 0.49 | 28.81 ± 0.61 | ** |
EGCG | 0.83 ± 0.01 | 0.85 ± 0.01 | 0.84 ± 0.01 | 0.90 ± 0.05 | 0.85 ± 0.01 | ns |
Total | 238.74 ± 9.22 | 288.88 ± 24.33 | 204.43 ± 23.59 | 213.23 ± 10.95 | 273.42 ± 25.27 | ns |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, C.; Wang, C.; Tang, K.; Rao, Z.; Chen, J. Effects of Different Aging Methods on the Phenolic Compounds and Antioxidant Activity of Red Wine. Fermentation 2022, 8, 592. https://doi.org/10.3390/fermentation8110592
Wang C, Wang C, Tang K, Rao Z, Chen J. Effects of Different Aging Methods on the Phenolic Compounds and Antioxidant Activity of Red Wine. Fermentation. 2022; 8(11):592. https://doi.org/10.3390/fermentation8110592
Chicago/Turabian StyleWang, Chao, Chenhui Wang, Ke Tang, Zhiming Rao, and Jian Chen. 2022. "Effects of Different Aging Methods on the Phenolic Compounds and Antioxidant Activity of Red Wine" Fermentation 8, no. 11: 592. https://doi.org/10.3390/fermentation8110592
APA StyleWang, C., Wang, C., Tang, K., Rao, Z., & Chen, J. (2022). Effects of Different Aging Methods on the Phenolic Compounds and Antioxidant Activity of Red Wine. Fermentation, 8(11), 592. https://doi.org/10.3390/fermentation8110592