Untargeted Metabolomics Discriminates Grapes and Wines from Two Syrah Vineyards Located in the Same Wine Region
Abstract
:1. Introduction
2. Materials and Methods
2.1. Grape, Must and Wine Samples
2.2. Reagents
2.3. Metabolic Profiling
2.4. Sensory Analysis
2.5. Statistical Analysis
3. Results and Discussion
3.1. Compound Identification by UHPLC-MS/MS
3.2. Metabolic Profile Evolution during Fermentation
3.3. Metabolic Profile Comparison between the Terroirs for the Grape and Wine Samples
3.4. Search for Biomarkers of Terroir Distinctiveness
3.5. Evaluation of Wine Sensory Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Roullier-Gall, C.; Boutegrabet, L.; Gougeon, R.D.; Schmitt-Kopplin, P. A grape and wine chemodiversity comparison of different appellations in Burgundy: Vintage vs terroir effects. Food Chem. 2014, 152, 100–107. [Google Scholar] [CrossRef] [PubMed]
- Roullier-Gall, C.; Lucio, M.; Noret, L.; Schmitt-Kopplin, P.; Gougeon, R.D. How subtle is the “terroir” effect? Chemistry-related signatures of two “climats de Bourgogne”. PLoS ONE 2014, 9, e97615. [Google Scholar] [CrossRef] [PubMed]
- Anesi, A.; Stocchero, M.; Dal Santo, S.; Commisso, M.; Zenoni, S.; Ceoldo, S.; Tornielli, G.B.; Siebert, T.E.; Herderich, M.; Pezzotti, M.; et al. Towards a scientific interpretation of the terroir concept: Plasticity of the grape berry metabolome. BMC Plant Biol. 2015, 15, 191. [Google Scholar] [CrossRef] [PubMed]
- Duan, S.; Wu, Y.; Fu, R.; Wang, L.; Chen, Y.; Xu, W.; Zhang, C.; Ma, C.; Shi, J.; Wang, S. Comparative Metabolic Profiling of Grape Skin Tissue along Grapevine Berry Developmental Stages Reveals Systematic Influences of Root Restriction on Skin Metabolome. Int. J. Mol. Sci. 2019, 20, 534. [Google Scholar] [CrossRef]
- Rienth, M.; Vigneron, N.; Darriet, P.; Sweetman, C.; Burbidge, C.; Bonghi, C.; Walker, R.P.; Famiani, F.; Castellarin, S.D. Grape Berry Secondary Metabolites and Their Modulation by Abiotic Factors in a Climate Change Scenario—A Review. Front. Plant Sci. 2021, 12, 643258. [Google Scholar] [CrossRef]
- Cosme, F.; Gonçalves, B.; Inês, A.; Jordão, A.M.; Vilela, A. Grape and Wine Metabolites: Biotechnological Approaches to Improve Wine Quality. In Book: Grape and Wine Biotechnology; Morata, A., Loira, I., Eds.; Intechopen: London, UK, 2016; Volume 9, pp. 187–224. [Google Scholar] [CrossRef]
- Bokulich, N.A.; Collins, T.S.; Masarweh, C.; Allen, G.; Heymann, H.; Ebeler, S.E.; Mills, D.A. Associations among wine grape microbiome, metabolome, and fermentation behavior suggest microbial contribution to regional wine characteristics 2016. mBio 2016, 7, e00631-16. [Google Scholar] [CrossRef]
- Pinu, F.R. Grape and Wine Metabolomics to Develop New Insights Using Untargeted and Targeted Approaches. Fermentation 2018, 4, 92. [Google Scholar] [CrossRef]
- Teixeira, A.; Martins, V.; Noronha, H.; Eiras-Dias, J.; Gerós, H. The First Insight into the Metabolite Profiling of Grapes from Three Vitis vinifera L. Cultivars of Two Controlled Appellation (DOC) Regions. Int. J. Mol. Sci. 2014, 15, 4237–4254. [Google Scholar] [CrossRef]
- Mayr, C.M.; De Rosso, M.; Dalla Vedova, A.; Flamini, R. High-Resolution Mass Spectrometry Identification of Secondary Metabolites in Four Red Grape Varieties Potentially Useful as Traceability Markers of Wines. Beverages 2018, 4, 74. [Google Scholar] [CrossRef] [Green Version]
- Šuković, D.; Knežević, B.; Gašić, U.; Sredojević, M.; Ćirić, I.; Todić, S.; Mutić, J.; Tešić, Ž. Phenolic Profiles of Leaves, Grapes and Wine of Grapevine Variety Vranac (Vitis vinifera L.) from Montenegro. Foods 2020, 9, 138. [Google Scholar] [CrossRef]
- Rochfort, S.; Ezernieks, V.; Bastian, S.E.P.; Downey, M.O. Sensory attributes of wine influenced by variety and berry shading discriminated by NMR metabolomics. Food Chem. 2010, 121, 1296–1304. [Google Scholar] [CrossRef]
- Zhu, J.; Hu, B.; Lu, J.; Xu, S. Analysis of Metabolites in Cabernet Sauvignon and Shiraz Dry Red Wines from Shanxi by 1H NMR Spectroscopy Combined with Pattern Recognition Analysis. Open Chem. 2018, 16, 446–452. [Google Scholar] [CrossRef]
- Fortes, A.M.; Silva, M.S.; Ali, K.; Sousa, L.; Maltese, F.; Choi, Y.H.; Grimplet, J.; Martinez- Zapater, J.M.; Verpoorte, R.; Pais, M.S. Transcript and metabolite analysis in Trincadeira cultivar reveals novel information regarding the dynamics of grape ripening. BMC Plant Biol. 2011, 11, 149. [Google Scholar] [CrossRef] [PubMed]
- Agudelo-Romero, P.; Erban, A.; Sousa, L.; Pais, M.S.; Kopka, J.; Fortes, A.M. Search for Transcriptional and Metabolic Markers of Grape Pre-Ripening and Ripening and Insights into Specific Aroma Development in Three Portuguese Cultivars. PLoS ONE 2013, 8, e60422. [Google Scholar] [CrossRef]
- Böcker, S. Searching molecular structure databases using tandem MS data: Are we there yet? Curr. Opin Chem. Biol. 2017, 36, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Rivest, L.-P. Bartlett’s, Cochran’s, and Hartley’s Tests on Variances are Liberal When the Underlying Distribution is Long-Tailed. J. Am. Statist. Assoc. 1986, 81, 124–128. [Google Scholar] [CrossRef]
- Montgomery, D.C. Design and Analysis of Experiments, 3rd ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1991. [Google Scholar]
- Darias-Martín, J.; Martín-Luis, B.; Carrillo-López, M.; Lamuela-Raventós, R.; Díaz-Romero, C.; Boulton, R. Effect of Caffeic Acid on the Color of Red Wine. J. Agric. Food Chem. 2002, 50, 2062–2067. [Google Scholar] [CrossRef] [PubMed]
- Concenco, F.I.G.R.; Brotto, G.F.; Nora, L. Grape Wine and Juice: Comparison on Resveratrol Levels. Int. J. Adv. Eng. Res. Sci. 2019, 6, 378–386. [Google Scholar] [CrossRef]
- Arcena, M.R.; Leong, S.Y.; Hochberg, M.; Sack, M.; Mueller, G.; Sigler, J.; Silcock, P.; Kebede, B.; Oey, I. Evolution of volatile and phenolic compounds during bottle storage of merlot wines vinified using pulsed electric fields-treated grapes. Foods 2020, 9, 443. [Google Scholar] [CrossRef] [Green Version]
- Gutiérrez-Escobar, R.; Aliaño-González, M.J.; Cantos-Villar, E. Wine Polyphenol Content and Its Influence on Wine Quality and Properties: A Review. Molecules 2021, 30, 718. [Google Scholar] [CrossRef] [PubMed]
- González-Neves, G.; Gil, G.; Ferrer, M. Effect of different vineyard treatments on the phenolic contents in Tannat (Vitis vinifera L.) grapes and their respective wines. Food Sci. Technol Int. 2002, 8, 315–321. [Google Scholar] [CrossRef]
- Ali, K.; Maltese, F.; Choi, Y.H.; Verpoorte, R. Metabolic constituents of grapevine and grape-derived products. Phytochem. Rev. 2010, 9, 357–378. [Google Scholar] [CrossRef] [PubMed]
- García-Beneytez, E.; Revilla, E.; Cabello, F. Anthocyanin pattern of several red grape cultivars and wines made from them. Eur. Food Res. Technol. 2002, 215, 32–37. [Google Scholar] [CrossRef]
- Logan, G.; Howell, G.S.; Nair, M.G. Cyanidin-3-o-glucoside is an important anthocyanin in several clones of Vitis vinifera l Pinot Noir fruits and fesulting wine from Michigan and New Zealand. Internet J. Enol. Vitic. 2009, 5, 1–12. [Google Scholar]
- Alcalde-Eon, C.; García-Estévez, I.; Puente, V.; Rivas-Gonzalo, J.C.; Escribano-Bailón, M.T. Color stabilization of red wines. A chemical and colloidal approach. J. Agric. Food Chem. 2014, 62, 6984–6994. [Google Scholar] [CrossRef] [PubMed]
- Lund, C.M.; Nicolau, L.; Gardner, R.C.; Kilmartin, P.A. Effect of polyphenols on the perception of key aroma compounds from Sauvignon Blanc wine. Aust. J. Grape Wine Res. 2009, 15, 18–26. [Google Scholar] [CrossRef]
Sample Designation | Number of Samples per Site | Description | Local |
---|---|---|---|
Grape 1 (S1.1) | 4 | 50 crushed grape berries | Site 1 |
Grape 2 (S2.1) | 4 | Site 2 | |
Initial 1 (S1.2) | 2 | 50 mL of must at initial fermentation | Site 1 |
Initial 2 (S2.2) | 2 | Site 2 | |
Middle 1 (S1.3) | 2 | 50 mL of must at mid-fermentation | Site 1 |
Middle 2 (S2.3) | 2 | Site 2 | |
End 1 (S1.4) | 2 | 50 mL of must at end-fermentation | Site 1 |
End 2 (S2.4) | 2 | Site 2 | |
Wine 1 (S1.5) | 2 | 50 mL wine collected upon bottling | Site 1 |
Wine 2 (S.2.5) | 2 | Site 2 |
Site | Date of Harvest | Brix | Sugar (g·L−1) | Mass Density (20 °C) | pH | Total Acidity (g·L−1 tart ac.) |
---|---|---|---|---|---|---|
S1 | 27-09-2018 | 21.9 | 213.6 | 1.090 | 3.38 | 4.6 |
S2 | 04-10-2018 | 21.4 | 207.8 | 1.088 | 3.54 | 5.4 |
RT (min) | Formula | [M-H]−experimental | Error (ppm) | Main MS/MS | Proposed Compound |
---|---|---|---|---|---|
1.0 | C6H12O6 | 179.0561 | 0.0 | 89.0243 (7.1%); 71.0136 (65.8%); 59.0139 (100%) | α-D-glucose |
1.0 | C7H14O8 | 225.0617 | −0.4 | 113.0243 (6.4%); 89.0245 (21.8%); 71.0138 (65%); 59.0140 (100%) | glucoheptonic acid |
1.1 | C4H6O6 | 149.0089 | 1.6 | 87.0086 (15.9%); 72.9931 (100%); 59.0141 (24.5%) | tartaric acid |
1.2 | C4H6O5 | 133.0140 | 2.0 | 71.0137 (100%); 59.0146 (6.3%) | malic acid |
1.2 | C4H4O4 | 115.0038 | −1.0 | 71.0149 (100%) | fumaric acid |
1.3 | C6H10O7 | 193.0354 | −0.1 | 111.0089 (23.7%); 103.0040 (27.8%); 87.0087 (47.1%); 75.0087 (29.1%); 59.0139 (100%) | 2-keto-D-glucuronic acid |
1.5 | C5H6O5 | 145.0143 | −0.3 | 101.0243 (23.2%); 85.0297 (6.9%); 57.0349 (100%); 55.0195 (23.4%) | ketoglutaric acid |
1.8 | C6H8O7 | 191.0195 | 1.1 | 111.0087 (64.9%); 87.0083 (100%); 67.0182 (12%); 57.0344 (19.4%) | citric acid |
1.8 | C5H8O5 | 147.0298 | 0.7 | 129.0197 (4.1%); 103.0413 (4.6%); 101.0248 (29.1%); 85.0295 (23.4%); 57.0348 (100%) | (S)-2-hydroxyglutarate |
1.8 | C5H8O5 | 147.0297 | 1.2 | 115.0028 (10.5%); 103.0398 (9.6%); 71.0136 (100%) | citramalic acid |
1.9 | C5H10O4 | 133.0504 | 1.7 | 87.0073 (10.8%); 71.0137 (100%) | 2,3-dihydroxy-3-methylbutanoic acid |
1.9 | C20H32N6O12S2 | 611.1437 | 1.7 | 611.1418 (13.9%); 306.0754 (100%); 272.0894 (27.1%); 143.0460 (17.2%); 128.0349 (12.2%) | glutathione, oxidized |
1.9 | C6H6O6 | 173.0091 | 0.5 | 129.0206 (18.2%); 111.0086 (13.9%); 85.0292 (100%); 67.0189 (5.9%) | aconitic acid |
2.0 | C4H6O4 | 117.0193 | 0.5 | 73.0293 (100%); 55.0207 (9.7%) | succinic acid |
2.1 | C6H10O5 | 161.0453 | 1.4 | 59.0138 (31.9%); 57.0349 (100%) | 3-hydroxy-3-methyl-glutaric acid |
2.4 | C7H6O5 | 169.0141 | 0.8 | 125.0241 (100%); 97.0292 (33%); 79.0190 (21.1%); 69.0345 (51.6%) | gallic acid |
2.7 | C6H10O6 | 177.0404 | 0.5 | 87.0078 (7.8%); 72.9934 (100%); 59.0141 (77.2%); 44.9997 (8.3%) | 4-ethoxy-2,3-dihydroxy-4-keto-butyric acid |
3.5 | C13H16O10 | 331.0669 | 0.5 | 169.0137 (100%); 125.0244 (34.9%) | glucogallic acid |
3.9 | C6H10O5 | 161.0456 | −0.3 | 71.0141 (87.6%); 59.0146 (8.3%); 45.0351 (17.9%); | 2-dehydro-3-deoxy-L-rhamnotic acid |
3.9 | C15H14O7 | 305.0667 | −0.1 | 237.0752 (10.4%); 219.0637 (16.4%); 167.0344 (35.7%); 139.0399 (32%); 125.0239 (100%); 109.0288 (14.1%) | epigallocatechin |
4.1 | C14H20O8 | 315.1085 | 0.2 | 153.0557 (100%); 123.0451 (58%) | vanilloloside |
4.1 | C7H6O4 | 153.0194 | −0.6 | 109.0304 (100%); 91.0185 (17.1%); 53.0408 (9.7%) | protocatechuic acid |
4.2 | C8H10O3 | 153.0553 | 2.5 | 123.0449 (100%); 121.0287 (15.2%); 109.0313 (13.1%); 95.0496 (23.5%); 93.0353 (16.9%); 81.0339 (22.1%); 71.0137 (12.6%) | hydroxytyrosol |
4.3 | C9H8O4 | 179.0349 | 0.5 | 135.0455 (100%); 117.0379 (16.7%); 107.0496 (12%); 89.0395 (3.5%); 65.0029 (9.9%) | caffeic acid |
4.4 | C13H12O9 | 311.0409 | 0.0 | 179.0348 (74.6%); 149.0089 (41%); 135.0451 (100%); 87.0085 (27.5%) | caftaric acid |
4.6 | C22H24N4O4 | 407.1714 | 2.6 | 203.0818 (100%); 159.0918 (4.3%); 142.0661 (5.9%); 116.0503 (22.8%) | Phe Trp Gly (in any order) |
4.7 | C11H12N2O2 | 203.0825 | 0.4 | 142.0667 (26.6%); 116.0505 (100%); 74.0249 (10.3%) | tryptophan |
4.7 | C30H26O12 | 577.1343 | 1.6 | 451.1024 (8.9%); 425.0866 (18.3%); 407.0768 (54.5%); 289.0714 (100%); 161.0244 (13.3%); 137.0234 (8.9%); 125.0243 (35.8%); 123.0448 (10.5%); | procyanidin B2 |
5.0 | C7H12O5 | 175.0609 | 1.6 | 113.0618 (18.4%); 101.0604 (8.4%); 85.0663 (24.1%); 69.0345 (14.9%) | 3-isopropylmalic acid |
5.0 | C13H12O8 | 295.0453 | 2.1 | 163.0391 (41.3%); 149.0086 (84.1%); 119.0501 (100%); 87.0087 (16.8%) | cis-coutaric acid |
5.1 | C7H12O5 | 175.0610 | 0.9 | 131.0708 (2.9%); 115.0401 (81.3%); 113.0607 (44.8%); 85.0656 (100%); 59.0143 (22.7%) | 2-isopropylmalic acid |
5.1 | C9H8O3 | 163.0401 | 0.1 | 119.0504 (100%); 117.0349 (9.4%); 93.0341 (9.7%) | 2-hydroxycinnamic acid |
5.2 | C15H18O8 | 325.0923 | 1.7 | 163.0400 (69.9%); 119.0501 (100%); 93.0349 (8.3%) | melilotoside |
5.4 | C23H24O12 | 491.1198 | −0.6 | 343.0832 (7.9%); 331.0809 (17.3%); 329.0654 (100%); 313.0362 (13%) | malvidin-3-O-glucoside |
5.5 | C19H28O12 | 447.1505 | 0.8 | 401.1455 (91.3%); 269.1033 (100%); 161.0452 (36.2%); 101.0244 (14.7%); 89.0242 (10.1%) | 4-methoxyphenyl 4-O-(b-D-galactopyranosyl)-b-D-glucopyranoside |
5.6 | C15H14O6 | 289.0719 | −0.6 | 245.0820 (43.2%); 221.0829 (36.6%); 203.0723 (65.1%); 179.0357 (33.2%); 165.0207 (17.4%); 151.0395 (84.4%); 149.0237 (38.2%); 137.0244 (52.1%); 123.0461 (94.7%); 109.0296 (100%); | catechin |
6.0 | C14H18O9 | 329.0878 | 0.8 | 167.0348 (100%); 123.0449 (17.2%); 81.0343 (10.3%) | vanillic acid glucoside |
6.1 | C21H20O13 | 479.0824 | 1.5 | 479.0823 (31.2%); 317.0283 (26.4%); 287.0197 (11.6%); | myricetin 3-glucoside |
6.1 | C6H12O3 | 131.0712 | 0.9 | 113.0621 (6.2%); 85.0666 (37.7%); | hydroxyhexanoic acid |
6.5 | C21H18O13 | 477.0672 | 0.5 | 301.0356 (100%); 151.0029 (4.1%); 109.0296 (2.3%) | quercetin 3-O-glucuronide |
6.5 | C21H20O12 | 463.0880 | 0.4 | 463.0870 (30.9%); 301.0335 (63.4%); 271.0246 (25.8%); 255.0290 (9%); 243.0295 (16.5%) | quercetin 3-O-glucoside |
6.6 | C22H22O13 | 493.0989 | −0.2 | 493.0969 (23%); 463.0856 (12.3%); 331.0432 (47.6%); 330.0374 (100%); 315.0143 (10.4%); 287.0189 (15.8%); 203.0343 (22.6%) | laricitrin 3-O-glucoside |
6.8 | C15H12O7 | 303.0511 | −0.2 | 285.0360 (4.3%); 275.0552 (5.1%); 229.0133 (31.1%); 217.0493 (10.2%); 153.0181 (36%); 152.0115 (20.8%); 151.0401 (25.6%); 151.0026 (19.5%); 125.0245 (100%); | taxifolin |
6.9 | C21H20O11 | 447.0938 | −1.1 | 447.0928 (44.1%); 285.0385 (44%); 255.0301 (29.9%); 227.0351 (57.8%); 183.0446 (15%) | chrysanthemin |
7.0 | C23H24O13 | 507.1139 | 1.1 | 507.1144 (100%); 387.0689 (2.3%); 345.0597 (25.1%); 329.0280 (4.3%); 301.0347 (5.1%); 273.0404 (6%); 234.0507 (1.2%); 151.0032 (4.2%) | syringetin-3-O-glucoside |
7.0 | C22H22O12 | 477.1026 | 2.7 | 477.1024 (100%); 315.0487 (22.5%); 271.0237 (26.6%); 243.0291 (32.5%); 201.0184 (10.5%); 199.0399 (14.2%) | isorhamnetin 3-glucoside |
7.3 | C20H22O8 | 389.1241 | 0.1 | 227.0716 (100%); 185.0604 (3.0%); 143.0504 (6.5%) | piceid |
7.5 | C15H10O8 | 317.0302 | 0.2 | 317.0299 (13.4%); 178.9983 (84.8%); 165.0193 (11.2%); 151.0037 (100%); 137.0244 (83%); 109.0303 (13.9%); 107.0139 (11.1%) | myricetin |
7.9 | C7H6O3 | 137.0241 | 2.5 | 93.0339 (100%); 65.0403 (11.3%) | salicylic acid |
8.5 | C15H10O7 | 301.0354 | 0.0 | 301.0337 (11.9%); 151.0040 (100%); 149.0250 (10.7%); 121.0304 (28.1%); 107.0140 (14.3%); | quercetin |
8.7 | C14H12O3 | 227.0713 | 0.3 | 227.0716 (17.2%); 185.0595 (27.0%); 183.0794 (13.0%); 182.0736 (31.8%); 157.0660 (10.4%); 143.0496 (100%); | cis-resveratrol |
8.9 | C11H12O4 | 207.0664 | −0.5 | 207.0666 (10.3%); 179.0359 (12.3%); 161.0244 (51.1%); 135.0452 (100%); 133.0295 (71.2%) | ferulic acid |
9.3 | C15H12O5 | 271.0616 | −1.4 | 271.0600 (8.1%); 227.1283 (22.9%); 187.0405 (13.5%); 177.0177 (6.8%); 169.0144 (10.7%); 165.1283 (13.3%); 151.0048 (40.4%); 145.0302 (5.1%); 119.0501 (100%) | naringenin |
9.4 | C15H10O6 | 285.0403 | 0.7 | 285.0399 (100%) | kaempferol |
9.5 | C16H12O7 | 315.0508 | 0.8 | 315.0516 (13.1%); 151.0035 (15.1%) | isorhamnetin |
10.1 | C11H12O3 | 191.0714 | −0.2 | 163.0408 (2.1%); 145.0300 (33.0%); 119.0509 (33.1%); 117.0348 (100%) | ethyl coumarate |
S1 | S2 | Effect | |
---|---|---|---|
Clarity/brightness | 8.4 ± 0.08 | 8.4 ± 0.08 | ns |
Color intensity | 8.1 ± 0.08 b | 7.4 ± 0.16 a | ** |
Color quality | 8.3 ± 0.00 b | 7.6 ± 0.08 a | *** |
Red fruits/berries | 5.2 ± 0.08 b | 1.8 ± 1.26 a | *** |
Nutty and dried fruits | 2.7 ± 0.47 b | 1.5 ± 0.39 a | *** |
Jelly/jam | 2.7 ± 0.24 b | 1.2 ± 0.24 a | *** |
Dried vegetable | 1.4 ± 0.63 | 2.0 ± 0.63 | ns |
Spices | 1.4 ± 0.31 | 1.1 ± 0.16 | ns |
Chocolate/coffee | 0.2 ± 0.16 a | 0.4 ± 0.00 b | * |
Smoke | 1.0 ± 0.16 | 1.3 ± 0.08 | ns |
Wood | 1.2 ± 0.16 | 1.0 ± 0.47 | ns |
Vanilla | 0.1 ± 0.00 | 0.3 ± 0.16 | ns |
Positive intensity | 6.8 ± 0.16 b | 3.3 ± 0.86 a | *** |
Acid | 4.4 ± 0.24 b | 3.8 ± 0.08 a | * |
Sweet | 2.6 ± 0.08 b | 1.7 ± 0.08 a | *** |
Bitter | 2.6 ± 0.00 | 2.2 ± 0.00 | ns |
Astringency | 4.2 ± 0.00 b | 3.2 ± 0.47 a | *** |
Body | 5.8 ± 0.16 b | 4.1 ± 0.24 a | *** |
Complexity | 6.2 ± 0.08 b | 3.6 ± 0.31 a | *** |
Harmonious persistence | 6.6 ± 0.08 b | 4.1 ± 0.63 a | *** |
Overall quality (0 a 20) | 13.9 ± 0.20 b | 9.6 ± 1.26 a | *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baleiras-Couto, M.M.; Guedes, R.; Duarte, F.L.; Fortes, A.M.; Serralheiro, M.-L. Untargeted Metabolomics Discriminates Grapes and Wines from Two Syrah Vineyards Located in the Same Wine Region. Fermentation 2023, 9, 145. https://doi.org/10.3390/fermentation9020145
Baleiras-Couto MM, Guedes R, Duarte FL, Fortes AM, Serralheiro M-L. Untargeted Metabolomics Discriminates Grapes and Wines from Two Syrah Vineyards Located in the Same Wine Region. Fermentation. 2023; 9(2):145. https://doi.org/10.3390/fermentation9020145
Chicago/Turabian StyleBaleiras-Couto, M. Margarida, Rita Guedes, Filomena L. Duarte, Ana Margarida Fortes, and Maria-Luísa Serralheiro. 2023. "Untargeted Metabolomics Discriminates Grapes and Wines from Two Syrah Vineyards Located in the Same Wine Region" Fermentation 9, no. 2: 145. https://doi.org/10.3390/fermentation9020145
APA StyleBaleiras-Couto, M. M., Guedes, R., Duarte, F. L., Fortes, A. M., & Serralheiro, M. -L. (2023). Untargeted Metabolomics Discriminates Grapes and Wines from Two Syrah Vineyards Located in the Same Wine Region. Fermentation, 9(2), 145. https://doi.org/10.3390/fermentation9020145