Removal Ability of Bacillus licheniformis on Waxy Cuticle on Wheat Straw Surface
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Test Scheme
2.2.1. Isolation and Identification of Strains
- 1.
- Screening and isolation of strains
- 2.
- Treatment of wheat straw using shaking flask fermentation of strain
- 3.
- Identification of strain
2.2.2. Characterization of Basic Physical and Chemical Properties of WS
2.2.3. Paper Forming Experiment of WS
3. Results
3.1. Isolation, Screening, and Identification of Strains
3.2. SEM-EDX
3.3. FTIR, XPS Spectra, and Contact Angle
3.4. Paper Forming Experiment
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Maraveas, C. Production of Sustainable and Biodegradable Polymers from Agricultural Waste. Polymers 2020, 12, 1127. [Google Scholar] [CrossRef] [PubMed]
- Puitel, A.C.; Moisei, N.; Tofanica, B.M. Gavrilescu D: Turning wheat straw in a sustainable raw material for paper industry. Environ. Eng. Manag. J. 2017, 16, 1027–1032. [Google Scholar] [CrossRef]
- Wang, G.; Gavala, H.N.; Skiadas, I.V.; Ahring, B.K. Wet explosion of wheat straw and codigestion with swine manure: Effect on the methane productivity. Waste Manag. 2009, 29, 2830–2835. [Google Scholar] [CrossRef] [PubMed]
- Chen, X. Economic potential of biomass supply from crop residues in China. Appl. Energy 2016, 166, 141–149. [Google Scholar] [CrossRef]
- Li, X.; Huang, Y.; Gong, J.; Zhang, X. A study of the development of bio-energy resources and the status of eco-society in China. Energy 2010, 35, 4451–4456. [Google Scholar] [CrossRef]
- Dai, L.; Lu, J.; Kong, F.; Liu, K.; Wei, H.; Si, C. Reversible photo-controlled release of bovine serum albumin by azobenzene-containing cellulose nanofibrils-based hydrogel. Adv. Compos. Hybrid Mater. 2019, 2, 462–470. [Google Scholar] [CrossRef]
- Gao, W.; Tabil, L.G.; Dumonceaux, T.; Espinel Ríos, S.; Zhao, R. Optimization of biological pretreatment to enhance the quality of wheat straw pellets. Biomass Bioenergy 2017, 97, 77–89. [Google Scholar] [CrossRef]
- García, J.C.; Díaz, M.J.; Garcia, M.T.; Feria, M.J.; Gómez, D.M.; López, F. Search for optimum conditions of wheat straw hemicelluloses cold alkaline extraction process. Biochem. Eng. J. 2013, 71, 127–133. [Google Scholar] [CrossRef] [Green Version]
- Xu, H.; Chen, K.; Zhang, L.; Wu, Y. Synchronous silicon removal and viscosity reduction in the soda-oxygen pulping of wheat straw. Cellulose 2021, 28, 9081–9089. [Google Scholar] [CrossRef]
- Jiang, H.; Zhang, Y.; Wang, X. Effect of lipases on the surface properties of wheat straw. Ind. Crop. Prod. 2009, 30, 304–310. [Google Scholar] [CrossRef]
- Canizares, D.; Angers, P.; Ratti, C. Flax and wheat straw waxes: Material characterization, process development, and industrial applications. Biomass Convers. Biorefin. 2019, 10, 555–565. [Google Scholar] [CrossRef]
- Ghazanfar, M.; Irfan, M.; Nadeem, M.; Shakir, H.; Khan, M.; Ahmad, I.; Saeed, S.; Chen, Y.; Chen, L. Bioethanol Production Optimization from KOH-Pretreated Bombax ceiba Using Saccharomyces cerevisiae through Response Surface Methodology. Fermentation 2022, 8, 148. [Google Scholar] [CrossRef]
- Gupta, G.K.; Dixit, M.; Kapoor, R.K.; Shukla, P. Xylanolytic Enzymes in Pulp and Paper Industry: New Technologies and Perspectives. Mol. Biotechnol. 2022, 64, 130–143. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Jiang, X.; Shen, X.; Hu, J.; Tang, W.; Wu, X.; Ragauskas, A.; Jameel, H.; Meng, X.; Yong, Q. Lignin-enzyme interaction: A roadblock for efficient enzymatic hydrolysis of lignocellulosics. Renew. Sustain. Energy Rev. 2022, 154, 111822. [Google Scholar] [CrossRef]
- Lin, W.; Yang, J.; Zheng, Y.; Huang, C.; Yong, Q. Understanding the effects of different residual lignin fractions in acid-pretreated bamboo residues on its enzymatic digestibility. Biotechnol. Biofuels 2021, 14, 143. [Google Scholar] [CrossRef]
- Xu, R.; Du, H.; Liu, C.; Liu, H.; Wu, M.; Zhang, X.; Si, C.; Li, B. An efficient and magnetic adsorbent prepared in a dry process with enzymatic hydrolysis residues for wastewater treatment. J. Clean. Prod. 2021, 313, 127834. [Google Scholar] [CrossRef]
- Shen, J.-h.; Liu, Z.-m.; Li, J.; Niu, J. Wettability changes of wheat straw treated with chemicals and enzymes. J. For. Res. 2011, 22, 107–110. [Google Scholar] [CrossRef]
- Wang, Y.; Ji, X.-X.; Liu, S.; Tian, Z.; Si, C.; Wang, R.; Yang, G.; Wang, D. Effects of two different enzyme treatments on the microstructure of outer surface of wheat straw. Adv. Compos. Hybrid Mater. 2022, 5, 934–947. [Google Scholar] [CrossRef]
- Wei, S.; Liu, K.; Ji, X.; Wang, T.; Wang, R. Application of enzyme technology in biopulping and biobleaching. Cellulose 2021, 28, 10099–10116. [Google Scholar] [CrossRef]
- Ferraro, A.; Dottorini, G.; Massini, G.; Mazzurco Miritana, V.; Signorini, A.; Lembo, G.; Fabbricino, M. Combined bioaugmentation with anaerobic ruminal fungi and fermentative bacteria to enhance biogas production from wheat straw and mushroom spent straw. Bioresour. Technol. 2018, 260, 364–373. [Google Scholar] [CrossRef]
- Kim, H.; Choi, D.; Suh, M.C. Cuticle ultrastructure, cuticular lipid composition, and gene expression in hypoxia-stressed Arabidopsis stems and leaves. Plant Cell Rep. 2017, 36, 815–827. [Google Scholar] [CrossRef] [PubMed]
- Yeats, T.H.; Rose, J.K. The formation and function of plant cuticles. Plant Physiol. 2013, 163, 5–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, Y.; Pu, W.; Zhang, M. New process of non-wood cooking and silicon removal and its mechanism. Pap. Papermak. 2021, 28, 10099–10116. [Google Scholar]
- Vasco-Correa, J.; Shah, A. Techno-Economic Bottlenecks of the Fungal Pretreatment of Lignocellulosic Biomass. Fermentation 2019, 5, 30. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Q.; Zhou, T.; Wang, Y.; Cao, X.; Wu, S.; Zhao, M.; Wang, H.; Xu, M.; Zheng, B.; Zheng, J.; et al. Pretreatment of wheat straw leads to structural changes and improved enzymatic hydrolysis. Sci. Rep. 2018, 8, 1321. [Google Scholar] [CrossRef] [Green Version]
- Sinn, G.; Reiterer, A. Stanzl-Tschegg SE: Surface analysis of different wood species using X-ray photoelectron spectroscopy (xps). J. Mater. Sci. 2001, 36, 4673–4680. [Google Scholar] [CrossRef]
- Xie, Z.; Tian, Z.; Liu, S.; Ma, H.; Ji, X.-X.; Si, C. Effects of different amounts of cellulase on the microstructure and soluble substances of cotton stalk bark. Adv. Compos. Hybrid Mater. 2022, 5, 1294–1306. [Google Scholar] [CrossRef]
- Bañuls-Ciscar, J.; Pratelli, D.; Abel, M.-L.; Watts, J.F. Surface characterisation of pine wood by XPS. Surf. Interface Anal. 2016, 48, 589–592. [Google Scholar] [CrossRef]
- Dai, X.; Hua, Y.; Liu, R.; Chen, S.; Li, H.; Dai, L.; Cai, C. Biomethane production by typical straw anaerobic digestion: Deep insights of material compositions and surface properties. Bioresour. Technol. 2020, 313, 123643. [Google Scholar] [CrossRef]
- Fang, J.M.; Fowler, P.; Tomkinson, J. Hill CAS: Preparation and characterisation of methylated hemicelluloses from wheat straw. Carbohydr. Polym. 2002, 47, 285–293. [Google Scholar] [CrossRef]
- Morán, J.I.; Alvarez, V.A.; Cyras, V.P.; Vázquez, A. Extraction of cellulose and preparation of nanocellulose from sisal fibers. Cellulose 2007, 15, 149–159. [Google Scholar] [CrossRef]
- Frost, R.L.; Mendelovici, E. Modification of fibrous silicates surfaces with organic derivatives: An infrared spectroscopic study. J. Colloid Interface Sci. 2006, 294, 47–52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Das, G.; Bettotti, P.; Ferraioli, L.; Raj, R.; Mariotto, G.; Pavesi, L.; Sorarù, G.D. Study of the pyrolysis process of an hybrid CH3SiO1.5 gel into a SiCO glass. Vib. Spectrosc. 2007, 45, 61–68. [Google Scholar] [CrossRef]
- Subramanian, K.; Senthil Kumar, P.; Jeyapal, P.; Venkatesh, N. Characterization of ligno-cellulosic seed fibre from Wrightia Tinctoria plant for textile applications—An exploratory investigation. Eur. Polym. J. 2005, 41, 853–861. [Google Scholar] [CrossRef]
- Jahan, M.S.; Chowdhury, D.A.; Islam, M.K.; Moeiz, S.M. Characterization of lignin isolated from some nonwood available in Bangladesh. Bioresour. Technol. 2007, 98, 465–469. [Google Scholar] [CrossRef] [PubMed]
- Boquillon, N.; Elbez, G.r.; SchÖnfeld, U. Properties of wheat straw particleboards bonded with different types of resin. J. Wood Sci. 2004, 50, 230–235. [Google Scholar] [CrossRef]
- Yang, F.; Hou, Y.; Zhang, H.; Qian, X.; Cheng, H.; Zhang, F.; Li, X. Functionalized fine fibers are used to improve the binding performance of high yield pulp fibers. J. Tianjin Univ. Sci. Technol. 2022, 5, 1294–1306. [Google Scholar]
Sample | C1s (%) | O1s (%) | O/C | C1: C-C/C-H (%C1s) | C1: C-O (%C1s) | C3: C=O (%C1s) | C4: COOH (%C1s) |
---|---|---|---|---|---|---|---|
Native | 82.94 | 17.06 | 0.21 | 74.56 | 22.03 | 1.84 | 1.57 |
Control | 86.02 | 13.98 | 0.16 | 78.32 | 18.29 | 1.84 | 1.55 |
Treated | 75.92 | 24.08 | 0.32 | 42.55 | 43.46 | 10.01 | 3.98 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, Y.; Ji, X.; Liang, Y.; Tian, Z. Removal Ability of Bacillus licheniformis on Waxy Cuticle on Wheat Straw Surface. Fermentation 2022, 8, 636. https://doi.org/10.3390/fermentation8110636
Luo Y, Ji X, Liang Y, Tian Z. Removal Ability of Bacillus licheniformis on Waxy Cuticle on Wheat Straw Surface. Fermentation. 2022; 8(11):636. https://doi.org/10.3390/fermentation8110636
Chicago/Turabian StyleLuo, Yanpeng, Xingxiang Ji, Yi Liang, and Zhongjian Tian. 2022. "Removal Ability of Bacillus licheniformis on Waxy Cuticle on Wheat Straw Surface" Fermentation 8, no. 11: 636. https://doi.org/10.3390/fermentation8110636
APA StyleLuo, Y., Ji, X., Liang, Y., & Tian, Z. (2022). Removal Ability of Bacillus licheniformis on Waxy Cuticle on Wheat Straw Surface. Fermentation, 8(11), 636. https://doi.org/10.3390/fermentation8110636