Antibacterial and Antibiofilm Potential of Microbial Polysaccharide Overlaid Zinc Oxide Nanoparticles and Selenium Nanowire
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Microbial Activity
2.2.1. Minimum Inhibitory Concentration (MIC) of EPS, EPS-Zn O NPs and EPS-Se NWs
2.2.2. Live/Dead Assay in the Presence of EPS, EPS-ZnO NPs and EPS-Se NWs
2.2.3. Antibacterial Activity of EPS, EPS-ZnO NPs and EPS-Se NWs
2.2.4. Evaluation of EPS, EPS-ZnO NPs, and EPS-Se NWs for Antibiofilm Activity
2.3. Toxicity Effect on Aquatic Organisms
2.3.1. Zebrafish (Danio rerio) Embryo Assay
2.3.2. Ceriodaphnia cornuta Assay
2.4. Statistical Analysis
3. Results
3.1. Microbial Activity
3.1.1. MIC of EPS, EPS-ZnO NPs and EPS-Se NWs
3.1.2. Live/Dead Assay in the Presence of EPS, EPS-ZnO NPs and EPS-Se NWs
3.1.3. Antibacterial Activity of EPS, EPS-ZnO NPs and EPS-Se NWs
3.1.4. Antibiofilm Activity of EPS, EPS-ZnO NPs and EPS-Se NWs
3.2. Toxicity Effect on Aquatic Organisms
3.2.1. Zebrafish (Danio rerio) Embryo Assay
3.2.2. Ceriodaphnia cornuta Assay
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hendren, C.O.; Mesnard, X.; Dröge, J.; Wiesner, M.R. Estimating production data for five engineered nanomaterials as a basis for exposure assessment. Environ. Sci. Technol. 2011, 45, 2562–2569. [Google Scholar] [CrossRef]
- Maurer-Jones, M.A.; Gunsolus, I.L.; Murphy, C.J.; Haynes, C.L. Toxicity of engineered nanoparticles in the environment. Anal. Chem. 2013, 85, 3036–3049. [Google Scholar] [CrossRef] [Green Version]
- Vance, M.E.; Kuiken, T.; Vejerano, E.P.; McGinnis, S.P.; Hochella, M.F., Jr.; Rejeski, D.; Hull, M.S. Nanotechnology in the real world: Redeveloping the nanomaterial consumer products inventory. Beilstein J. Nanotechnol. 2015, 6, 1769–1780. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martin, J.D.; Telgmann, L.; Metcalfe, C.D. A method for preparing silver nanoparticle suspensions in bulk for ecotoxicity testing and ecological risk assessment. Bull. Environ. Contam. Toxicol. 2017, 98, 589–594. [Google Scholar] [CrossRef]
- Bundschuh, M.; Filser, J.; Lüderwald, S.; McKee, M.S.; Metreveli, G.; Schaumann, G.E.; Schulz, R.; Wagner, S. Nanoparticles in the environment: Where do we come from, where do we go to? Environ. Sci. Eur. 2018, 30, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Batley, G.E.; Kirby, J.K.; McLaughlin, M.J. Fate and risks of nanomaterials in aquatic and terrestrial environments. Acc. Chem. Res. 2013, 46, 854–862. [Google Scholar] [CrossRef] [PubMed]
- Keller, A.A.; McFerran, S.; Lazareva, A.; Suh, S. Global life cycle releases of engineered nanomaterials. J. Nanoparticle Res. 2013, 15, 1–17. [Google Scholar] [CrossRef]
- Nam, S.H.; Shin, Y.J.; Lee, W.M.; Kim, S.W.; Kwak, J.I.; Yoon, S.J.; An, Y.J. Conducting a battery of bioassays for gold nanoparticles to derive guideline value for the protection of aquatic ecosystems. Nanotoxicology 2015, 9, 326–335. [Google Scholar] [CrossRef]
- Garner, K.L.; Suh, S.; Lenihan, H.S.; Keller, A.A. Species sensitivity distributions for engineered nanomaterials. Environ. Sci. Technol. 2015, 49, 5753–5759. [Google Scholar] [CrossRef] [Green Version]
- Kahru, A.; Dubourguier, H.C. From ecotoxicology to nanoecotoxicology. Toxicology 2010, 269, 105–119. [Google Scholar] [CrossRef]
- Mendonça, E.; Diniz, M.; Silva, L.; Peres, I.; Castro, L.; Correia, J.B.; Picado, A. Effects of diamond nanoparticle exposure on the internal structure and reproduction of Daphnia magna. J. Hazard. Mater. 2011, 186, 265–271. [Google Scholar] [CrossRef] [PubMed]
- Moscovici, M. Present and future medical applications of microbial exopolysaccharides. Front. Microbiol. 2015, 6, 1012. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Freitas, F.; Alves, V.D.; Reis, M.A. Advances in bacterial exopolysaccharides: From production to biotechnological applications. Trends Biotechnol. 2011, 29, 388–398. [Google Scholar] [CrossRef]
- Yildiz, H.; Karatas, N. Microbial exopolysaccharides: Resources and bioactive properties. Process Biochem. 2018, 72, 41–46. [Google Scholar] [CrossRef]
- Abinaya, M.; Vaseeharan, B.; Divya, M.; Sharmili, A.; Govindarajan, M.; Alharbi, N.S.; Kadaikunnan, S.; Khaled, J.M.; Benelli, G. Bacterial exopolysaccharide (EPS)-coated ZnO nanoparticles showed high antibiofilm activity and larvicidal toxicity against malaria and Zika virus vectors. J. Trace Elem. Med. Biol. 2018, 45, 93–103. [Google Scholar] [CrossRef]
- Abinaya, M.; Vaseeharan, B.; Divya, M.; Vijayakumar, S.; Govindarajan, M.; Alharbi, N.S.; Kadaikunnan, S.; Khaled, J.M.; Benelli, G. Structural characterization of Bacillus licheniformis Dahb1 exopolysaccharide—Antimicrobial potential and larvicidal activity on malaria and Zika virus mosquito vectors. Environ. Sci. Pollut. Res. 2018, 25, 18604–18619. [Google Scholar] [CrossRef] [PubMed]
- Abinaya, M.; Vaseeharan, B.; Rekha, R.; Shanthini, S.; Govindarajan, M.; Alharbi, N.S.; Kadaikunnan, S.; Khaled, J.M.; Al-Anbr, M.N. Microbial exopolymer-capped selenium nanowires—Towards new antibacterial, antibiofilm and arbovirus vector larvicides? J. Photochem. Photobiol. Biol. 2019, 192, 55–67. [Google Scholar] [CrossRef]
- Sarker, S.D.; Nahar, L.; Kumarasamy, Y. Microtitre plate-based antibacterial assay incorporating resazurin as an indicator of cell growth, and its application in the in vitro antibacterial screening of phytochemicals. Methods 2007, 42, 321–324. [Google Scholar] [CrossRef]
- Elshikh, M.; Ahmed, S.; Funston, S.; Dunlop, P.; McGaw, M.; Marchant, R.; Banat, I.M. Resazurin-based 96-well plate microdilution method for the determination of minimum inhibitory concentration of biosurfactants. Biotechnol. Lett. 2016, 38, 1015–1019. [Google Scholar] [CrossRef] [Green Version]
- Stiefel, P.; Schmidt-Emrich, S.; Maniura-Weber, K.; Ren, Q. Critical aspects of using bacterial cell viability assays with the fluorophores SYTO9 and propidium iodide. BMC Microbiol. 2015, 15, 36. [Google Scholar] [CrossRef]
- Velusamy, P.; Das, J.; Pachaiappan, R.; Vaseeharan, B.; Pandian, K. Greener approach for synthesis of antibacterial silver nanoparticles using aqueous solution of neem gum (Azadirachta indica L.). Ind. Crops Prod. 2015, 66, 103–109. [Google Scholar] [CrossRef]
- Perez, C.; Pauli, M.; Bazerque, P. An antibiotic assay by the well agar method. Acta Biol. Med. Exp. 1990, 15, 113–115. [Google Scholar]
- Divya, M.; Vaseeharan, B.; Abinaya, M.; Vijayakumar, S.; Govindarajan, M.; Alharbi, N.S.; Kadaikunnan, S.; Khaled, J.M.; Benelli, G. Biopolymer gelatin-coated zinc oxide nanoparticles showed high antibacterial, antibiofilm and anti-angiogenic activity. J. Photochem. Photobiol. Biol. 2018, 178, 211–218. [Google Scholar] [CrossRef] [PubMed]
- Ishwarya, R.; Vaseeharan, B.; Anuradha, R.; Rekha, R.; Govindarajan, M.; Alharbi, N.S.; Kadaikunnan, S.; Khaled, J.M.; Benelli, G. Eco-friendly fabrication of Ag nanostructures using the seed extract of Pedalium murex, an ancient Indian medicinal plant: Histopathological effects on the Zika virus vector Aedes aegypti and inhibition of biofilm-forming pathogenic bacteria. J. Photochem. Photobiol. Biol. 2017, 174, 133–143. [Google Scholar] [CrossRef] [PubMed]
- Dulay, R.M.; Kalaw, S.P.; Reyes, R.G.; Cabrera, E.C. Embryo-toxic and teratogenic effects of Philippine strain of Lentinus tigrinus (tiger sawgill basidiomycetes) extract on zebrafish (Danio rerio) embryos. Ann. Biol. Res. 2014, 5, 9–14. [Google Scholar]
- OECD. OECD Guideline for Testing of Chemicals; Organization for Economic Cooperation and Development: Paris, France, 1992; p. 420. [Google Scholar]
- US Environmental Protection Agency. Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms, 5th ed.; US EPA: Washington, DC, USA, 2002; pp. 232–266.
- Ferrando, M.D.; Sancho, E.; Andreu-Moliner, E. Effects of lindane on Daphnia magna during chronic exposure. J. Environ. Sci. Health 1995, 30, 815–825. [Google Scholar] [CrossRef]
- Bischoff, H.W.; Bold, H.C. Phycological studies. IV. Some Algae from Enchanted Rock and Related Algal Species. Univ. Tex. Publ. 1963, 6318, 95. [Google Scholar]
- Vijayakumar, S.; Malaikozhundan, B.; Ramasamy, P.; Vaseeharan, B. Assessment of biopolymer stabilized silver nanoparticle for their ecotoxicity on Ceriodaphnia cornuta and antibiofilm activity. J. Environ. Chem. Eng. 2016, 4, 2076–2083. [Google Scholar] [CrossRef]
- Shakibaie, M.; Forootanfar, H.; Golkari, Y.; Mohammadi-Khorsand, T.; Shakibaie, M.R. Anti-biofilm activity of biogenic selenium nanoparticles and selenium dioxide against clinical isolates of Staphylococcus aureus, Pseudomonas aeruginosa, and Proteus mirabilis. J. Trace Elem. Med. Biol. 2015, 29, 235–241. [Google Scholar] [CrossRef]
- Shoeibi, S.; Mashreghi, M. Biosynthesis of selenium nanoparticles using Enterococcus faecalis and evaluation of their antibacterial activities. J. Trace Elem. Med. Biol. 2017, 39, 135–139. [Google Scholar] [CrossRef]
- Mahendran, S.; Saravanan, S.; Vijayabaskar, P.; Anandapandian, K.T.K.; Shankar, T. Antibacterial potential of microbial exopolysaccharide from Ganoderm alucidum and lysine Bacillus fusiformis. Int. J. Recent Sci. Res. 2013, 4, 501–505. [Google Scholar]
- Kanmani, P.; Yuvaraj, N.; Paari, K.A.; Pattukumar, V.; Arul, V. Production and purification of a novel exopolysaccharide from lactic acid bacterium Streptococcus phocae PI80 and its functional characteristics activity in vitro. Bioresour. Technol. 2011, 102, 4827–4833. [Google Scholar] [CrossRef] [PubMed]
- Vijayabaskar, P.; Babinastarlin, S.; Shankar, T.; Sivakumar, T.; Anandapandian, K.T.K. Quantification and Characterization of Exopolysaccharides from Bacillus subtilis (MTCC 121). Adv. Biol. Res. 2011, 5, 71–76. [Google Scholar]
- Nazzaro, F.; Fratianni, F.; De Martino, L.; Coppola, R.; De Feo, V. Effect of essential oils on pathogenic bacteria. Pharmaceuticals 2013, 6, 1451–1474. [Google Scholar] [CrossRef]
- Zhang, L.L.; Jiang, Y.H.; Ding, Y.L.; Povey, M.; York, D. Investigation into the antibacterial behaviour of suspensions of ZnO nanoparticles (ZnO nanofluids). J. Nanopart. Res. 2007, 9, 479–489. [Google Scholar] [CrossRef]
- Stoimenov, P.K.; Klinger, R.L.; Marchin, G.L.; Klabunde, K.J. Metal oxide nanoparticles as bactericidal agents. Langmuir 2002, 18, 6679–6686. [Google Scholar] [CrossRef]
- Tran, P.A.; Webster, T.J. Selenium nanoparticles inhibit Staphylococcus aureus growth. Int. J. Nanomed. 2011, 6, 1553–1558. [Google Scholar] [CrossRef] [Green Version]
- Hong, W.Y.; Jeon, S.H.; Lee, E.S.; Cho, Y. An integrated multifunctional platform based on biotin-doped conducting polymer nanowires for cell capture, release, and electrochemical sensing. Biomaterials 2014, 35, 9573–9580. [Google Scholar] [CrossRef]
- Li, Y.Q.; Zhu, B.; Li, Y.; Leow, W.R.; Goh, R.; Ma, B.; Fong, E.; Tang, M.; Chen, X. A synergistic capture strategy for enhanced detection and elimination of bacteria. Angew. Chem. Int. Ed. 2014, 53, 5837–5841. [Google Scholar] [CrossRef]
- Liu, L.; Chen, S.; Xue, Z.; Zhang, Z.; Qiao, X.; Nie, Z.; Han, D.; Wang, J.; Wang, T. Bacterial capture efficiency in fluid bloodstream improved by bendable nanowires. Nat. Commun. 2018, 9, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Chen, L.; Liu, H.; Yang, G.; Zhang, P.; Han, D.; Wang, S.; Jiang, L. Bio-inspired soft polystyrene nanotube substrate for rapid and highly efficient breast cancer-cell capture. NPG Asia Mater. 2013, 5, e63. [Google Scholar] [CrossRef] [Green Version]
- Zon, L.I.; Peterson, R.T. In vivo drug discovery in the zebrafish. Nat. Rev. Drug Discov. 2005, 4, 35–44. [Google Scholar] [CrossRef] [PubMed]
- Asharani, P.V.; Wu, Y.L.; Gong, Z.; Valiyaveettil, S. Toxicity of silver nanoparticles in zebrafish models. Nanotechnology 2008, 19, 255102. [Google Scholar] [CrossRef] [PubMed]
- Ponrasu, T.; Ganeshkumar, M.; Suguna, L. Developmental toxicity evaluation of ethanolic extract of Annona squamosa in zebrafish (Danio rerio) embryo. J. Pharm. Res. 2012, 5, 277–279. [Google Scholar]
- Lovern, S.B.; Owen, H.A.; Klaper, R. Electron microscopy of gold nanoparticle intake in the gut of Daphnia magna. Nanotoxicology 2008, 2, 43–48. [Google Scholar] [CrossRef]
- Shanthi, S.; Jayaseelan, B.D.; Velusamy, P.; Vijayakumar, S.; Chih, C.T.; Vaseeharan, B. Biosynthesis of silver nanoparticles using a probiotic Bacillus licheniformis Dahb1 and their antibiofilm activity and toxicity effects in Ceriodaphnia cornuta. Microb. Pathog. 2016, 93, 70–77. [Google Scholar] [CrossRef]
- Manzo, S.; Miglietta, M.L.; Rametta, G.; Buono, S.; Di Francia, G. Toxic effects of ZnO nanoparticles towards marine algae Dunaliella tertiolecta. Sci. Total Environ. 2013, 445, 371–376. [Google Scholar] [CrossRef]
- Kool, P.L.; Ortiz, M.D.; Van Gestel, C.A. Chronic toxicity of ZnO nanoparticles, non-nano ZnO and ZnCl2 to Folsomia candida (Collembola) in relation to bioavailability in soil. Environ. Pollut. 2011, 159, 2713–2719. [Google Scholar] [CrossRef]
- Vijayakumar, S.; Vaseeharan, B.; Malaikozhundan, B.; Shobiya, M. Laurusnobilis leaf extract mediated green synthesis of ZnO nanoparticles: Characterization and biomedical applications. Biomed. Pharmacother. 2016, 84, 1213–1222. [Google Scholar] [CrossRef]
- Heinlaan, M.; Ivask, A.; Blinova, I.; Dubourguier, H.C.; Kahru, A. Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus. Chemosphere 2008, 71, 1308–1316. [Google Scholar] [CrossRef]
- Warheit, D.B.; Hoke, R.A.; Finlay, C.; Donner, E.M.; Reed, K.L.; Sayes, C.M. Development of a base set of toxicity tests using ultrafine TiO2 particles as a component of nanoparticle risk management. Toxicol. Lett. 2007, 171, 99–110. [Google Scholar] [CrossRef]
- Lovern, S.B.; Klaper, R. Daphnia magna mortality when exposed to titanium dioxide and fullerene (C60) nanoparticles. Environ. Toxicol. Chem. 2006, 25, 1132–1137. [Google Scholar] [CrossRef]
- Adam, N.; Schmitt, C.; Galceran, J.; Companys, E.; Vakurov, A.; Wallace, R.; Knapen, D.; Blust, R. The chronic toxicity of ZnO nanoparticles and ZnCl2 to Daphnia magna and the use of different methods to assess nanoparticle aggregation and dissolution. Nanotoxicology 2014, 8, 709–717. [Google Scholar] [CrossRef] [Green Version]
- Adams, W.J.; Biddinger, G.R.; Robillard, K.A.; Gorsuch, J. A summary of the acute toxicity of 14 phthalates esters to representative aquatic organisms. Environ. Toxicol. Chem. 1995, 14, 1569–1574. [Google Scholar] [CrossRef]
- Brown, D.; Croudace, C.P.; Williams, N.J.; Shearing, J.M.; Johnson, P.A. The effect of phthalate ester plasticisers tested as surfactant stabilized dispersions on the reproduction of the Daphnia magna. Chemosphere 1998, 36, 1367–1379. [Google Scholar] [CrossRef]
- Scanlan, L.D.; Loguinov, A.V.; Teng, Q.; Antczak, P.; Dailey, K.P.; Nowinski, D.T.; Kornbluh, J.; Lin, X.X.; Lachenauer, E.; Arai, A.; et al. Gene transcription, metabolite and lipid profiling in eco-indicator Daphnia magna indicate diverse mechanisms of toxicity by legacy and emerging flame-retardants. Environ. Sci. Technol. 2015, 49, 7400–7410. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, T.; Ban, Y.; Shen, C.; Shen, Q.; Chai, X.; Zhao, W.; Wei, J. Di-(2-ethylhexyl) phthalate exposure modulates antioxidant enzyme activity and gene expression in juvenile and adult Daphnia magna. Arch. Environ. Contam. Toxicol. 2018, 75, 145–156. [Google Scholar] [CrossRef] [PubMed]
- Cristale, J.; Vazquez, A.G.; Barata, C.; Lacorte, S. Priority and emerging flame retardants in rivers: Occurrence in water and sediment, Daphnia magna toxicity and risk assessment. Environ. Int. 2013, 59, 232–243. [Google Scholar] [CrossRef]
- Giraudo, M.; Douville, M.; Houde, M. Chronic toxicity evaluation of the flame retardant tris (2-butoxyethyl) phosphate (TBOEP) using Daphnia magna transcriptomic response. Chemosphere 2015, 132, 159–165. [Google Scholar] [CrossRef]
- Giraudo, M.; Dube, M.; Lepine, M.; Gagnon, P.; Douville, M.; Houde, M. Multigenerational effects evaluation of the flame retardant tris(2-butoxyethyl) phosphate (TBOEP) using Daphnia magna. Aquat. Toxicol. 2017, 190, 142–149. [Google Scholar] [CrossRef]
- Seyoum, A.; Pradhan, A. Effect of phthalates on development, reproduction, fat metabolism and lifespan in Daphnia magna. Sci. Total Environ. 2019, 654, 969–977. [Google Scholar] [CrossRef] [PubMed]
- Dao, T.S.; Nguyen, V.T.; Baduel, C.; Bui, M.H.; Tran, V.T.; Pham, T.L.; Bui, B.T.; Dinh, K.V. Toxicity of di-2-ethylhexyl phthalate and tris (2-butoxyethyl) phosphate to a tropical micro-crustacean (Ceriodaphnia cornuta) is higher in Mekong River water than in standard laboratory medium. Environ. Sci. Pollut. Res. Int. 2022, 29, 39777–39789. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Li, F.; Li, H.; Tong, Y.; Li, W.; Xiong, J.; You, J. Bioassay-based identification and removal of target and suspect toxicants in municipal wastewater: Impacts of chemical properties and transformation. J. Hazard. Mater. 2022, 437, 129426. [Google Scholar] [CrossRef] [PubMed]
- Prakash, V.; Jain, V.; Chauhan, S.S.; Parthasarathi, R.; Roy, S.K.; Anbumani, S. Developmental toxicity assessment of 4-MBC in Danio rerio embryo-larval stages. Sci. Total Environ. 2022, 804, 149920. [Google Scholar] [CrossRef] [PubMed]
Materials | Concentration (µg/mL) | Mortality (%) ± SD | LC50 (95% LCL-UCL) (µg/mL) | χ2 (d.f. = 4) |
---|---|---|---|---|
Exopolysaccharide (EPS) from probiotic B. licheniformis Dahb1 | 20 | 13.3 ± 0.58 | 90.32 (81.38–103.58) | 0.350 n.s |
40 | 23.3 ± 0.58 | |||
60 | 30.0 ± 1.00 | |||
80 | 43.3 ± 1.53 | |||
100 | 56.7 ± 1.15 | |||
Exopolysaccharides coated zinc oxide nanoparticles (EPS-ZnO NPs) | 20 | 20.0 ± 1.00 | 81.99 (73.26–94.43) | 0.205 n.s |
40 | 26.7 ± 0.58 | |||
60 | 36.7 ± 0.58 | |||
80 | 50.0 ± 1.00 | |||
100 | 60.0 ± 1.00 | |||
Exopolysaccharides capped selenium nanowires (EPS-Se NWs) | 20 | 33.3 ± 2.52 | 62.99 (53.05–73.70) | 2.025 n.s |
40 | 36.7 ± 0.58 | |||
60 | 50.0 ± 1.00 | |||
80 | 53.3 ± 0.58 | |||
100 | 70.0 ± 1.00 |
Materials | Pathogens | 25 µg/mL | 50 µg/mL | 75 µg/mL | 100 µg/mL |
---|---|---|---|---|---|
EPS | V. alginolyticus | 2.9 ± 0.4 | 5.9 ± 1.7 | 7.2 ± 1.5 | 9.3 ± 0.6 |
A. hydrophila | 3.7 ± 0.2 | 5.6 ± 1.3 | 8.2 ± 1.3 | 9.8 ± 0.3 | |
V. parahaemolyticus | 3.0 ± 0.2 | 5.3 ± 0.8 | 7.7 ± 0.7 | 9.6 ± 0.3 | |
V. harveyi (HQ693276) | 3.9 ± 0.2 | 5.2 ± 1.1 | 8.2 ± 0.4 | 8.2 ± 0.8 | |
EPS-ZnO NPs | V. alginolyticus | 3.2 ± 0.3 | 6.6 ± 0.5 | 8.3 ± 0.6 | 9.5 ± 0.3 |
A. hydrophila | 4.7 ± 0.2 | 7.6 ± 1.2 | 9.2 ± 0.8 | 9.9 ± 0.1 | |
V. parahaemolyticus | 3.9 ± 0.3 | 7.0 ± 0.3 | 8.7 ± 0.2 | 9.7 ± 0.3 | |
V. harveyi (HQ693276) | 3.4 ±1.0 | 5.5 ±1.0 | 5.7 ±1.0 | 9.3 ±0.8 | |
EPS-Se NWs | V. alginolyticus | 2.6 ±0.7 | 3.3 ±0.3 | 6.3 ±2.3 | 8.9 ± 0.6 |
A. hydrophila | 3.0 ±0.3 | 5.9 ±1.6 | 7.2 ±1.5 | 9.4 ±0.6 | |
V. parahaemolyticus | 3.07 ± 0.1 | 4.8 ± 0.3 | 6.5 ± 1.1 | 9.2 ± 0.7 | |
V. harveyi (HQ693276) | 1.2 ±0.2 | 2.5 ±0.6 | 5.1 ±0.9 | 8.2 ±0.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abinaya, M.; Gnanaprakasam, P.; Govindarajan, M.; Wadaan, M.A.; Mahboob, S.; Wadaan, A.M.; Manzoor, I.; Vaseeharan, B. Antibacterial and Antibiofilm Potential of Microbial Polysaccharide Overlaid Zinc Oxide Nanoparticles and Selenium Nanowire. Fermentation 2022, 8, 637. https://doi.org/10.3390/fermentation8110637
Abinaya M, Gnanaprakasam P, Govindarajan M, Wadaan MA, Mahboob S, Wadaan AM, Manzoor I, Vaseeharan B. Antibacterial and Antibiofilm Potential of Microbial Polysaccharide Overlaid Zinc Oxide Nanoparticles and Selenium Nanowire. Fermentation. 2022; 8(11):637. https://doi.org/10.3390/fermentation8110637
Chicago/Turabian StyleAbinaya, Muthukumar, Periyasamy Gnanaprakasam, Marimuthu Govindarajan, Mohammad Ahmad Wadaan, Shahid Mahboob, Arwa Mohammad Wadaan, Irfan Manzoor, and Baskaralingam Vaseeharan. 2022. "Antibacterial and Antibiofilm Potential of Microbial Polysaccharide Overlaid Zinc Oxide Nanoparticles and Selenium Nanowire" Fermentation 8, no. 11: 637. https://doi.org/10.3390/fermentation8110637
APA StyleAbinaya, M., Gnanaprakasam, P., Govindarajan, M., Wadaan, M. A., Mahboob, S., Wadaan, A. M., Manzoor, I., & Vaseeharan, B. (2022). Antibacterial and Antibiofilm Potential of Microbial Polysaccharide Overlaid Zinc Oxide Nanoparticles and Selenium Nanowire. Fermentation, 8(11), 637. https://doi.org/10.3390/fermentation8110637