Anaerobic Co-Digestion of Bioplastics and Food Waste under Mesophilic and Thermophilic Conditions: Synergistic Effect and Biodegradation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Substrate and Inoculum Preparation
2.2. Biochemical Methane Potential (BMP) Assay
2.3. Liquid and Solid Characteristics
2.4. Calculations
3. Results and Discussion
3.1. Mono-Digestion of Food Waste, PLA, and PHA
3.2. Co-Digestion and Its Synergistic Effect
3.3. Biodegradation of Bioplastics
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cucina, M.; De Nisi, P.; Trombino, L.; Tambone, F.; Adani, F. Degradation of bioplastics in organic waste by mesophilic anaerobic digestion, composting and soil incubation. Waste Manag. 2021, 134, 67–77. [Google Scholar] [CrossRef] [PubMed]
- Statista. Available online: https://www.statista.com/statistics/282732/global-production-of-plastics-since-1950/ (accessed on 10 November 2022).
- Bellasi, A.; Binda, G.; Pozzi, A.; Galafassi, S.; Volta, P.; Bettinetti, R. Microplastic contamination in freshwater environments: A review, focusing on interactions with sediments and benthic organisms. Environments 2020, 7, 30. [Google Scholar] [CrossRef] [Green Version]
- Unmar, G.; Mohee, R. Assessing the effect of biodegradable and degradable plastics on the composting of green wastes and compost quality. Bioresour. Technol. 2008, 99, 6738–6744. [Google Scholar] [CrossRef]
- Abraham, A.; Park, H.; Choi, O.; Sang, B.I. Anaerobic co-digestion of bioplastics as a sustainable mode of waste management with improved energy production—A review. Bioresour. Technol. 2021, 322, 124537. [Google Scholar] [CrossRef]
- Kakadellis, S.; Lee, P.H.; Harris, Z.M. Two Birds with One Stone: Bioplastics and Food Waste Anaerobic Co-Digestion. Environments 2022, 9, 9. [Google Scholar] [CrossRef]
- Brodhagen, M.; Goldberger, J.R.; Hayes, D.G.; Inglis, D.A.; Marsh, T.L.; Miles, C. Policy considerations for limiting unintended residual plastic in agricultural soils. Environ. Sci. Policy 2017, 69, 81–84. [Google Scholar] [CrossRef] [Green Version]
- Narodoslawsky, M.; Shazad, K.; Kollmann, R.; Schnitzer, H. LCA of PHA production–Identifying the ecological potential of bio-plastic. Chem. Biochem. Eng. Q. 2015, 29, 299–305. [Google Scholar] [CrossRef]
- Siracusa, V.; Rocculi, P.; Romani, S.; Dalla Rosa, M. Biodegradable polymers for food packaging: A review. Trends Food Sci. Technol. 2008, 19, 634–643. [Google Scholar] [CrossRef]
- Sudesh, K.; Abe, H.; Doi, Y. Synthesis, structure and properties of polyhydroxyalkanoates: Biological polyesters. Prog. Polym. Sci. 2000, 25, 1503–1555. [Google Scholar] [CrossRef]
- Yagi, H.; Ninomiya, F.; Funabashi, M.; Kunioka, M. Mesophilic anaerobic biodegradation test and analysis of eubacteria and archaea involved in anaerobic biodegradation of four specified biodegradable polyesters. Polym. Degrad. Stab. 2014, 110, 278–283. [Google Scholar] [CrossRef]
- Meeks, D.; Hottle, T.; Bilec, M.M.; Landis, A.E. Compostable biopolymer use in the real world: Stakeholder interviews to better understand the motivations and realities of use and disposal in the US. Resour. Conserv. Recycl. 2015, 105, 134–142. [Google Scholar] [CrossRef] [Green Version]
- Solano, G.; Rojas-Gätjens, D.; Rojas-Jimenez, K.; Chavarría, M.; Romero, R.M. Biodegradation of plastics at home composting conditions. Environ. Chall. 2022, 7, 100500. [Google Scholar] [CrossRef]
- Benn, N.; Zitomer, D. Pretreatment and anaerobic co-digestion of selected PHB and PLA bioplastics. Front. Environ. Sci. 2018, 5, 93. [Google Scholar] [CrossRef] [Green Version]
- Stieb, M.; Schink, B. A new 3-hydroxybutyrate fermenting anaerobe, Ilyobacter polytropus, gen. nov. sp. nov., possessing various fermentation pathways. Arch. Microbiol. 1984, 140, 139–146. [Google Scholar] [CrossRef]
- Yoshie, N.; Oike, Y.; Kasuya, K.I.; Doi, Y.; Inoue, Y. Change of surface structure of poly (3-hydroxybutyrate) film upon enzymatic hydrolysis by PHB depolymerase. Biomacromolecules 2002, 3, 1320–1326. [Google Scholar] [CrossRef] [PubMed]
- Shang, L.; Fei, Q.; Zhang, Y.H.; Wang, X.Z.; Fan, D.D.; Chang, H.N. Thermal properties and biodegradability studies of poly (3-hydroxybutyrate-co-3-hydroxyvalerate). J. Polym. Environ. 2012, 20, 23–28. [Google Scholar] [CrossRef] [Green Version]
- Venkiteshwaran, K.; Bocher, B.; Maki, J.; Zitomer, D. Relating anaerobic digestion microbial community and process function: Supplementary issue: Water microbiology. Microbiol. Insights 2015, 8, 37–44. [Google Scholar] [CrossRef] [Green Version]
- Hobbs, S.R.; Parameswaran, P.; Astmann, B.; Devkota, J.P.; Landis, A.E. Anaerobic codigestion of food waste and polylactic acid: Effect of pretreatment on methane yield and solid reduction. Adv. Mater. Sci. Eng. 2019, 2019, 6. [Google Scholar] [CrossRef] [Green Version]
- Cazaudehore, G.; Guyoneaud, R.; Vasmara, C.; Greuet, P.; Gastaldi, E.; Marchetti, R.; Leonardi, F.; Turon, R.; Monlau, F. Impact of mechanical and thermo-chemical pretreatments to enhance anaerobic digestion of poly (lactic acid). Chemosphere 2022, 297, 133986. [Google Scholar] [CrossRef]
- García-Depraect, O.; Lebrero, R.; Rodriguez-Vega, S.; Bordel, S.; Santos-Beneit, F.; Martínez-Mendoza, L.J.; Börner, R.A.; Börner, T.; Munoz, R. Biodegradation of bioplastics under aerobic and anaerobic aqueous conditions: Kinetics, carbon fate and particle size effect. Bioresour. Technol. 2022, 344, 126265. [Google Scholar] [CrossRef]
- Stroot, P.G.; McMahon, K.D.; Mackie, R.I.; Raskin, L. Anaerobic codigestion of municipal solid waste and biosolids under various mixing conditions—I. Digester performance. Water Res. 2001, 35, 1804–1816. [Google Scholar] [CrossRef]
- Cho, H.S.; Moon, H.S.; Kim, M.; Nam, K.; Kim, J.Y. Biodegradability and biodegradation rate of poly (caprolactone)-starch blend and poly (butylene succinate) biodegradable polymer under aerobic and anaerobic environment. Waste Manag. 2011, 31, 475–480. [Google Scholar] [CrossRef] [PubMed]
- Yagi, H.; Ninomiya, F.; Funabashi, M.; Kunioka, M. Anaerobic biodegradation tests of poly (lactic acid) under mesophilic and thermophilic conditions using a new evaluation system for methane fermentation in anaerobic sludge. Int. J. mol. Sci. 2009, 10, 3824–3835. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Heaven, S.; Banks, C.J. Degradation of some EN13432 compliant plastics in simulated mesophilic anaerobic digestion of food waste. Polym. Degrad. Stab. 2018, 147, 76–88. [Google Scholar] [CrossRef] [Green Version]
- Cruz, F.B.D.L.; Barlaz, M.A. Estimation of waste component-specific landfill decay rates using laboratory-scale decomposition data. Environ. Sci. Technol. 2010, 44, 4722–4728. [Google Scholar] [CrossRef] [PubMed]
- Garaffa, C.; Yepsen, R. Managing compostable bags at anaerobic digestion plants. BioCycle 2012, 53, 37–40. [Google Scholar]
- Appels, L.; Baeyens, J.; Degrève, J.; Dewil, R. Principles and potential of the anaerobic digestion of waste-activated sludge. Prog. Energy Combus. Sci. 2008, 34, 755–781. [Google Scholar] [CrossRef]
- Bernat, K.; Kulikowska, D.; Wojnowska-Baryła, I.; Zaborowska, M.; Pasieczna-Patkowska, S. Thermophilic and mesophilic biogas production from PLA-based materials: Possibilities and limitations. Waste Manag. 2021, 119, 295–305. [Google Scholar] [CrossRef]
- Im, S.; Yun, Y.M.; Song, Y.C.; Kim, D.H. Enhanced anaerobic digestion of glycerol by promoting DIET reaction. Biochem. Eng. J. 2019, 142, 18–26. [Google Scholar] [CrossRef]
- American Public Health Association—APHA, AWWA, WEF. Standard Methods for the Examination of Water and Wastewater, 22nd ed.; APHA: Washington, DC, USA, 2012. [Google Scholar]
- Xiaohui, L.; Changmin, L.; Jae, Y.K. Thermal hydrolysis pre-treatment combined with anaerobic digestion for energy recovery from organic wastes. J. Mater. Cycles Waste Manag. 2020, 22, 1370–1381. [Google Scholar] [CrossRef]
- Rehm, H.J.; Reed, G.; Klein, J. Biotechnology: Environmental Processes II. Soil Decontamination; Wiley-VCH: Weinheim, Germany, 2000; Volume 11b. [Google Scholar]
- Shin, S.R.; Lee, M.K.; Im, S.; Kim, D.H. Effect of seaweed addition on enhanced anaerobic digestion of food waste and sewage sludge. Environ. Eng. Res. 2019, 24, 449–455. [Google Scholar] [CrossRef]
- Mata-Alvarez, J.; Dosta, J.; Romero-Güiza, M.S.; Fonoll, X.; Peces, M.; Astals, S. A critical review on anaerobic co-digestion achievements between 2010 and 2013. Renew. Sustain. Energy Rev. 2014, 36, 412–427. [Google Scholar] [CrossRef]
- Hegde, S.; Diaz, C.A.; Dell, E.M.; Trabold, T.A.; Lewis, C.L. Investigation of process parameters on the anaerobic digestion of a poly(hydroxyalkonate) film. Eur. Polym. J. 2021, 148, 110349. [Google Scholar] [CrossRef]
- Massardier-Nageotte, V.; Pestre, C.; Cruard-Pradet, T.; Bayard, R. Aerobic and anaerobic biodegradability of polymer films and physico-chemical characterization. Polym. Degrad. Stab. 2006, 91, 620–627. [Google Scholar] [CrossRef]
- Ryan, C.A.; Billington, S.L.; Criddle, C.S. Assessment of models for anaerobic biodegradation of a model bioplastic: Poly (hydroxybutyrate-co-hydroxyvalerate). Bioresour. Technol. 2017, 227, 205–213. [Google Scholar] [CrossRef] [PubMed]
Units | TS a | VS | COD | |
---|---|---|---|---|
Food waste | g/kg | 85.7 | 81.9 | 114.5 |
PLA | kg/kg | 0.99 | 0.98 | 1.3 |
PHA | kg/kg | 0.99 | 0.98 | 1.5 |
Mixing Condition | P a (mL) | Rm b (mL/d) | λ c (d) | r2 | |
---|---|---|---|---|---|
Mesophilic AD (37 °C) | Food waste d | 126.0 | 6.9 | 6.59 | 0.99 |
PLA | 5.8 | 1.2 | 3.59 | 0.99 | |
PHA | 76.9 | 9.5 | 2.42 | 0.99 | |
F95L d | 89.4 | 5.2 | 6.11 | 0.99 | |
F90L d | 78.6 | 4.1 | 3.46 | 0.99 | |
F95H d | 123.1 | 6.4 | 1.34 | 0.99 | |
F90H d | 123.2 | 6.4 | 2.02 | 0.99 | |
Thermophilic AD (55 °C) | Food waste | 141.0 | 17.2 | <0.1 | 0.97 |
PLA | 12.8 | 2.4 | 2.26 | 0.99 | |
PHA | 86.0 | 10.4 | 0.42 | 0.99 | |
F95L | 114.1 | 13.6 | <0.1 | 0.97 | |
F90L | 91.4 | 15.2 | <0.1 | 0.97 | |
F95H | 134.4 | 18.4 | <0.1 | 0.97 | |
F90H | 130.4 | 23.0 | <0.1 | 0.98 |
Experimental Conditions | Theoretical CH4 Production Yield (mL/g COD) | Actual CH4 Production Yield from Co-Digestion (mL/g COD) | Synergistic Effect (%) | |
---|---|---|---|---|
Mesophilic AD (37 °C) | Food waste | - | 252.0 | - |
PLA | - | 11.6 | - | |
PHA | - | 153.8 | - | |
F95L | 164.9 | 178.9 | 8.5 | |
F90L | 124.2 | 157.2 | 26.6 | |
F95H | 213.1 | 246.2 | 15.5 | |
F90H | 196.3 | 246.4 | 25.5 | |
Thermophilic AD (55 °C) | Food waste | - | 281.9 | - |
PLA | - | 25.6 | - | |
PHA | - | 172.0 | - | |
F95L | 189.1 | 228.3 | 20.7 | |
F90L | 145.6 | 182.7 | 25.5 | |
F95H | 238.4 | 268.7 | 12.7 | |
F90H | 219.6 | 260.7 | 18.7 |
Inoculum (g VS/L) | Food Waste (g VS/L) | PHA (g VS/L) | PLA (g VS/L) | Total (g VS/L) | |
---|---|---|---|---|---|
Blank | 4.00 | - | - | - | 4.00 |
Food waste | 4.00 | 1.43 | - | - | 5.43 |
PLA | 4.00 | - | - | 1.51 | 5.51 |
PHA | 4.00 | - | 1.31 | - | 5.31 |
FW95L | 4.00 | 0.90 | - | 0.54 | 5.44 |
FW90L | 4.00 | 0.63 | - | 0.76 | 5.39 |
FW95H | 4.00 | 0.85 | 0.51 | - | 5.36 |
FW90H | 4.00 | 0.58 | 0.70 | - | 5.28 |
Experimental Conditions | Inoculum (g VS/L) | Food Waste (g VS/L) | PLA d (g VS/L) | PHA d (g VS/L) | Total a (g VS/L) | |
---|---|---|---|---|---|---|
Mesophilic AD (37 °C) | Blank | 3.10 | - | - | - | 3.10 |
Food waste | 3.10 | 0.30 b | - | - | 3.41 | |
PLA | 3.10 | - | 1.42 | - | 4.52 | |
PHA | 3.10 | - | - | 0.67 | 3.77 | |
F95L | 3.10 | 0.19 c | 0.41 | - | 3.71 | |
F90L | 3.10 | 0.13 c | 0.52 | - | 3.75 | |
F95H | 3.10 | 0.18 c | - | 0.20 | 3.48 | |
F90H | 3.10 | 0.12 c | - | 0.26 | 3.48 | |
Thermophilic AD (55 °C) | Blank | 2.93 | - | - | - | 2.93 |
Food waste | 2.93 | 0.17 b | - | - | 3.10 | |
PLA | 2.93 | - | 1.30 | - | 4.23 | |
PHA | 2.93 | - | - | 0.62 | 3.55 | |
F95L | 2.93 | 0.11 c | 0.30 | - | 3.33 | |
F90L | 2.93 | 0.07 c | 0.46 | - | 3.46 | |
F95H | 2.93 | 0.10 c | - | 0.10 | 3.13 | |
F90H | 2.93 | 0.07 c | - | 0.16 | 3.15 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, J.-H.; Kang, S.-W.; Kim, W.-J.; Kim, D.-H.; Im, S.-W. Anaerobic Co-Digestion of Bioplastics and Food Waste under Mesophilic and Thermophilic Conditions: Synergistic Effect and Biodegradation. Fermentation 2022, 8, 638. https://doi.org/10.3390/fermentation8110638
Kang J-H, Kang S-W, Kim W-J, Kim D-H, Im S-W. Anaerobic Co-Digestion of Bioplastics and Food Waste under Mesophilic and Thermophilic Conditions: Synergistic Effect and Biodegradation. Fermentation. 2022; 8(11):638. https://doi.org/10.3390/fermentation8110638
Chicago/Turabian StyleKang, Jeong-Hee, Sung-Won Kang, Weon-Jae Kim, Dong-Hoon Kim, and Seong-Won Im. 2022. "Anaerobic Co-Digestion of Bioplastics and Food Waste under Mesophilic and Thermophilic Conditions: Synergistic Effect and Biodegradation" Fermentation 8, no. 11: 638. https://doi.org/10.3390/fermentation8110638
APA StyleKang, J. -H., Kang, S. -W., Kim, W. -J., Kim, D. -H., & Im, S. -W. (2022). Anaerobic Co-Digestion of Bioplastics and Food Waste under Mesophilic and Thermophilic Conditions: Synergistic Effect and Biodegradation. Fermentation, 8(11), 638. https://doi.org/10.3390/fermentation8110638