Green Methane as a Future Fuel for Light-Duty Vehicles
Abstract
:1. Introduction
2. Methods
2.1. Process Design: Well-to-Pump
2.2. Life Cycle Assessment
3. Results and Discussion
3.1. Process Simulation
3.2. Environmental Effects of the FW-Based GM Production and LDNGV Operation Scenario
3.3. Sensitivity Analysis Varying the Primary Sources
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Nomenclatures
AD | Anaerobic digestion |
FPMR | Fine particulate matter formation |
FW | Food waste |
GM | FW-derived green methane |
GHG | Greenhouse gas |
GREET | The greenhouse gases, regulated emissions, and energy in transportation |
LCAs | Lifecycle assessments |
LDNGVs | Light-duty NGVs |
M&E | Materials and energies |
CH4 | Methane |
NGVs | Natural gas vehicle |
PSA | Pressure swing adsorption |
References
- Ohkouchi, Y.; Inoue, Y. Direct production of l (+)-lactic acid from starch and food wastes using Lactobacillus manihotivorans LMG18011. Bioresour. Technol. 2006, 97, 1554–1562. [Google Scholar] [CrossRef] [PubMed]
- Clift, R.; Doig, A.; Finnveden, G. The application of life cycle assessment to integrated solid waste management: Part 1—Methodology. Process. Saf. Environ. Prot. 2000, 78, 279–287. [Google Scholar] [CrossRef]
- Ekvall, T.; Finnveden, G. The application of life cycle assessment to integrated solid waste management: Part 2—Perspectives on energy and material recovery from paper. Process. Saf. Environ. Prot. 2000, 78, 288–294. [Google Scholar] [CrossRef]
- FAO. Food Wastage Footprint: Impacts on Natural Resources; 9251077525; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2013. [Google Scholar]
- Poore, J.; Nemecek, T. Reducing food’s environmental impacts through producers and consumers. Science 2018, 360, 987–992. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Vuuren, D.P.; Bijl, D.L.; Bogaart, P.; Stehfest, E.; Biemans, H.; Dekker, S.C.; Doelman, J.C.; Gernaat, D.E.; Harmsen, M. Integrated scenarios to support analysis of the food–energy–water nexus. Nat. Sustain. 2019, 2, 1132–1141. [Google Scholar] [CrossRef]
- Herrero, M.; Thornton, P.K.; Mason-D’Croz, D.; Palmer, J.; Benton, T.G.; Bodirsky, B.L.; Bogard, J.R.; Hall, A.; Lee, B.; Nyborg, K. Innovation can accelerate the transition towards a sustainable food system. Nat. Food 2020, 1, 266–272. [Google Scholar] [CrossRef]
- Kaza, S.; Yao, L.; Bhada-Tata, P.; Van Woerden, F. What a Waste 2.0: A Global Snapshot of Solid Waste Management to 2050; The World Bank: Washington, DC, USA, 2018. [Google Scholar]
- Bernstad, A.; la Cour Jansen, J. Review of comparative LCAs of food waste management systems–current status and potential improvements. Waste Manag. 2012, 32, 2439–2455. [Google Scholar] [CrossRef]
- Liu, B.; Rajagopal, D. Life-cycle energy and climate benefits of energy recovery from wastes and biomass residues in the United States. Nat. Energy 2019, 4, 700–708. [Google Scholar] [CrossRef] [Green Version]
- Farmanbordar, S.; Karimi, K.; Amiri, H. Municipal solid waste as a suitable substrate for butanol production as an advanced biofuel. Energy Convers. Manag. 2018, 157, 396–408. [Google Scholar] [CrossRef]
- Moriarty, K. Feasibility Study of Anaerobic Digestion of Food Waste in St. Bernard, Louisiana. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America’s Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites; National Renewable Energy Lab. (NREL): Golden, CO, USA, 2013. [Google Scholar]
- Demichelis, F.; Tommasi, T.; Deorsola, F.; Marchisio, D.; Mancini, G.; Fino, D. Life cycle assessment and life cycle costing of advanced anaerobic digestion of organic fraction municipal solid waste. Chemosphere 2022, 289, 133058. [Google Scholar] [CrossRef]
- Banks, C.J.; Chesshire, M.; Heaven, S.; Arnold, R. Anaerobic digestion of source-segregated domestic food waste: Performance assessment by mass and energy balance. Bioresour. Technol. 2011, 102, 612–620. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, D.; Li, Y. Solid state anaerobic co-digestion of yard waste and food waste for biogas production. Bioresour. Technol. 2013, 127, 275–280. [Google Scholar] [CrossRef] [PubMed]
- Nayono, S.E.; Gallert, C.; Winter, J. Co-digestion of press water and food waste in a biowaste digester for improvement of biogas production. Bioresour. Technol. 2010, 101, 6987–6993. [Google Scholar] [CrossRef] [PubMed]
- Chikishev, E.; Ivanov, A.; Anisimov, I.; Chainikov, D. Prospects of and Problems in Using Natural Gas for Motor Transport in RUSSIA. IOP Conf. Ser. Mater. Sci. Eng. 2016, 142, 012110. [Google Scholar] [CrossRef]
- Wu, Y.; Zhang, S.; Hao, J.; Liu, H.; Wu, X.; Hu, J.; Walsh, M.P.; Wallington, T.J.; Zhang, K.M.; Stevanovic, S. On-road vehicle emissions and their control in China: A review and outlook. Sci. Total Environ. 2017, 574, 332–349. [Google Scholar] [CrossRef] [Green Version]
- Hao, H.; Liu, Z.; Zhao, F.; Li, W. Natural gas as vehicle fuel in China: A review. Renew. Sustain. Energy Rev. 2016, 62, 521–533. [Google Scholar] [CrossRef]
- Zhang, S.; Wu, Y.; Hu, J.; Huang, R.; Zhou, Y.; Bao, X.; Fu, L.; Hao, J. Can Euro V heavy-duty diesel engines, diesel hybrid and alternative fuel technologies mitigate NOX emissions? New evidence from on-road tests of buses in China. Appl. Energy 2014, 132, 118–126. [Google Scholar] [CrossRef]
- Guo, J.; Ge, Y.; Hao, L.; Tan, J.; Li, J.; Feng, X. On-road measurement of regulated pollutants from diesel and CNG buses with urea selective catalytic reduction systems. Atmos. Environ. 2014, 99, 1–9. [Google Scholar] [CrossRef]
- Verones, F.; Bare, J.; Bulle, C.; Frischknecht, R.; Hauschild, M.; Hellweg, S.; Henderson, A.; Jolliet, O.; Laurent, A.; Liao, X.; et al. LCIA framework and cross-cutting issues guidance within the UNEP-SETAC Life Cycle Initiative. J. Clean. Prod. 2017, 161, 957–967. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, H.; Ou, X.; Yuan, J.; Yu, M.; Wang, C. Energy consumption and greenhouse gas emissions of diesel/LNG heavy-duty vehicle fleets in China based on a bottom-up model analysis. Energy 2017, 140, 966–978. [Google Scholar] [CrossRef]
- Da, P.; Tao, L.; Sun, K.; Golston, L.M.; Miller, D.J.; Zhu, T.; Qin, Y.; Zhang, Y.; Mauzerall, D.L.; Zondlo, M.A. Methane emissions from natural gas vehicles in China. Nat. Commun. 2020, 11, 4588. [Google Scholar] [CrossRef]
- Angelidaki, I.; Ellegaard, L.; Ahring, B.K. A mathematical model for dynamic simulation of anaerobic digestion of complex substrates: Focusing on ammonia inhibition. Biotechnol. Bioeng. 1993, 42, 159–166. [Google Scholar] [CrossRef] [PubMed]
- Angelidaki, I.; Ellegaard, L.; Ahring, B.K. A comprehensive model of anaerobic bioconversion of complex substrates to biogas. Biotechnol. Bioeng. 1999, 63, 363–372. [Google Scholar] [CrossRef]
- Grande, C.A.; Rodrigues, A.E. Biogas to fuel by vacuum pressure swing adsorption I. Behavior of equilibrium and kinetic-based adsorbents. Ind. Eng. Chem. Res. 2007, 46, 4595–4605. [Google Scholar] [CrossRef]
- Finkbeiner, M.; Inaba, A.; Tan, R.; Christiansen, K.; Klüppel, H.-J. The new international standards for life cycle assessment: ISO 14040 and ISO 14044. Int. J. Life Cycle Assess. 2006, 11, 80–85. [Google Scholar] [CrossRef]
- Byun, J.; Han, J. Sustainable development of biorefineries: Integrated assessment method for co-production pathways. Energy Environ. Sci. 2020, 13, 2233–2242. [Google Scholar] [CrossRef]
- Wernet, G.; Bauer, C.; Steubing, B.; Reinhard, J.; Moreno-Ruiz, E.; Weidema, B. The ecoinvent database version 3 (part I): Overview and methodology. Int. J. Life Cycle Assess. 2016, 21, 1218–1230. [Google Scholar] [CrossRef]
- Burnham, A.; Wang, M.; Wu, Y. Development and Applications of GREET 2.7--The Transportation Vehicle-CycleModel; Argonne National Laboratory (ANL): Argonne, IL, USA, 2006. [Google Scholar]
- Huijbregts, M.; Steinmann, Z.; Elshout, P.; Stam, G.; Verones, F.; Vieira, M.; Hollander, A.; Zijp, M.; Van Zelm, R. ReCiPe 2016: A harmonized life cycle impact assessment method at midpoint and endpoint level report I: Characterization. Int. J. Life Cycle Assess. 2016, 22, 138–147. [Google Scholar] [CrossRef]
- Hu, N.; Liu, S.; Gao, Y.; Xu, J.; Zhang, X.; Zhang, Z.; Lee, X. Large methane emissions from natural gas vehicles in Chinese cities. Atmos. Environ. 2018, 187, 374–380. [Google Scholar] [CrossRef]
- China’s 2030 NDC Target. Available online: https://climateactiontracker.org/countries/china/targets/ (accessed on 2 November 2022).
Input | Output | |||
---|---|---|---|---|
FW (kg) | Heat (kWh) | Electricity (kWh) | CO2 (kg) | CH4 (kWh) |
9.7874 | 0.0932 | 0.2419 | 0.1758 | 0.0649 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Byun, J.; Han, J. Green Methane as a Future Fuel for Light-Duty Vehicles. Fermentation 2022, 8, 680. https://doi.org/10.3390/fermentation8120680
Byun J, Han J. Green Methane as a Future Fuel for Light-Duty Vehicles. Fermentation. 2022; 8(12):680. https://doi.org/10.3390/fermentation8120680
Chicago/Turabian StyleByun, Jaewon, and Jeehoon Han. 2022. "Green Methane as a Future Fuel for Light-Duty Vehicles" Fermentation 8, no. 12: 680. https://doi.org/10.3390/fermentation8120680
APA StyleByun, J., & Han, J. (2022). Green Methane as a Future Fuel for Light-Duty Vehicles. Fermentation, 8(12), 680. https://doi.org/10.3390/fermentation8120680