Effect of Source and Level of Dietary Supplementary Copper on In Vitro Rumen Fermentation in Growing Yaks
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals and Feeding
2.2. Experimental Design and In Vitro Measurements
2.3. Analytical Procedures and Measurements
2.4. Statistical Analyses
3. Results
3.1. In Vitro Gas Production, Degradability and Ammonia Nitrogen and Microbial Protein Contents
3.2. In Vitro pH and Volatile Fatty Acids
3.3. In Vitro Digestive Enzyme Activities
4. Discussion
4.1. In Vitro Digestive Enzyme Activities
4.2. Effects of Different Copper Levels on pH and In Vitro Rumen Fermentation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jing, X.P.; Ding, L.M.; Zhou, J.W.; Huang, X.D.; Degen, A.A.; Long, R.J. The adaptive strategies of yaks to live in the Asian highlands. Anim. Nutr. 2022, 9, 249–258. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Wu, D.Z.C.R.; Degen, A.A.; Hao, L.Z.; Gan, S.Y.; Liu, H.S.; Cao, X.L.; Zhou, J.W.; Long, R.J. Differences between yaks and Qaidam cattle in digestibilities of nutrients and ruminal concentration of volatile fatty acids are not dependent on feed level. Fermentation 2022, 8, 405. [Google Scholar] [CrossRef]
- Suttle, N.F. Mineral Nutrition of Livestock, 5th ed.; MPG Books Group: London, UK, 2022; pp. 256–289. [Google Scholar]
- McDowell, L.R. Minerals in Animal and Human Nutrition, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2003; pp. 235–276. [Google Scholar]
- Shang, X.K.; Wang, C.; Zhang, G.W.; Liu, Q.; Guo, G.; Huo, W.J.; Zhang, J.; Pei, C.X. Effects of soybean oil and dietary copper levels on nutrient digestion, ruminal fermentation, enzyme activity, microflora and microbial protein synthesis in dairy bulls. Arch. Anim. Nutr. 2020, 74, 257–270. [Google Scholar] [CrossRef] [PubMed]
- Shen, X.Y.; Du, G.Z.; Chen, Y.M.; Fan, B.L. Copper deficiency in yaks on pasture in western China. Can. Vet. J. 2006, 47, 902. [Google Scholar]
- NRC. Nutrient Requirements of Beef Cattle, 8th ed.; National Academies Press: Washington, DC, USA, 2016; p. 110. [Google Scholar]
- Mullis, L.A.; Spears, J.W.; McCraw, R.L. Effects of breed (Angus vs. Simmental) and copper and zinc source on mineral status of steers fed high dietary iron. J. Anim. Sci. 2003, 1, 318–322. [Google Scholar] [CrossRef]
- Mullis, L.A.; Spears, J.W.; McCraw, R.L. Estimated copper requirements of Angus and Simmental heifers. J. Anim. Sci. 2003, 81, 865–873. [Google Scholar] [CrossRef]
- Shen, X.Y.; Du, G.Z.; Li, L. Studies of a naturally occurring molybdenum-induced copper deficiency in the yak. Vet. J. 2006, 171, 352–357. [Google Scholar]
- Liu, Z.P. Effect of a copper, selenium and cobalt soluble glass bolus given to grazing yaks. Asian-Australas. J. Anim. Sci. 2007, 20, 1433–1437. [Google Scholar] [CrossRef]
- Yost, G.P.; Arthington, J.D.; Mcdowell, L.R.; Martin, F.G.; Wilkinson, N.S.; Swenson, C.K. Effect of copper source and level on the rate and extent of copper repletion in Holstein heifers. J. Dairy Sci. 2002, 85, 3297–3303. [Google Scholar] [CrossRef] [Green Version]
- Engle, T.E.; Spears, J.W. Effects of dietary copper concentration and source on performance and copper status of growing and finishing steers. J. Anim. Sci. 2000, 78, 2446–2451. [Google Scholar] [CrossRef] [Green Version]
- Ward, J.D.; Spears, J.W. Comparison of copper lysine and copper sulfate as copper sources for ruminants using in vitro methods. J. Dairy Sci. 1993, 76, 2994–2998. [Google Scholar] [CrossRef] [PubMed]
- Hansen, S.L.; Schlegel, P.; Legleiter, L.R.; Lloyd, K.E.; Spears, J.W. Bioavailability of copper from copper glycinate in steers fed high dietary sulfur and molybdenum. J. Anim. Sci. 2008, 86, 173–179. [Google Scholar] [CrossRef] [PubMed]
- Ministry of Agriculture and Rural Affairs of the People’s Republic of China. Feeding Standard of Beef Cattle (NY/T815-2004); China Agriculture Press: Beijing, China, 2004. (In Chinese)
- Hu, L.H. Recent Advances in Yak Nutrition; Qinghai People’s Press: Xining, China, 1997. (In Chinese) [Google Scholar]
- Menke, K.H.; Steingass, H. Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Anim. Res. Dev. 1988, 28, 7–55. [Google Scholar]
- GB/T 13885-2003/ISO 6869:2000. ISO 6869:2000; Animal Feeding Stuffs-Determination of Contents of Calcium, Copper, Iron, Magnesium, Manganese Potassium, Sodium and Zinc-Method Using Atomic Absorption Spectrometry. ISO International Standard: Geneva, Switzerland, 2000.
- Feng, Z.C.; Gao, M. Improvement of the method for determination of ammonia nitrogen content in rumen fluid by colorimetry. Anim. Husb. Feed Sci. 2010, 31, 37. (In Chinese) [Google Scholar]
- Xue, Y.F. The Effect of Copper, Manganese and Iodine on Yak’s Rumen Fermentation, Blood Index and Growth Performance. Master’s Thesis, Qinghai University, Xining, China, 2016. (In Chinese). [Google Scholar]
- Cao, Q.Y.; Zhou, W.Y.; Zhu, G.Z.; Yan, X.L.; Ye, H. Study on the methods of determination of volatile fatty acid in the rumen liquid of lambs by gas chromatography. China Feed 2006, 24, 26–28. (In Chinese) [Google Scholar]
- Wang, J.Q. Methods in Ruminant Nutrition Research; Modern Education Press: Beijing, China, 2011. (In Chinese) [Google Scholar]
- Ørskov, E.R. Starch digestion and utilization in ruminants. J. Anim. Sci. 1986, 63, 1624–1633. [Google Scholar] [CrossRef]
- Reynolds, C.K.; Kristensen, N.B. Nitrogen recycling through the gut and the nitrogen economy of ruminants: An asynchronous symbiosis. J. Anim. Sci. 2008, 86, E293–E305. [Google Scholar] [CrossRef] [Green Version]
- Janssen, P.H. Influence of hydrogen on rumen methane formation and fermentation balances through microbial growth kinetics and fermentation thermodynamics. Anim. Feed Sci. Technol. 2010, 160, 1–22. [Google Scholar]
- Katulski, S.L. Effects of Mineral Supplementation on Growing Cattle and In Vitro Fermentation by Ruminal Microbes. Master’s Thesis, Kansas State University, Manhattan, KS, USA, 2017. [Google Scholar]
- Spears, J.W. Trace mineral bioavailability in ruminants. J. Nutr. 2003, 133, 1506S–1509S. [Google Scholar] [CrossRef] [Green Version]
- Perryman, K. Debunking trace mineral myths in animal nutrition. Pig Int. 2017, 47, 28–31. [Google Scholar]
- Van Soest, P.J. Nutritional Ecology of the Ruminant, 2nd ed.; Cornell University Press: Ithaca, NY, USA, 1994. [Google Scholar]
- Engle, T.E.; Spears, J.W. Dietary copper effects on lipid metabolism, performance, and ruminal fermentation in finishing steers. J. Anim. Sci. 2000, 78, 2452–2458. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Sánchez, D.; Cervantes-Gómez, D.; Ramírez-Bribiesca, J.E.; Cobos-Peralta, M.; Pinto-Ruiz, R.; Astigarraga, L.; Gere, J.I. The influence of copper levels on in vitro ruminal fermentation, bacterial growth and methane production. J. Sci. Food Agric. 2019, 99, 1073–1077. [Google Scholar] [CrossRef] [PubMed]
- Russell, J.B.; O’Connor, J.D.; Fox, D.G.; Van Soest, P.J.; Sniffen, C.J. A net carbohydrate and protein system for evaluating cattle diets: I. Ruminal fermentation. J. Anim. Sci. 1992, 70, 3551–3561. [Google Scholar] [CrossRef] [PubMed]
- Ortega, M.E.; Stern, M.D.; Satter, L.D. Effect of rumen ammonia concentration on dry-matter disappearance in situ. J. Dairy Sci. 1979, 62, 76. [Google Scholar]
- Getachew, G.; Depeters, E.J.; Robinson, P.H. In vitro gas production provides effective method for assessing ruminant feeds. Calif. Agric. 2004, 58, 54–58. [Google Scholar] [CrossRef] [Green Version]
- Posada, S.L.; Noguera, R.R. In vitro gas production technique: A tool for evaluation of ruminant feeds. Livest. Res. Rural Dev. 2005, 17, 12–19. [Google Scholar]
- Wang, M.; Sun, X.Z.; Janssen, P.H.; Tang, S.X.; Tan, Z.L. Responses of methane production and fermentation pathways to the increased dissolved hydrogen concentration generated by eight substrates in in vitro ruminal cultures. Anim. Feed Sci. Technol. 2014, 194, 1–11. [Google Scholar] [CrossRef]
- Sánchez-Sánchez, V.H.; Saynes-Santillan, V.; Gere, J.I.; Cruz-Monterrosa, R.G.; Jiménez-Ferrer, G.; Astigarraga, L.; Loza, C.; Padilla, J.; Ramírez-Bribiesca, J.E. Influence of supplemental dietary copper in high roughage rations on nutrient digestibility and methane emission in Holstein bulls. Livest. Sci. 2021, 244, 104347. [Google Scholar] [CrossRef]
- Kholif, A.E.; Hamdon, H.A.; Kassab, A.Y.; Farahat, E.S.A.; Azzaz, H.H.; Matloup, O.H.; Mohamed, A.G.; Anele, U.Y. Chlorella vulgaris microalgae and/or copper supplementation enhanced feed intake, nutrient digestibility, ruminal fermentation, blood metabolites and lactational performance of Boer goat. J. Anim. Physiol. Anim. Nutr. 2020, 104, 1595–1605. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, Z.D.; Liu, H.H.; Xu, J.F.; Liu, T.; Wang, C.L.; Zheng, C. Evaluation of gas production, fermentation parameters, and nutrient degradability in different proportions of sorghum straw and ammoniated wheat straw. Fermentation 2022, 8, 415. [Google Scholar] [CrossRef]
- Giger-Reverdin, S.; Rigalma, K.; Desnoyers, M.; Sauvant, D.; Duvaux-Ponter, C. Effect of concentrate level on feeding behavior and rumen and blood parameters in dairy goats: Relationships between behavioral and physiological parameters and effect of between-animal variability. J. Dairy Sci. 2014, 97, 4367–4378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andries, J.I.; Buysse, F.X.; De Brabander, D.L.; Cottyn, B.G. Isoacids in ruminant nutrition: Their role in ruminal and intermediary metabolism and possible influences on performances—A review. Anim. Feed Sci. Technol. 1987, 18, 169–180. [Google Scholar] [CrossRef]
- Allison, M.J. Biosynthesis of amino acids by ruminal microorganisms. J. Anim. Sci. 1969, 29, 797–807. [Google Scholar] [CrossRef] [PubMed]
Item 1 | g/100 g DM | Component 2 | g/100 g DM |
---|---|---|---|
Corn flour | 36.00 | DM (g/100 g FM) | 90.98 |
Wheat bran | 12.00 | CP | 11.03 |
Soybean meal | 6.60 | NDF | 31.12 |
Rapeseed meal | 2.13 | ADF | 17.60 |
Stone powder | 0.90 | Ca | 0.88 |
CaHPO4 | 0.17 | P | 0.19 |
NaCl | 0.58 | Cu (mg/kg) | 4.39 |
Oat hay | 40.00 |
Cu Source | Cu (mg/kg DM) 2 | Total Gas Production (mL) | CH4 Production (mL) | IVDMD (%) | NH3-N (mg/dL) | MCP (g/L) |
---|---|---|---|---|---|---|
Met-Cu | 5 mg/kg | 63.5 | 6.69 | 44.6 c | 11.00 | 2.89 b |
10 mg/kg | 68.8 | 5.54 | 59.8 b | 13.66 A | 5.49 Aa | |
15 mg/kg | 71.7 A | 7.88 A | 74.1 a | 12.19 A | 2.60 b | |
20 mg/kg | 64.8 | 5.97 | 65.1 Aab | 12.07 A | 2.31 b | |
25 mg/kg | 61.3 | 6.92 | 61.6 b | 12.84 A | 2.60 b | |
p-value 3 | Treat | 0.689 | 0.079 | 0.004 | 0.383 | 0.012 |
L | 0.643 | 0.606 | 0.008 | 0.487 | 0.055 | |
Q | 0.214 | 0.983 | 0.002 | 0.493 | 0.347 | |
TBCC | 5 mg/kg | 65.5 | 6.37 b | 38.0 c | 10.55 | 1.01 c |
10 mg/kg | 66.5 | 6.09 b | 49.6 bc | 9.01 B | 3.27 Aa | |
15 mg/kg | 68.2 A | 6.43 Bb | 68.0 a | 8.20 B | 2.32 b | |
20 mg/kg | 70.0 | 7.21 a | 49.2 Bbc | 9.92 B | 1.25 c | |
25 mg/kg | 67.8 | 6.23 b | 56.0 ab | 10.58 B | 1.13 c | |
p-value | Treat | 0.183 | 0.042 | 0.026 | 0.082 | 0.001 |
L | 0.063 | 0.263 | 0.056 | 0.628 | 0.066 | |
Q | 0.212 | 0.283 | 0.037 | 0.013 | 0.001 | |
CuCl2 | 5 mg/kg | 61.5 | 7.49 | 45.6 | 11.91 | 1.16 |
10 mg/kg | 63.5 | 7.50 | 56.2 | 12.57 A | 2.31 B | |
15 mg/kg | 60.5 B | 6.74 B | 62.2 | 12.32 A | 4.33 | |
20 mg/kg | 56.7 | 4.37 | 59.5 AB | 12.28 A | 3.47 | |
25 mg/kg | 58.3 | 6.32 | 53.4 | 12.33 A | 2.60 | |
p-value | Treat | 0.183 | 0.078 | 0.097 | 0.535 | 0.073 |
L | 0.056 | 0.044 | 0.161 | 0.533 | 0.096 | |
Q | 0.839 | 0.438 | 0.017 | 0.326 | 0.024 | |
Source | Met-Cu | 66.0 a | 6.60 | 61.0 a | 12.35 a | 3.17 a |
TBCC | 67.6 a | 6.47 | 52.2 b | 9.65 b | 1.80 b | |
CuCl2 | 60.1 b | 6.48 | 55.4 b | 12.28 a | 2.77 a | |
Level | 5 mg/kg | 63.5 | 6.85 | 42.7 c | 11.16 | 1.68 c |
10 mg/kg | 66.3 | 6.38 | 55.2 b | 11.75 | 3.69 a | |
15 mg/kg | 66.8 | 7.02 | 68.1 a | 10.90 | 3.08 ab | |
20 mg/kg | 63.8 | 5.85 | 57.9 b | 11.42 | 2.34 bc | |
25 mg/kg | 62.5 | 6.49 | 57.0 b | 11.91 | 2.11 c | |
p-value | L | 0.485 | 0.225 | <0.001 | 0.324 | 0.661 |
Q | 0.127 | 0.724 | <0.001 | 0.414 | <0.001 | |
SEM 4 | 0.97 | 0.17 | 1.68 | 0.26 | 0.21 | |
p-value | Source | 0.004 | 0.916 | 0.010 | < 0.001 | 0.001 |
Level | 0.493 | 0.111 | <0.001 | 0.324 | 0.001 | |
S × L 5 | 0.670 | 0.007 | 0.609 | 0.106 | 0.003 |
Cu Source | Cu (mg/kg DM) 2 | pH | Total VFA (mmol/L) | Individual VFAs (mmol/L) | A:P Ratio | |||||
---|---|---|---|---|---|---|---|---|---|---|
Acetate | Propionate | Isobutyrate | Butyrate | Isovalerate | Valerate | |||||
Met-Cu | 5 mg/kg | 7.23 Aa | 60.9 B | 36.5 B | 16.8 B | 0.29 Bb | 5.98 Bb | 0.76 Cb | 0.60 Bb | 2.18 a |
10 mg/kg | 6.99 bc | 80.2 | 44.7 | 24.6 | 0.44 a | 8.50 Ba | 1.13 Ba | 0.94 Ba | 1.82 c | |
15 mg/kg | 6.95 c | 93.0 | 55.5 | 25.8 | 0.53 a | 9.96 a | 1.30 a | 1.10 a | 1.92 abc | |
20 mg/kg | 7.06 ABbc | 85.9 | 48.8 | 25.6 | 0.48 a | 8.89 a | 1.17 a | 0.97 a | 1.91 bc | |
25 mg/kg | 7.10 Ab | 87.4 | 52.4 A | 24.2 | 0.43 a | 8.32 a | 1.05 a | 0.88 Ba | 2.17 Aab | |
p-value 3 | Treat | 0.005 | 0.214 | 0.324 | 0.073 | 0.006 | 0.016 | 0.010 | 0.010 | 0.034 |
L | 0.180 | 0.076 | 0.106 | 0.043 | 0.014 | 0.032 | 0.039 | 0.032 | 0.833 | |
Q | 0.001 | 0.142 | 0.293 | 0.035 | 0.002 | 0.005 | 0.002 | 0.002 | 0.004 | |
TBCC | 5 mg/kg | 7.00 B | 58.6 Bb | 33.9 Bb | 16.1 B | 0.36 B | 6.65 Bbc | 1.03 B | 0.59 B | 2.11 |
10 mg/kg | 7.03 | 91.3 a | 54.5 a | 23.4 | 0.55 | 10.26 Aa | 1.55 A | 0.98 B | 2.33 | |
15 mg/kg | 6.93 | 77.2 ab | 42.6 ab | 22.1 | 0.55 | 9.59 ab | 1.51 | 0.92 | 1.96 | |
20 mg/kg | 6.84 B | 65.4 b | 39.2 b | 17.8 | 0.36 | 6.46 c | 1.03 | 0.59 | 2.27 | |
25 mg/kg | 6.72 B | 68.5 b | 38.1 Bb | 20.7 | 0.44 | 7.22 bc | 1.24 | 0.73 B | 1.85 B | |
p-value | Treat | 0.167 | 0.043 | 0.048 | 0.169 | 0.087 | 0.037 | 0.092 | 0.054 | 0.521 |
L | 0.023 | 0.772 | 0.611 | 0.604 | 0.902 | 0.369 | 0.829 | 0.729 | 0.420 | |
Q | 0.415 | 0.042 | 0.050 | 0.169 | 0.094 | 0.035 | 0.092 | 0.061 | 0.479 | |
CuCl2 | 5 mg/kg | 6.84 Cc | 96.4 Aa | 51.3 A | 30.5 Aa | 0.61 Aa | 11.18 Aa | 1.46 Aa | 1.29 Aa | 1.69 |
10 mg/kg | 7.02 b | 83.0 b | 46.0 | 24.8 b | 0.48 b | 9.03 Bb | 1.14 Bb | 1.60 Aa | 1.86 | |
15 mg/kg | 7.05 b | 84.3 b | 46.4 | 26.0 b | 0.49 b | 9.17 b | 1.16 b | 1.17 ab | 1.79 | |
20 mg/kg | 7.26 Aa | 67.4 c | 37.9 | 20.7 c | 0.34 c | 6.99 c | 0.85 c | 0.71 b | 1.84 | |
25 mg/kg | 7.10 Ab | 80.0 b | 44.7 AB | 24.0 bc | 0.43 bc | 8.29 bc | 1.01 bc | 1.54 Aa | 1.85 B | |
p-value | Treat | <0.001 | 0.005 | 0.079 | 0.002 | 0.004 | 0.002 | 0.004 | 0.027 | 0.783 |
L | <0.001 | 0.002 | 0.038 | 0.001 | 0.001 | <0.001 | 0.001 | 0.497 | 0.384 | |
Q | 0.004 | 0.040 | 0.179 | 0.020 | 0.051 | 0.029 | 0.065 | 0.141 | 0.627 | |
Source | Met-Cu | 7.07 a | 81.5 | 47.6 | 23.4 a | 0.43 | 8.33 | 1.08 b | 0.90 b | 2.00 a |
TBCC | 6.91 b | 72.2 | 41.7 | 20.0 b | 0.45 | 8.04 | 1.27 a | 0.76 b | 2.10 a | |
CuCl2 | 7.05 a | 82.2 | 45.3 | 25.2 a | 0.47 | 8.93 | 1.12 b | 1.26 a | 1.81 b | |
Level | 5 mg/kg | 7.02 | 72.0 | 40.6 | 21.1 | 0.42 bc | 7.94 b | 1.08 bc | 0.83 bc | 2.00 |
10 mg/kg | 7.01 | 84.9 | 48.4 | 24.3 | 0.49 ab | 9.27 a | 1.27 ab | 1.17 a | 2.00 | |
15 mg/kg | 6.98 | 84.9 | 48.1 | 24.6 | 0.52 a | 9.57 a | 1.32 a | 1.06 ab | 1.89 | |
20 mg/kg | 7.05 | 72.9 | 42.0 | 21.3 | 0.39 c | 7.44 b | 1.02 c | 0.76 c | 2.01 | |
25 mg/kg | 6.98 | 78.6 | 45.1 | 23.0 | 0.43 bc | 7.94 b | 1.10 bc | 1.05 ab | 1.96 | |
p-value | L | 0.612 | 0.916 | 0.776 | 0.808 | 0.375 | 0.165 | 0.267 | 0.886 | 0.788 |
Q | 0.877 | 0.089 | 0.142 | 0.113 | 0.303 | 0.010 | 0.022 | 0.263 | 0.728 | |
SEM 4 | 0.02 | 2.28 | 1.41 | 0.70 | 0.02 | 0.27 | 0.04 | 0.05 | 0.04 | |
p-value | Source | <0.001 | 0.054 | 0.155 | 0.001 | 0.442 | 0.133 | 0.029 | <0.001 | 0.012 |
Level | 0.454 | 0.071 | 0.179 | 0.090 | 0.006 | 0.002 | 0.007 | 0.001 | 0.862 | |
S × L 5 | <0.001 | 0.011 | 0.048 | 0.003 | 0.001 | <0.001 | 0.002 | 0.007 | 0.197 |
Cu Source | Cu (mg/kg DM) 2 | Amylase (U/mL) | Lipase (U/mL) | Trypsin (U/mL) | Cellulase (U/mL) |
---|---|---|---|---|---|
Met-Cu | 5 mg/kg | 1.99 Ac | 0.46 Bc | 46.8 b | 56.8 |
10 mg/kg | 2.25 Aa | 0.58 Aa | 88.8 Aa | 70.7 | |
15 mg/kg | 2.20 Ab | 0.52 Ab | 46.8 b | 78.8 | |
20 mg/kg | 1.99 Ac | 0.43 c | 37.4 b | 80.0 | |
25 mg/kg | 1.97 Ac | 0.28 Bd | 32.7 b | 88.1 | |
p-value 3 | Treat | <0.001 | <0.001 | 0.004 | 0.112 |
L | <0.001 | <0.001 | 0.009 | 0.013 | |
Q | <0.001 | <0.001 | 0.065 | 0.525 | |
TBCC | 5 mg/kg | 1.49 AB | 0.45 Aab | 32.7 | 55.6 b |
10 mg/kg | 2.12 B | 0.41 Bb | 51.4 B | 74.2 a | |
15 mg/kg | 1.76 B | 0.52 Aa | 42.1 | 81.1 a | |
20 mg/kg | 1.67 A | 0.46 ab | 37.4 | 84.6 a | |
25 mg/kg | 1.37 B | 0.41 Ab | 37.4 | 81.1 a | |
p-value | Treat | 0.122 | 0.039 | 0.598 | 0.019 |
L | 0.271 | 0.664 | 0.863 | 0.004 | |
Q | 0.047 | 0.046 | 0.320 | 0.036 | |
CuCl2 | 5 mg/kg | 0.98 Bc | 0.22 Ad | 32.7 b | 59.1 |
10 mg/kg | 1.23 Ca | 0.36 Bc | 46.8 Bb | 64.9 | |
15 mg/kg | 1.31 Ca | 0.42 Ba | 70.1 a | 69.5 | |
20 mg/kg | 1.21 Bab | 0.39 ab | 42.1 b | 76.5 | |
25 mg/kg | 1.10 Bbc | 0.37 Abc | 37.4 b | 64.9 | |
p-value | Treat | 0.001 | <0.001 | 0.014 | 0.466 |
L | 0.136 | <0.001 | 0.818 | 0.291 | |
Q | <0.001 | <0.001 | 0.004 | 0.217 | |
Source | Met-Cu | 2.08 a | 0.45 a | 50.5 | 74.9 |
TBCC | 1.68 b | 0.45 a | 40.2 | 75.3 | |
CuCl2 | 1.17 c | 0.35 b | 45.8 | 67.0 | |
Level | 5 mg/kg | 1.49 c | 0.37 c | 37.4 b | 57.2 b |
10 mg/kg | 1.87 a | 0.45 b | 62.3 a | 69.9 a | |
15 mg/kg | 1.76 ab | 0.49 a | 53.0 a | 76.5 a | |
20 mg/kg | 1.62 bc | 0.42 b | 39.0 b | 80.3 a | |
25 mg/kg | 1.48 c | 0.35 c | 35.9 b | 78.0 a | |
p-value | L | 0.200 | 0.034 | 0.064 | <0.001 |
Q | <0.001 | <0.001 | <0.001 | 0.027 | |
SEM 4 | 0.07 | 0.01 | 2.75 | 2.05 | |
p-value | Source | <0.001 | <0.001 | 0.114 | 0.092 |
Level | <0.001 | <0.001 | <0.001 | 0.001 | |
Source × Level | 0.293 | <0.001 | 0.011 | 0.729 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, X.; Hao, L.; Xue, Y.; Degen, A.; Liu, S. Effect of Source and Level of Dietary Supplementary Copper on In Vitro Rumen Fermentation in Growing Yaks. Fermentation 2022, 8, 693. https://doi.org/10.3390/fermentation8120693
Zhao X, Hao L, Xue Y, Degen A, Liu S. Effect of Source and Level of Dietary Supplementary Copper on In Vitro Rumen Fermentation in Growing Yaks. Fermentation. 2022; 8(12):693. https://doi.org/10.3390/fermentation8120693
Chicago/Turabian StyleZhao, Xinsheng, Lizhuang Hao, Yanfeng Xue, Allan Degen, and Shujie Liu. 2022. "Effect of Source and Level of Dietary Supplementary Copper on In Vitro Rumen Fermentation in Growing Yaks" Fermentation 8, no. 12: 693. https://doi.org/10.3390/fermentation8120693
APA StyleZhao, X., Hao, L., Xue, Y., Degen, A., & Liu, S. (2022). Effect of Source and Level of Dietary Supplementary Copper on In Vitro Rumen Fermentation in Growing Yaks. Fermentation, 8(12), 693. https://doi.org/10.3390/fermentation8120693