Correlation Analysis of Microbiota and Volatile Flavor Compounds of Caishiji Soybean Paste
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Identification of VFCs through HS-GC-MS
2.3. Qualitative and Quantitative Analysis of VFCs
2.4. DNA Extraction, PCR Amplification, and Illumina MiSeq Sequencing Analysis
2.5. Data Analysis
3. Results
3.1. VFC Changes during CSP Fermentation
3.2. Dynamics of Microbiota during CSP Fermentation
3.3. Correlation Analysis of Microbiota and Characteristic VFCs
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Byun, B.Y.; Mah, J.H. Occurrence of Biogenic Amines in Miso, Japanese Traditional Fermented Soybean Paste. J. Food Sci. 2012, 77, T216–T223. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.W.; Lee, J.H.; Kim, S.E.; Park, M.H.; Chang, H.C.; Kim, H.Y. Analysis of Microbial Communities in Doenjang, a Korean Fermented Soybean Paste, Using Nested PCR-Denaturing Gradient Gel Electrophoresis. Int. J. Food Microbiol. 2009, 131, 265–271. [Google Scholar] [CrossRef] [PubMed]
- Chung, H.Y.; Fung, P.K.; Kim, J.S. Aroma Impact Components in Commercial Plain Sufu. J. Agric. Food Chem. 2005, 53, 1684–1691. [Google Scholar] [CrossRef]
- Feng, Z.; Gao, W.; Ren, D.; Chen, X.; Li, J.J. Evaluation of Bacterial Flora during the Ripening of Kedong Sufu, a Typical Chinese Traditional Bacteria-Fermented Soybean Product. J. Sci. Food Agric. 2013, 93, 1471–1478. [Google Scholar] [CrossRef] [PubMed]
- Han, B.Z.; Rombouts, F.M.; Robert Nout, M.J. A Chinese Fermented Soybean Food. Int. J. Food Microbiol. 2001, 65, 1–10. [Google Scholar] [CrossRef]
- Lioe, H.N.; Selamat, J.; Yasuda, M. Soy Sauce and Its Umami Taste: A Link from the Past to Current Situation. J. Food Sci. 2010, 75, R71–R76. [Google Scholar] [CrossRef]
- Wei, Q.Z.; Wang, H.B.; Chen, Z.X.; Lv, Z.J.; Xie, Y.F.; Lu, F.P. Profiling of Dynamic Changes in the Microbial Community during the Soy Sauce Fermentation Process. Appl. Microbiol. Biotechnol. 2013, 97, 9111–9119. [Google Scholar] [CrossRef]
- Yang, Y.; Deng, Y.; Jin, Y.L.; Liu, Y.X.; Xia, B.X.; Sun, Q. Dynamics of Microbial Community during the Extremely Long-Term Fermentation Process of A Traditional Soy Sauce. J. Sci. Food Agric. 2017, 97, 3220–3227. [Google Scholar] [CrossRef]
- Chen, T.T.; Wang, M.J.; Jiang, S.Y.; Xiong, S.Q.; Zhu, D.C.; Wei, H. Investigation of the Microbial Changes during Koji-Making Process of Douchi by Culture-Dependent Techniques and PCR-DGGE. Int. J. Food Sci. Technol. 2011, 46, 1878–1883. [Google Scholar] [CrossRef]
- Chen, T.T.; Wang, M.J.; Li, S.J.; Wu, Q.L.; Wei, H. Molecular Identification of Microbial Community in Surface and Undersurface Douchi during Postfermentation. J. Food Sci. 2014, 79, M653–M658. [Google Scholar] [CrossRef]
- Wang, H.; Yin, L.J.; Cheng, Y.Q.; Li, L.T. Effect of Sodium Chloride on the Color, Texture, and Sensory Attributes of Douchi during Post-Fermentation. Int. J. Food Eng. 2012, 8, 22. [Google Scholar] [CrossRef]
- Jung, K.O.; Park, S.Y.; Park, K.Y. Longer Aging Time Increases the Anticancer and Antimetastatic Properties of Doenjang. Nutrition 2006, 22, 539–545. [Google Scholar] [CrossRef] [PubMed]
- Park, K.Y.; Jung, K.O.; Rhee, S.H.; Choi, Y.H. Antimutagenic Effects of Doenjang (Korean Fermented Soypaste) and Its Active Compounds. Mutat. Res. Lett. 2003, 523, 43–53. [Google Scholar] [CrossRef]
- Shin, Z.I.; Yu, R.; Park, S.A.; Chung, D.K.; Ahn, C.W.; Nam, H.S.; Kim, K.S.; Lee, H.J. His-His-Leu, An Angiotensin I Converting Enzyme Inhibitory Peptide Derived from Korean Soybean Paste, Exerts Antihypertensive Activity in Vivo. J. Agric. Food Chem. 2001, 49, 3004–3009. [Google Scholar] [CrossRef]
- Liu, J.J.; Han, B.Z.; Deng, S.H.; Sun, S.P.; Chen, J.Y. Changes in Proteases and Chemical Compounds in the Exterior and Interior of Sufu, a Chinese Fermented Soybean Food, during Manufacture. LWT Food Sci. Technol. 2018, 87, 210–216. [Google Scholar] [CrossRef]
- Jo, Y.J.; Cho, I.H.; Song, C.K.; Shin, H.W.; Kim, Y.S. Comparison of Fermented Soybean Paste (Doenjang) Prepared by Different Methods Based on Profiling of Volatile Compounds. J. Food Sci. 2011, 76, C368–C379. [Google Scholar] [CrossRef]
- Lin, H.B.; Yu, X.Y.; Fang, J.X.; Lu, Y.H.; Liu, P.; Xing, Y.G.; Wang, Q.; Che, Z.M.; He, Q. Flavor Compounds in Pixian Broad-Bean Paste: Non-Volatile Organic Acids and Amino Acids. Molecules 2018, 23, 1299. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.X.; Dai, X.J.; Liu, X.M.; Zhang, H.; Tang, J.; Chen, W. Comparison of Aroma Compounds in Naturally Fermented and Inoculated Chinese Soybean Pastes by GC-MS and GC-Olfactometry Analysis. Food Control 2011, 22, 1008–1013. [Google Scholar] [CrossRef]
- Zhang, P.; Zhang, P.F.; Xie, M.X.; An, F.Y.; Qiu, B.S.; Wu, R. Metaproteomics of Microbiota in Naturally Fermented Soybean Paste, Da-Jiang. J. Food Sci. 2018, 83, 1342–1349. [Google Scholar] [CrossRef] [PubMed]
- Hao, Y.; Sun, B. Analysis of Bacterial Diversity and Biogenic Amines Content during Fermentation of Farmhouse Sauce from Northeast China. Food Control. 2020, 108, 106861. [Google Scholar] [CrossRef]
- Li, Z.; Dong, L.; Huang, Q.; Wang, X. Bacterial Communities and Volatile Compounds in Doubanjiang, a Chinese Traditional Red Pepper Paste. J. Appl. Microbiol. 2016, 120, 1585–1594. [Google Scholar] [CrossRef] [PubMed]
- Xie, C.Z.; Zeng, H.Y.; Wang, C.X.; Xu, Z.M.; Qin, L.K. Volatile Flavour Components, Microbiota and Their Correlations in Different Sufu, a Chinese Fermented Soybean Food. J. Appl. Microbiol. 2018, 125, 1761–1773. [Google Scholar] [CrossRef] [PubMed]
- Cocolin, L.; Alessandria, V.; Dolci, P.; Gorra, R.; Rantsiou, K. Culture Independent Methods to Assess the Diversity and Dynamics of Microbiota during Food Fermentation. Int. J. Food Microbiol. 2013, 167, 29–43. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Burruezo, A.; Kollmannsberger, H.; Carmen Gonzalez-Mas, M.; Nitz, S.; Nuez, F. HS-SPME Comparative Analysis of Genotypic Diversity in the Volatile Fraction and Aroma-Contributing Compounds of Capsicum Fruits from the Annuum-Chinense-Frutescens Complex. J. Agric. Food Chem. 2010, 58, 4388–4400. [Google Scholar] [CrossRef]
- Li, X.Y.; Zhao, C.S.; Zheng, C.; Liu, J.; Vu, V.H.; Wang, X.D.; Sun, Q. Characteristics of Microbial Community and Aroma Compounds in Traditional Fermentation of Pixian Broad Bean Paste as Compared to Industrial Fermentation. Int. J. Food Prop. 2018, 20, S2520–S2531. [Google Scholar] [CrossRef]
- Kang, K.M.; Baek, H.H. Aroma Quality Assessment of Korean Fermented Red Pepper Paste (Gochujang) by Aroma Extract Dilution Analysis and Headspace Solid-Phase Microextraction-Gas Chromatography-Olfactometry. Food Chem. 2014, 145, 488–495. [Google Scholar] [CrossRef]
- Ye, J.B.; Yan, J.; Zhang, Z.; Yang, Z.C.; Liu, X.Z.; Zhou, H.; Wang, G.F.; Hao, H.; Ma, K.; Ma, Y.P.; et al. The Effects of Threshing and Redrying on Bacterial Communities that Inhabit the Surface of Tobacco Leaves. Appl. Microbiol. Biotechnol. 2017, 101, 4279–4287. [Google Scholar] [CrossRef]
- Moy, Y.S.; Lu, T.J.; Chou, C.C. Volatile Components of the Enzyme-Ripened Sufu, a Chinese Traditional Fermented Product of Soy Bean. J. Biosci. Bioeng. 2012, 113, 196–201. [Google Scholar] [CrossRef]
- Beaulieu, J.C.; Stein-Chisholm, R.E. HS-GC-MS Volatile Compounds Recovered in Freshly Pressed ‘Wonderful’ Cultivar and Commercial Pomegranate Juices. Food Chem. 2016, 190, 643–656. [Google Scholar] [CrossRef]
- Zhao, J.; Wang, M.; Xie, J.C.; Zhao, M.Y.; Hou, L.; Liang, J.J.; Wang, S.; Cheng, J. Volatile Flavor Constituents in the Pork Broth of Black-Pig. Food Chem. 2017, 226, 51–60. [Google Scholar] [CrossRef]
- Jung, J.Y.; Lee, S.H.; Jeon, C.O. Microbial Community Dynamics during Fermentation of Doenjang-Meju, Traditional Korean Fermented Soybean. Int. J. Food Microbiol. 2014, 185, 112–120. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Kim, T.W.; Lee, H.; Chang, H.C.; Kim, H.Y. Determination of Microbial Diversity in Meju, Fermented Cooked Soya Beans, Using Nested PCR-Denaturing Gradient Gel Electrophoresis. Lett. Appl. Microbiol. 2010, 51, 388–394. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.M.; Lu, Z.M.; Shi, J.S.; Xu, Z.H. Exploring Flavour-Producing Core Microbiota in Multispecies Solid-State Fermentation of Traditional Chinese Vinegar. Sci. Rep. 2016, 6, 26818. [Google Scholar] [CrossRef] [PubMed] [Green Version]
TR (s) | Compounds | RI | RI* | Content (μg/kg) | |||||
---|---|---|---|---|---|---|---|---|---|
CG-0 | CG-1 | CG-2 | CG-3 | CG-6 | CG-8 | ||||
Acids (8) | |||||||||
3.223 | Acetic acid | - | ND | 14.50 ± 1.83 | ND | ND | ND | ND | |
10.340 | Isobutyric acid | - | ND | 2.78 ± 1.67 | ND | ND | ND | ND | |
18.196 | Isovaleric acid | 839.57 | 841 | ND | 3.89 ± 0.82 | ND | ND | ND | ND |
28.196 | Hexanoic acid | 972.62 | 967 | ND | 4.81 ± 0.55 | ND | ND | ND | ND |
40.684 | Benzoic acid | 1153.64 | - | ND | 0.70 ± 0.06 | ND | ND | ND | ND |
40.901 | Octanoic acid | 1176.25 | 1167 | ND | 2.40 ± 0.30 | ND | ND | 1.68 ± 0.30 | 7.51 ± 0.78 |
43.442 | Phenylacetic acid | 1247.63 | - | ND | 0.31 ± 0.08 | ND | ND | ND | ND |
43.859 | Nonanoic acid | 1275.3 | 1280 | ND | 0.57 ± 0.16 | ND | ND | 0.82 ± 0.27 | 1.19 ± 0.15 |
Esters (15) | |||||||||
4.6465 | Ethyl acetate | - | - | 1.65 ± 2.00 | ND | ND | 7.24 ± 8.23 | ND | ND |
15.778 | Ethyl butyrate | 782.65 | 803 | ND | ND | 4.92 ± 1.61 | ND | ND | ND |
24.001 | Amyl acetate | 884.36 | - | 9.41 ± 1.58 | 0.86 ± 0.19 | 19.15 ± 8.75 | 103.82 ± 2.18 | 69.30 ± 33.72 | 22.37 ± 8.07 |
30.496 | Ethyl hexanoate | 984.83 | 1001 | ND | 6.97 ± 1.56 | ND | 7.45 ± 4.59 | ND | ND |
41.529 | Ethyl benzoate | 1161.25 | 1170 | 0.73 ± 0.16 | ND | ND | ND | ND | ND |
41.929 | Butyl hexanoate | 1375.85 | - | ND | 26.72 ± 13.98 | ND | 2.00 ± 0.13 | 0.99 ± 0.34 | 10.70 ± 3.64 |
42.096 | Ethyl octoate | 1203.45 | - | ND | 26.72 ± 13.98 | ND | 3.74 ± 0.50 | 0.99 ± 0.34 | 10.70 ± 3.64 |
46.328 | α-pentyl-γ-butyrolactone | 1284.99 | - | 1.65 ± 0.31 | 4.31 ± 0.58 | 0.67 ± 0.02 | 0.76 ± 0.13 | 2.76 ± 0.57 | 3.53 ± 0.43 |
46.535 | Hexyl hexanoate | 1373.11 | 1390 | 0.41 ± 0.11 | 7.12 ± 2.13 | ND | 5.77 ± 1.27 | 0.56 ± 0.19 | 4.66 ± 1.45 |
46.679 | Ethyl caprate | - | - | ND | ND | ND | 0.54 ± 0.13 | ND | ND |
47.174 | Ethyl linoleate | 1772.96 | - | 14.29 ± 0.67 | 14.15 ± 4.36 | 12.09 ± 0.99 | ND | ND | ND |
47.417 | Ethyl tridecanoate | 1930.57 | - | 7.60 ± 0.89 | ND | ND | ND | ND | ND |
48.672 | Ethyl palmitate | 1367.58 | 1924 | 45.12 ± 1.58 | 9.23 ± 6.27 | 33.39 ± 1.07 | 36.32 ± 5.21 | 41.30 ± 2.96 | 36.22 ± 3.62 |
49.614 | Hexyl Caprylate | - | - | ND | 2.78 ± 0.91 | ND | 0.92 ± 0.82 | ND | ND |
49.892 | Diethyl phthalate | 1647.27 | - | 10.42 ± 3.06 | 2.11 ± 0.78 | 1.07 ± 0.21 | 14.30 ± 0.71 | 24.23 ± 8.84 | 0.80 ± 0.26 |
Alcohols (8) | |||||||||
11.519 | Isoamyl alcohol | 693.31 | 734 | ND | ND | ND | 4.09 ± 1.37 | 1.32 ± 0.13 | 0.88 ± 0.31 |
11.782 | 2-Methyl-1-butanol | 695.63 | - | ND | ND | ND | 0.73 ± 0.24 | 0.49 ± 0.07 | 2.77 ± 0.25 |
13.552 | 1-Pentanol | 765.98 | 820 | ND | ND | ND | 16.83 ± 5.69 | 0.97 ± 0.10 | 13.19 ± 2.75 |
14.703 | 2,3-Butanediol | 746.31 | - | 6.91 ± 1.95 | ND | ND | ND | 32.20 ± 6.14 | 1.03 ± 0.36 |
29.550 | 1-nonen-3-ol | 1054.76 | - | ND | ND | ND | ND | 8.01 ± 3.36 | 0.64 ± 0.12 |
38.819 | Maltitol | 1060.48 | - | ND | ND | ND | ND | 5.85 ± 0.44 | ND |
39.113 | Phenethyl alcohol | 1130.98 | 1121 | ND | ND | ND | 5.86 ± 2.09 | 0.95 ± 0.20 | ND |
46.676 | 1-Tetradecanol | 1550.62 | - | ND | 10.5 ± 0.33 | 7.56 ± 2.34 | 4.94 ± 0.65 | 5.81 ± 0.49 | 6.50 ± 4.42 |
Aldehydes (14) | |||||||||
7.102 | Isovaleraldehyde | 643.51 | 656 | 2.32 ± 0.11 | 4.13 ± 0.23 | 5.28 ± 0.23 | 15.48 ± 0.67 | 25.29 ± 1.77 | 1.22 ± 0.15 |
7.566 | 2-Methylbutyraldehyde | 645.27 | 665 | 1.24 ± 0.05 | 2.31 ± 0.12 | 3.22 ± 1.17 | 12.46 ± 0.36 | 23.33 ± 1.58 | 16.29 ± 1.83 |
15.894 | Hexanal | 804.15 | 800 | ND | ND | 0.88 ± 0.10 | 0.70 ± 0.23 | 1.17 ± 0.40 | 3.26 ± 1.58 |
18.216 | Furfural | - | - | ND | ND | 4.30 ± 0.82 | ND | ND | ND |
23.841 | 3-methylthiopropionaldehyd-e | 857.39 | - | ND | ND | 2.05 ± 0.57 | 2.24 ± 0.80 | 2.67 ± 0.22 | 1.76 ± 0.59 |
28.292 | Benzaldehyde | 975.41 | 961 | 7.84 ± 0.22 | 2.16 ± 1.04 | 38.45 ± 4.60 | 106.11 ± 40.00 | 15.04 ± 5.00 | 24.29 ± 3.67 |
34.439 | Phenylacetaldehyde | 1032.39 | 1045 | 10.79 ± 3.70 | 13.27 ± 0.38 | 12.18 ± 1.16 | 26.54 ± 9.60 | 18.02 ± 4.99 | 23.03 ± 1.08 |
36.693 | Phenylglyoxal monohydrate | 1217.09 | - | ND | ND | ND | ND | 4.87 ± 1.06 | 6.35 ± 1.88 |
38.419 | Nonaldehyde | 1101.97 | 1107 | ND | ND | 2.85 ± 0.31 | 4.64 ± 1.53 | 2.12 ± 0.23 | 9.87 ± 2.26 |
42.528 | Decyl aldehyde | 1179.84 | 1206 | ND | ND | 1.90 ± 0.24 | 9.30 ± 6.35 | 0.89 ± 0.19 | 3.19 ± 0.79 |
43.136 | 2,4-Dimethylbenzaldehyde | 1208.59 | - | ND | ND | 1.18 ± 0.20 | 60.17 ± 15.07 | 1.09 ± 0.18 | ND |
47.087 | Vanillin | 1392.63 | 1418 | 1.34 ± 0.64 | 1.62 ± 0.54 | 0.81 ± 0.10 | 19.15 ± 0.96 | ND | ND |
48.035 | 5-methyl-2-phenyl-2-hexena-l | 1505.88 | - | ND | ND | ND | 4.84 ± 1.57 | 12.00 ± 1.27 | 12.72 ± 4.26 |
50.017 | FEMA 2763 | 1601.29 | 1611 | ND | ND | ND | ND | 0.74 ± 0.26 | 0.69 ± 0.23 |
Ketones (4) | |||||||||
3.775 | 2-Butanone | - | - | ND | 0.50 ± 1.34 | ND | ND | ND | ND |
23.154 | (E)-hex-3-en-2-one | 760.36 | - | 2.09 ± 0.22 | ND | 1.29 ± 0.42 | 1.00 ± 0.35 | ND | ND |
33.996 | 1-(1-Ethyl-2,3-dimethyl-cyclopent-2-enyl)-ethanone | - | - | ND | ND | 36.85 ± 12.85 | 51.16 ± 9.24 | 50.10 ± 16.57 | 29.37 ± 3.87 |
45.340 | 4′-Hydroxy-3′-methylacetophenone | 1363.58 | - | 128.97 ± 2.77 | 44.44 ± 8.65 | 43.07 ± 5.97 | 26.40 ± 12.09 | 15.64 ± 5.77 | 6.88 ± 1.95 |
Phenols (5) | |||||||||
43.295 | 2-Naphthol | 1454.96 | - | ND | ND | ND | ND | 0.90 ± 0.32 | 2.66 ± 0.83 |
44.479 | 4-Hydroxy-3-methoxystyren-e | 1302.59 | - | ND | 413.18 ± 1.54 | ND | ND | ND | 36.27 ± 1.80 |
46.021 | 2,6-Dimethoxyphenol | 1276.32 | - | ND | 1.57 ± 0.13 | ND | ND | ND | 15.94 ± 3.88 |
46.175 | Eugenol | 1380.17 | 1374 | ND | 0.39 ± 0.10 | ND | ND | ND | ND |
48.665 | 2,4-Di-tert-butylphenol | 1555.65 | 1513 | ND | 1.28 ± 0.20 | ND | ND | ND | ND |
Miscellaneous (20) | |||||||||
4.042 | 2-Methylfuran | 604.13 | 604 | ND | ND | ND | ND | 1.84 ± 0.62 | ND |
25.389 | 3,4-Lutidine | 901.47 | 882 | 1.39 ± 0.48 | 1.93 ± 0.15 | 1.55 ± 0.51 | 0.76 ± 0.08 | 6.68 ± 0.12 | 3.77 ± 1.47 |
28.651 | Mesitylene | 1020.21 | 1013 | 195.72 ± 54.49 | 3.78 ± 0.98 | 146.68 ± 23.14 | 83.90 ± 7.92 | 231.64 ± 30.57 | 5.72 ± 0.77 |
29.892 | cis-Anethol | - | - | 6.53 ± 0.85 | 9.71 ± 1.18 | 8.28 ± 0.96 | 9.69 ± 1.03 | 4.87 ± 0.34 | 3.71 ± 0.29 |
30.161 | 1,2-Dimethyl-5-vinylpyrrole | 945.18 | - | 422.06 ± 6.32 | 382.18 ± 14.58 | 465.86 ± 17.94 | 472.03 ± 52.02 | 367.79 ± 15.75 | 385.85 ± 15.45 |
30.535 | 2-propylpyridine | 984.11 | - | 25.12 ± 2.41 | ND | ND | ND | 19.33 ± 0.31 | ND |
30.671 | 1,2,4-Trimethylenecyclohex-ane | 921.39 | - | ND | ND | 575.54 ± 202.11 | 304.60 ± 64.54 | 908.03 ± 72.36 | 607.52 ± 55.99 |
31.002 | 4-Isopropylaniline | - | - | ND | ND | 9.72 ± 3.23 | ND | ND | ND |
32.265 | 1-Isopentyl-1-cyclohexene | - | - | 6.24 ± 2.58 | ND | 33.27 ± 5.30 | ND | ND | ND |
32.459 | 2-Isopropyltoluene | 1040.66 | 1021 | 12.85 ± 4.52 | ND | 7.66 ± 2.51 | 164.24 ± 30.31 | 12.17 ± 3.44 | 59.24 ± 17.58 |
33.987 | 1-decylcyclohexene | 1680.32 | - | 39.30 ± 12.45 | 7.86 ± 0.06 | 72.66 ± 24.57 | 42.54 ± 12.45 | ND | 5.34 ± 3.01 |
35.496 | 2-Acetyl pyrrole | 1032.69 | - | ND | ND | ND | ND | 4.72 ± 0.52 | 99.31 ± 32.57 |
39.475 | 1,2,3,4-Tetramethylbenzene | 1129.47 | - | 1.57 ± 0.10 | ND | ND | 8.02 ± 2.65 | 1.22 ± 0.31 | 2.73 ± 0.61 |
42.000 | Cyclododecane | 1422.4 | - | ND | 0.54 ± 0.12 | ND | ND | 0.97 ± 0.22 | 0.47 ± 0.16 |
42.361 | Naphthalene | 1178.73 | 1191 | ND | 0.72 ± 0.22 | ND | ND | ND | ND |
42.846 | 2,3-Dihydrobenzofuran | 1043.32 | - | 45.55 ± 0.98 | 96.94 ± 9.18 | 21.19 ± 0.51 | 18.09 ± 4.24 | 7.40 ± 2.38 | 4.80 ± 1.90 |
45.081 | Indole | 1294.51 | 1294 | 1.40 ± 0.19 | 2.06 ± 0.12 | ND | ND | ND | ND |
46.800 | Tetradecane | - | - | 6.62 ± 1.27 | 0.69 ± 0.09 | ND | 16.59 ± 4.93 | ND | ND |
47.667 | Hexadecane | - | - | 3.33 ± 1.06 | ND | ND | ND | ND | ND |
48.419 | Pentadecane | 1515.22 | 1500 | 5.42 ± 0.23 | 5.25 ± 0.11 | 2.93 ± 1.39 | 7.14 ± 4.88 | 5.86 ± 1.20 | 6.46 ± 0.22 |
TR (s) | Compounds | Threshold (μg/kg) | Content (μg/kg) | |||||
---|---|---|---|---|---|---|---|---|
CG-0 | CG-1 | CG-2 | CG-3 | CG-6 | CG-8 | |||
10.340 | Isobutyric acid | 1.00 | - | 2.78 ± 1.68 | - | - | - | - |
15.778 | Ethyl butyrate | 1.00 | - | - | - | 4.92 ± 1.61 | - | - |
30.496 | Ethyl hexanoate | 0.50 | - | 13.93 ± 3.12 | - | 14.90 ± 9.18 | - | - |
49.614 | Hexyl Caprylate | 0.10 | - | 27.77 ± 9.07 | - | 9.24 ± 0.82 | - | - |
39.113 | Phenethyl alcohol | 0.10 | - | - | 58.63 ± 20.88 | 9.49 ± 2.01 | - | |
7.102 | Isovaleraldehyde | 2.00 | 1.30 ± 0.05 | 2.07 ± 0.12 | 2.64 ± 0.12 | 7.74 ± 0.34 | 12.65 ± 0.89 | 0.62 ± 0.07 |
7.566 | 2-Methylbutyraldehyde | 1.00 | 1.24 ± 0.05 | 2.31 ± 0.12 | 3.22 ± 1.17 | 12.46 ± 0.37 | 23.33 ± 1.58 | 16.29 ± 1.83 |
23.841 | 3-methylthiopropionaldehyde | 0.04 | - | - | 51.25 ± 14.25 | 56.00 ± 19.81 | 66.75 ± 5.50 | 43.67 ± 14.25 |
28.292 | Benzaldehyde | 50.00 | 0.16 ± 0.01 | 0.04 ± 0.02 | 0.77 ± 0.09 | 2.12 ± 0.80 | 0.40 ± 0.10 | 0.49 ± 0.08 |
38.419 | Nonaldehyde | 3.50 | - | - | 0.81 ± 0.09 | 1.02 ± 0.18 | 0.61 ± 0.07 | 2.82 ± 0.65 |
42.528 | Decyl aldehyde | 5.00 | - | - | 0.38 ± 0.05 | 2.53 ± 0.64 | 0.18 ± 0.04 | 0.64 ± 0.16 |
47.087 | Vanillin | 10.00 | 0.13 ± 0.07 | 0.16 ± 0.06 | 0.08 ± 0.01 | 2.25 ± 0.61 | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cai, J.; Han, Y.; Wu, W.; Wu, X.; Mu, D.; Jiang, S.; Li, X. Correlation Analysis of Microbiota and Volatile Flavor Compounds of Caishiji Soybean Paste. Fermentation 2022, 8, 196. https://doi.org/10.3390/fermentation8050196
Cai J, Han Y, Wu W, Wu X, Mu D, Jiang S, Li X. Correlation Analysis of Microbiota and Volatile Flavor Compounds of Caishiji Soybean Paste. Fermentation. 2022; 8(5):196. https://doi.org/10.3390/fermentation8050196
Chicago/Turabian StyleCai, Jing, Yueting Han, Wei Wu, Xuefeng Wu, Dongdong Mu, Shaotong Jiang, and Xingjiang Li. 2022. "Correlation Analysis of Microbiota and Volatile Flavor Compounds of Caishiji Soybean Paste" Fermentation 8, no. 5: 196. https://doi.org/10.3390/fermentation8050196
APA StyleCai, J., Han, Y., Wu, W., Wu, X., Mu, D., Jiang, S., & Li, X. (2022). Correlation Analysis of Microbiota and Volatile Flavor Compounds of Caishiji Soybean Paste. Fermentation, 8(5), 196. https://doi.org/10.3390/fermentation8050196