Identification of Lactic Acid Bacteria on Raw Material for Cocoa Bean Fermentation in the Brazilian Amazon
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cocoa Samples
2.2. Lactic Acid Bacteria (LAB) Isolation and Purification
2.3. DNA Extraction
2.4. Polymerase Chain Reaction (PCR) and Sequencing
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Visintin, S.; Ramos, L.; Batista, N.; Dolci, P.; Schwan, F.; Cocolin, L. Impact of Saccharomyces cerevisiae and Torulaspora delbrueckii starter cultures on cocoa beans fermentation. Int. J. Food Microbiol. 2017, 257, 31–40. [Google Scholar] [CrossRef]
- Bastos, V.S.; Uekane, T.M.; Bello, N.A.; de Rezende, C.M.; Flosi Paschoalin, V.M.; Del Aguila, E.M. Dynamics of volatile compounds in TSH 565 cocoa clone fermentation and their role on chocolate flavor in Southeast Brazil. J. Food Sci. Technol. 2019, 56, 2874–2887. [Google Scholar] [CrossRef]
- Chagas Junior, G.C.A.; Ferreira, N.R.; Lopes, A.S. The microbiota diversity identified during the cocoa fermentation and the benefits of the starter cultures use: An overview. Int. J. Food Sci. Technol. 2020, 56, 544–552. [Google Scholar] [CrossRef]
- Chagas Junior, G.C.A.; Ferreira, N.R.; de Aguiar Andrade, E.H.; do Nascimento, L.D.; de Siqueira, F.C.; Lopes, A.S. Profile of Volatile Compounds of On-Farm Fermented and Dried Cocoa Beans Inoculated with Saccharomyces cerevisiae KY794742 and Pichia kudriavzevii KY794725. Molecules 2021, 26, 344. [Google Scholar] [CrossRef]
- Figueroa-Hernández, C.; Mota-Gutierrez, J.; Ferrocino, I.; Hernández-Estrada, Z.J.; González-Ríos, O.; Cocolin, L.; Suárez-Quiroz, M.L. The challenges and perspectives of the selection of starter cultures for fermented cocoa beans. Int. J. Food Microbiol. 2019, 301, 41–50. [Google Scholar] [CrossRef]
- Chagas Junior, G.; Espírito-Santo, J.C.A.; Ferreira, N.R.; Marques-da-Silva, S.H.; Oliveira, G.; Vasconcelos, S.; de Fátima Oliveira de Almeida, S.; Silva, L.R.C.; Gobira, R.M.; de Figueiredo, H.H.; et al. Yeast isolation and identification during on-farm cocoa natural fermentation in a highly producer region in northern Brazil. Sci. Plena 2020, 16, 121502. [Google Scholar] [CrossRef]
- Hamdouche, Y.; Meile, J.C.; Lebrun, M.; Guehi, T.; Boulanger, R.; Teyssier, C.; Montet, D. IImpact of turning, pod storage and fermentation time on microbial ecology and volatile composition of cocoa beans. Food Res. Int. 2018, 119, 477–491. [Google Scholar] [CrossRef]
- Ho, V.T.T.; Zhao, J.; Fleet, G. The effect of lactic acid bacteria on cocoa bean fermentation. Int. J. Food Microbiol. 2015, 205, 54–67. [Google Scholar] [CrossRef]
- Nazaruddin, R.; Seng, L.K.; Hassan, O.; Said, M. Effect of pulp preconditioning on the content of polyphenols in cocoa beans (Theobroma Cacao) during fermentation. Ind. Crops Prod. 2006, 24, 87–94. [Google Scholar] [CrossRef]
- EFSA Panel on Biological Hazards (BIOHAZ). Scientific Opinion on risk based control of biogenic amine formation in fermented foods. EFSA J. 2011, 9, 2393–2486. [Google Scholar] [CrossRef] [Green Version]
- Deus, V.L.; Bispo, E.S.; Franca, A.S.; Gloria, M.B.A. Understanding amino acids and bioactive amines changes during on-farm cocoa fermentation. J. Food Compos. Anal. 2021, 97, 103776. [Google Scholar] [CrossRef]
- Chagas Junior, G.C.A.; Ferreira, N.R.; Gloria, M.B.A.; da Silva Martins, L.H.; Lopes, A.S. Chemical implications and time reduction of on-farm cocoa fermentation by Saccharomyces cerevisiae and Pichia kudriavzevii. Food Chem. 2021, 338, 127834. [Google Scholar] [CrossRef]
- Camu, N.; De Winter, T.; Verbrugghe, K.; Cleenwerck, I.; Vandamme, P.; Takrama, J.S.; Vancanneyt, M.; De Vuyst, L. Dynamics and biodiversity of populations of lactic acid bacteria and acetic acid bacteria involved in spontaneous heap fermentation of cocoa beans in Ghana. Appl. Environ. Microbiol. 2007, 73, 1809–1824. [Google Scholar] [CrossRef] [Green Version]
- Papalexandratou, Z.; Falony, G.; Romanens, E.; Jimenez, J.C.; Amores, F.; Daniel, H.; De Vuyst, L. Species Diversity, Community Dynamics, and Metabolite Kinetics of the Microbiota Associated with Traditional Ecuadorian Spontaneous Cocoa Bean Fermentations. Appl. Environ. Microbiol. 2011, 77, 7698–7714. [Google Scholar] [CrossRef] [Green Version]
- Sambrook, J.; Russell, D.W. Molecular Cloning—A Laboratory Manual, 3rd ed.; Cold Spring Harbor Laboratory Pr.: Long Island, NY, USA, 2001. [Google Scholar]
- Zimmermann, J.; Gonzalez, J.M.; Saiz-Jimenez, C.; Ludwig, W. Detection and phylogenetic relationships of highly diverse uncultured acidobacterial communities in Altamira Cave using 23S rRNA sequence analyses. Geomicrobiol. J. 2005, 22, 379–388. [Google Scholar] [CrossRef]
- Morales, S.E.; Holben, W.E. Empirical testing of 16S rRNA gene PCR primer pairs reveals variance in target specificity and efficacy not suggested by in silico analysis. Appl. Environ. Microbiol. 2009, 75, 2677–2683. [Google Scholar] [CrossRef] [Green Version]
- Martinez, S.J.; Batista, N.N.; Ramos, C.L.; Dias, D.R.; Schwan, R.F. Brazilian cocoa hybrid-mix fermentation: Impact of microbial dominance as well as chemical and sensorial properties. J. Food Sci. 2021, 86, 2604–2614. [Google Scholar] [CrossRef]
- da Veiga Moreira, I.M.; Miguel, G.C.P.M.; Ramos, C.L.; Duarte, W.F.; Efraim, P.; Schwan, R.F. Influence of Cocoa Hybrids on Volatile Compounds of Fermented Beans, Microbial Diversity during Fermentation and Sensory Characteristics and Acceptance of Chocolates. J. Food Qual. 2016, 39, 839–849. [Google Scholar] [CrossRef]
- Bastos, V.S.; Santos, M.F.S.; Gomes, L.P.; Leite, A.M.O.; Flosi Paschoalin, V.M.; Del Aguila, E.M. Analysis of the cocobiota and metabolites of Moniliophthora perniciosa-resistant Theobroma cacao beans during spontaneous fermentation in southern Brazil. J. Sci. Food Agric. 2018, 98, 4963–4970. [Google Scholar] [CrossRef]
- Viesser, J.A.; de Melo Pereira, G.V.; de Carvalho Neto, D.P.; Vandenberghe, L.P.D.S.; Azevedo, V.; Brenig, B.; Rogez, H.; Góes-Neto, A.; Soccol, C.R. Exploring the contribution of fructophilic lactic acid bacteria to cocoa beans fermentation: Isolation, selection and evaluation. Food Res. Int. 2020, 136, 109478. [Google Scholar] [CrossRef]
- Buriti, F.C.A.; Saad, S.M.I. Bactérias do grupo Lactobacillus casei: Caracterização, viabilidade como probióticos em alimentos e sua importância para a saúde humana. Arch. Latinoam. Nutr. 2007, 57, 373–380. [Google Scholar]
- Delavenne, E.; Ismail, R.; Pawtowski, A.; Mounier, J.; Barbier, G.; Le Blay, G. Assessment of lactobacilli strains as yogurt bioprotective cultures. Food Control 2013, 30, 206–213. [Google Scholar] [CrossRef]
- Ozogul, F.; Tabanelli, G.; Toy, N.; Gardini, F. Impact of Cell-free Supernatant of Lactic Acid Bacteria on Putrescine and Other Polyamine Formation by Foodborne Pathogens in Ornithine Decarboxylase Broth. J. Agric. Food Chem. 2015, 63, 5828–5835. [Google Scholar] [CrossRef]
- Fugaban, J.I.I.; Vazquez Bucheli, J.E.; Park, Y.J.; Suh, D.H.; Jung, E.S.; de Melo Franco, B.D.G.; Ivanova, I.V.; Holzapfel, W.H.; Todorov, S.D. Antimicrobial properties of Pediococcus acidilactici and Pediococcus pentosaceus isolated from silage. J. Appl. Microbiol. 2022, 132, 311–330. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; Mandal, V.; Mandal, N.C. Broad-spectrum antimicrobial efficacy of Pediococcus acidilactici LAB001 against food spoilage and toxigenic bacteria and fungi. J. Food Process. Preserv. 2021, 45, 1–14. [Google Scholar] [CrossRef]
- Zhang, Y.X.; Ke, W.C.; Bai, J.; Li, F.H.; Xu, D.M.; Ding, Z.T.; Guo, X.S. The effect of Pediococcus acidilactici J17 with high-antioxidant activity on antioxidant, α-tocopherol, β-carotene, fatty acids, and fermentation profiles of alfalfa silage ensiled at two different dry matter contents. Anim. Feed Sci. Technol. 2020, 268, 114614. [Google Scholar] [CrossRef]
- Liu, Q.H.; Yang, F.Y.; Zhang, J.G.; Shao, T. Characteristics of Lactobacillus parafarraginis ZH1 and its role in improving the aerobic stability of silages. J. Appl. Microbiol. 2014, 117, 405–416. [Google Scholar] [CrossRef]
- Silva, S.M.S. Efeito da inoculação com Lactobacillus farraginis e Lactobacillus buchneri e do tempo de estocagem sobre as características da silagem de milho. Master’s Dissertation, Federal University of Lavras, Lavras, Minas Gerais, Brazil, 2019. [Google Scholar]
- Serra, J.L.; Moura, F.G.; de Melo Pereira, G.V.; Soccol, C.R.; Rogez, H.; Darnet, S. Determination of the microbial community in Amazonian cocoa bean fermentation by Illumina-based metagenomic sequencing. LWT 2019, 106, 229–239. [Google Scholar] [CrossRef]
- Ruggirello, M.; Nucera, D.; Cannoni, M.; Peraino, A.; Rosso, F.; Fontana, M.; Cocolin, L.; Dolci, P. Antifungal activity of yeasts and lactic acid bacteria isolated from cocoa bean fermentations. Food Res. Int. 2019, 115, 519–525. [Google Scholar] [CrossRef]
Isolate (Sample) | GenBank Accession | Score (%) | E-Value | Pairwise Identity (%) |
---|---|---|---|---|
Pediococcus acidilactici (3) | MT117910 | 100 | 0 | 100 |
Pediococcus acidilactici (6) | MT117913 | 100 | 0 | 100 |
Pediococcus acidilactici (7) | MT117914 | 100 | 0 | 100 |
Pediococcus acidilactici (8) | MT117915 | 100 | 0 | 100 |
Lactobacillus parafarraginis (10) | MT117900 | 100 | 0 | 100 |
Lactobacillus farraginis (15) | MT117901 | 100 | 0 | 100 |
Lactobacillus farraginis (16) | MT117902 | 100 | 0 | 100 |
Pediococcus acidilactici (17) | MT117903 | 100 | 0 | 100 |
Pediococcus acidilactici (19) | MT117904 | 100 | 0 | 100 |
Pediococcus acidilactici (20) | MT117905 | 100 | 0 | 100 |
Pediococcus acidilactici (25) | MT117906 | 100 | 0 | 100 |
Pediococcus acidilactici (35) | MT117908 | 100 | 0 | 100 |
Lactobacillus zeae (37) | MT117909 | 100 | 0 | 100 |
Lactobacillus casei (40) | MT117911 | 100 | 0 | 100 |
Pediococcus acidilactici (45) | MT117912 | 100 | 0 | 100 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chagas Junior, G.C.A.; Ferreira, N.R.; Gloria, M.B.A.; Gobira, R.M.; Maia, F.d.A.; Lopes, A.S. Identification of Lactic Acid Bacteria on Raw Material for Cocoa Bean Fermentation in the Brazilian Amazon. Fermentation 2022, 8, 199. https://doi.org/10.3390/fermentation8050199
Chagas Junior GCA, Ferreira NR, Gloria MBA, Gobira RM, Maia FdA, Lopes AS. Identification of Lactic Acid Bacteria on Raw Material for Cocoa Bean Fermentation in the Brazilian Amazon. Fermentation. 2022; 8(5):199. https://doi.org/10.3390/fermentation8050199
Chicago/Turabian StyleChagas Junior, Gilson Celso Albuquerque, Nelson Rosa Ferreira, Maria Beatriz A. Gloria, Rubens Menezes Gobira, Felipe de Andrade Maia, and Alessandra Santos Lopes. 2022. "Identification of Lactic Acid Bacteria on Raw Material for Cocoa Bean Fermentation in the Brazilian Amazon" Fermentation 8, no. 5: 199. https://doi.org/10.3390/fermentation8050199
APA StyleChagas Junior, G. C. A., Ferreira, N. R., Gloria, M. B. A., Gobira, R. M., Maia, F. d. A., & Lopes, A. S. (2022). Identification of Lactic Acid Bacteria on Raw Material for Cocoa Bean Fermentation in the Brazilian Amazon. Fermentation, 8(5), 199. https://doi.org/10.3390/fermentation8050199