Changes in Flavor- and Aroma-Related Fermentation Metabolites and Antioxidant Activity of Glutinous Rice Wine Supplemented with Chinese Chestnut (Castanea mollissima Blume)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Brewing Process of Chestnut Rice Wine
2.2. Analysis of Free Amino Acid (FAAs)
2.3. Determination of Total Phenol and Monophenol Contents
2.4. Determination of Total Flavonoids
2.5. Determination of the Ethyl Carbamate (EC) Content
2.6. Determination of the Total Reducing Sugar (TRS), Amino acid Nitrogen (AAN), and Titratable Acidity (TA)
2.7. Determination of the Antioxidant Ability
2.7.1. Determination of Reducing Power
2.7.2. Radical Scavenging Activities on DPPH•
2.7.3. ABTS+ Radical Scavenging Assay
2.7.4. Hydroxyl Radical (•OH) Scavenging Activity
2.7.5. HS-SPME-GC/MS-O Determination of the Volatile Profile
3. Results and Discussion
3.1. Metabolite and Nutrient Content of BLMJ
3.1.1. Chemical Indexes of BLMJ
3.1.2. Phenol and Total Flavonoid Profile
3.1.3. Free Amino Acid (FAA) Content of Banli Mijiu (BLMJ)
3.1.4. Ethyl Carbamate Content
3.2. Antioxidant Activity of Banli Mijiu (BLMJ) Chestnut Rice Wine
3.2.1. Reducing Power
3.2.2. DPPH• Free Radical Scavenging Rate
3.2.3. Capacity for Absorbance of Hydroxyl Radical
3.2.4. ABTS+ Free Radical Scavenging Ability
3.3. Flavor Compounds and Odor Descriptors
4. Conclusions
5. Patents
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Korel, F.; Balaban, M.Ö. Chemical Composition and Health Aspects of Chestnut (Castanea spp.). In Tree Nuts, 1st ed.; Alasalvar, C., Shahidi, F., Eds.; CRC Press: Boca Raton, FL, USA, 2008; pp. 171–185. [Google Scholar]
- Yang, F.; Huang, X.; Zhang, C.; Zhang, M.; Huang, C.; Yang, H. Amino acid composition and nutritional value evaluation of Chinese chestnut (Castanea mollissima Blume) and its protein subunit. RSC Adv. 2018, 8, 2653–2659. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vekiari, S.A.; Gordon, M.H.; Garcia-Macias, P.A.; Labrinea, H. Extraction and determination of ellagic acid contentin chestnut bark and fruit. Food Chem. 2008, 110, 1007–1011. [Google Scholar] [CrossRef]
- Zamuz, S.; López-Pedrouso, M.; Barba, F.J.; Lorenzo, J.M.; Domínguez, H.; Franco, D. Application of hull, bur and leaf chestnut extracts on the shelf-life of beef patties stored under MAP: Evaluation of their impact on physicochemical properties, lipid oxidation, antioxidant, and antimicrobial potential. Food Res. Int. 2018, 112, 263–273. [Google Scholar] [CrossRef]
- Zhao, G.; Dai, S.; Chen, R. Dictionary of Traditional Chinese Medicine (Part, 2), 2nd ed.; Shanghai Science and Technology Press: Shanghai, China, 2005. [Google Scholar]
- Bonelli, F.; Turini, L.; Sarri, G.; Serra, A.; Buccioni, A.; Mele, M. Oral administration of chestnut tannins to reduce the duration of neonatal calf diarrhea. BMC Vet. Res. 2018, 14, 227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sangiovanni, E.; Piazza, S.; Vrhovsek, U.; Fumagalli, M.; Khalilpour, S.; Masuero, D.; Di Lorenzo, C.; Colombo, L.; Mattivi, F.; De Fabiani, E. A bio-guided approach for the development of a chestnut-based proanthocyanidin-enriched nutraceutical with potential anti-gastritis properties. Pharmacol. Res. 2018, 134, 145–155. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Li, K.; Zhao, J.; Deng, W. Effects of chestnut tannins on intestinal morphology, barrier function, pro-inflammatory cytokine expression, microflora and antioxidant capacity in heat-stressed broilers. J. Anim. Physiol. Anim. Nutr. 2018, 102, 717–726. [Google Scholar] [CrossRef]
- Zhang, L.; Gao, H.Y.; Baba, M.; Okada, Y.; Okuyama, T.; Wu, L.J.; Zhan, L.B. Extracts and compounds with anti-diabetic complications and anti-cancer activity from Castanea mollissina Blume (Chinese chestnut). BMC Complement. Altern. Med. 2014, 14, 422. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Wang, J.; Levin, M.J.; Sinnott-Armstrong, N.; Zhao, H.; Zhao, Y.; Shao, J.; Di, N.; Zhang, T. The origins of specialized pottery and diverse alcohol fermentation techniques in Early Neolithic China. Proc. Natl. Acad. Sci. USA 2019, 116, 12767–12774. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nkhata, S.G.; Ayua, E.; Kamau, E.H.; Shingiro, J.B. Fermentation and germination improve nutritional value of cereals and legumes through activation of endogenous enzymes. Food Sci. Nutr. 2018, 6, 2446–2458. [Google Scholar] [CrossRef] [Green Version]
- Jiao, A.; Xu, X.; Jin, Z. Research progress on the brewing techniques of new-type rice wine. Food Chem. 2017, 215, 508–515. [Google Scholar] [CrossRef]
- Kitagaki, H.; Kitamoto, K. Breeding research on sake yeasts in Japan: History, recent technological advances, and future perspectives. Annu. Rev. Food Sci. Technol. 2013, 4, 215–235. [Google Scholar] [CrossRef]
- Kim, M.-O.; Kim, I.-D.; Dhungana, S.K.; Lee, J.-W.; Shin, D.-H. Influence of blueberry and black rice powders on quality characteristics of the Korean traditional rice wine Takju. Food Sci. Biotechnol. 2015, 24, 439–444. [Google Scholar] [CrossRef]
- Li, W.; Shi, C.; Guang, J.; Ge, F.; Yan, S. Development of Chinese chestnut whiskey: Yeast strains isolation, fermentation system optimization, and scale-up fermentation. AMB Express 2021, 11, 17. [Google Scholar] [CrossRef] [PubMed]
- Zou, J.; Meng, J.; Zhang, J.; Guo, S. Production of monascus-chestnut-glutinous rice wine. Liquor-Mak. Sci. Techonol. 2017, 2, 65–67. [Google Scholar]
- Son, J.-Y.; Jung, I.-J. Quality characteristics and physiological activities of takju with whole chestnut. Korean J. Food Cook. Sci. 2014, 30, 746–756. [Google Scholar] [CrossRef] [Green Version]
- Ge, Y.N.; Li, B.; Zou, J.; Chang, X.D. Effect of chestnut addition on the quality of chestnut-rice sake. Food Sci. Technol. Int. 2019, 44, 290–294. [Google Scholar]
- Ren, Q.; Hou, C. Isolation and identification of microorganisms in Wheat Qu of Beizong Rice Wine. Food Sci. 2017, 38, 77–82. [Google Scholar]
- Miao, Y.; Yang, Y.; Wang, H.; Liu, T.; Yang, Y. Determination of amino acids content in yellow rice wine of different years with automatic amino acid analyzer. J. Food Saf. Qual. 2015, 6, 1154–1161. [Google Scholar]
- Lingua, M.S.; Fabani, M.P.; Wunderlin, D.A.; Baroni, M.V. In vivo antioxidant activity of grape, pomace and wine from three red varieties grown in Argentina: Its relationship to phenolic profile. J. Funct. Foods 2016, 20, 332–345. [Google Scholar] [CrossRef]
- Belmiro, T.M.C.; Pereira, C.F.; Paim, A.P.S. Red wines from South America: Content of phenolic compounds and chemometric distinction by origin. Microchem. J. 2017, 133, 114–120. [Google Scholar] [CrossRef]
- Eberhardt, M.V.; Lee, C.Y.; Liu, R.H. Antioxidant activity of fresh apples. Nature 2000, 405, 903–904. [Google Scholar] [CrossRef] [PubMed]
- Horii, S.; Goto, K. Determination of ethyl carbamate in Sake using headspace solid phase microextraction. J. Inst. Brew. 2010, 116, 177–181. [Google Scholar] [CrossRef]
- Siddhuraju, P.; Manian, S. The antioxidant activity and free radical-scavenging capacity of dietary phenolic extracts from horse gram (Macrotyloma uniflorum (Lam.) Verdc.) seeds. Food Chem. 2007, 105, 950–958. [Google Scholar] [CrossRef]
- Barros, A.I.; Nunes, F.M.; Gonçalves, B.; Bennett, R.N.; Silva, A.P. Effect of cooking on total vitamin C contents and antioxidant activity of sweet chestnuts (Castanea sativa Mill.). Food Chem. 2011, 128, 165–172. [Google Scholar] [CrossRef] [PubMed]
- Ye, C.-L.; Hu, W.-L.; Dai, D.-H. Extraction of polysaccharides and the antioxidant activity from the seeds of Plantago asiatica L. Int. J. Biol. Macromol. 2011, 49, 466–470. [Google Scholar] [CrossRef] [PubMed]
- Que, F.; Mao, L.; Pan, X. Antioxidant activities of five Chinese rice wines and the involvement of phenolic compounds. Food Res. Int. 2006, 39, 581–587. [Google Scholar] [CrossRef]
- Chen, S.; Xu, Y.; Qian, M.C. Aroma characterization of Chinese rice wine by gas chromatography–olfactometry, chemical quantitative analysis, and aroma reconstitution. J. Agric. Food Chem. 2013, 61, 11295–11302. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J. Production Technology of Yellow Rice Wine; China Light Industry Press: Beijing, China, 1996. [Google Scholar]
- Hazelwood, L.A.; Daran, J.-M.; Van Maris, A.J.; Pronk, J.T.; Dickinson, J.R. The Ehrlich pathway for fusel alcohol production: A century of research on Saccharomyces cerevisiae metabolism. Appl. Environ. Microb. 2008, 74, 2259–2266. [Google Scholar] [CrossRef] [Green Version]
- Xie, J.; Tian, X.-F.; He, S.-G.; Wei, Y.-L.; Peng, B.; Wu, Z.-Q. Evaluating the intoxicating degree of liquor products with combinations of fusel alcohols, acids, and esters. Molecules 2018, 23, 1239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, K.-G. Analysis and risk assessment of ethyl carbamate in various fermented foods. Eur. Food Res. Technol. 2013, 236, 891–898. [Google Scholar] [CrossRef]
- Lachenmeier, D.W.; Lima, M.C.; Nóbrega, I.C.; Pereira, J.A.; Kerr-Corrêa, F.; Kanteres, F.; Rehm, J. Cancer risk assessment of ethyl carbamate in alcoholic beverages from Brazil with special consideration to the spirits cachaça and tiquira. BMC Cancer 2010, 10, 266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pandey, M.; Gupta, K.P. Involvement of STAT3, NF-κB and associated downstream molecules before and after the onset of urethane induced lung tumors in mouse. Environ. Toxicol. Pharmacol. 2012, 34, 502–511. [Google Scholar] [CrossRef]
- Li, Q.; Shi, X.; Zhao, Q.; Cui, Y.; Ouyang, J.; Xu, F. Effect of cooking methods on nutritional quality and volatile compounds of Chinese chestnut (Castanea mollissima Blume). Food Chem. 2016, 201, 80–86. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Sun, J.; Li, X.; Wu, D.; Li, T.; Lu, J.; Chen, J.; Xie, G. Contribution of citrulline to the formation of ethyl carbamate during Chinese rice wine production. Food Addit. Contam. A 2014, 31, 587–592. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Shen, Y.; Zhu, Y.; Xu, Z. Assessment of the correlations between reducing power, scavenging DPPH activity and anti-lipid-oxidation capability of phenolic antioxidants. LWT-Food Sci. Technol. 2015, 63, 569–574. [Google Scholar] [CrossRef]
- Di Rosanna, P.; Salvatore, C. Reactive oxygen species, inflammation, and lung diseases. Curr. Pharm. Des. 2012, 18, 3889–3900. [Google Scholar] [CrossRef]
- Boukhenouna, S.; Wilson, M.A.; Bahmed, K.; Kosmider, B. Reactive oxygen species in chronic obstructive pulmonary disease. Oxid. Med. Cell. Longev. 2018, 2018, 5730395. [Google Scholar] [CrossRef]
- Tang, Y.Z.; Liu, Z.Q. Free-radical-scavenging effect of carbazole derivatives on DPPH and ABTS radicals. J. Am. Oil Chem. Soc. 2007, 84, 1095–1100. [Google Scholar] [CrossRef]
- González-Barreiro, C.; Rial-Otero, R.; Cancho-Grande, B.; Simal-Gándara, J. Wine aroma compounds in grapes: A critical review. Crit. Rev. Food Sci. Nutr. 2015, 55, 202–218. [Google Scholar] [CrossRef]
- Chen, S.; Wang, C.; Qian, M.; Li, Z.; Xu, Y. Characterization of the key aroma compounds in aged Chinese rice wine by comparative aroma extract dilution analysis, quantitative measurements, aroma recombination, and omission studies. J. Agric. Food Chem. 2019, 67, 4876–4884. [Google Scholar] [CrossRef]
- Zheng, H.; Wei, P.; Zhang, G.; Xu, W.; Li, Y. The impact of different Saccharomyces cerevisiae strains on microbial composition and quality of Chinese rice wine fermentations. Yeast 2021, 38, 147–156. [Google Scholar] [CrossRef] [PubMed]
- Delfini, C.; Gaia, P.; Bardi, L.; Mariscalco, G.; Contiero, M.; Pagliara, A. Production of benzaldehyde, benzyl alcohol and benzoic acid by yeasts and Botrytis cinerea isolated from grape musts and. Vitis 1991, 30, 263. [Google Scholar]
Names | Ethanol Content (%, v/v) | Titratable Acidity (g/L) | Reducing Sugar (g/L) | Amino Acid Nitrogen (g/L) |
---|---|---|---|---|
BLMJ | 15.11 ± 0.21 a | 2.72 ± 0.16 a | 1.34 ± 0.16 a | 0.21 ± 0.08 a |
TGRW | 14.25 ± 0.18 a | 3.09 ± 0.20 a | 2.34 ± 0.10 a | 0.28 ± 0.01 a |
Name | Regression Equation | R2 |
---|---|---|
Gallic acid | y = 0.0012x + 0.0598 | 0.9977 |
Rutin | y = 0.5036x − 0.0069 | 0.9985 |
Amino Acid Types | Names | BLMJ (mg/L) | TGRW (mg/L) |
---|---|---|---|
Protein amino acid | Asp | 155.407 ± 6.642 a | 209.202 ± 8.119 b |
Thr | 89.622 ± 3.848 a | 130.651 ± 4.003 b | |
Ser | 143.433 ± 9.809 a | 194.494 ± 2.019 b | |
Asn | 159.797 ± 7.740 a | 206.526 ± 10.060 b | |
Glu | 416.867 ± 12.192 a | 519.314 ± 29.173 b | |
Gly | 203.410 ± 2.359 a | 245.834 ± 11.454 b | |
Ala | 347.460 ± 16.590 a | 465.710 ± 10.303 b | |
Val | 253.379 ± 5.264 a | 351.462 ± 21.431 b | |
Met | 85.665 ± 7.718 a | 123.781 ± 16.923 b | |
Ile | 122.485 ± 9.578 a | 177.597 ± 15.362 b | |
Leu | 284.398 ± 18.195 a | 420.525 ± 29.897 b | |
Tyr | 319.582 ± 1.801 a | 323.910 ± 13.754 a | |
Phe | 259.755 ± 13.370 a | 365.215 ± 20.674 b | |
His | 97.248 ± 6.852 a | 126.009 ± 16.845 a | |
Lys | 189.366 ± 5.006 a | 263.570 ± 14.796 b | |
Try | 39.288 ± 4.962 a | 57.066 ± 1.209 a | |
Arg | 90.637 ± 9.260 a | 346.351 ± 2.012 b | |
pro | 238.691 ± 15.508 a | 284.400 ± 23.342 a | |
Umami FAAs | 572.274 ± 6.801 a | 728.516 ± 37.280 b | |
Bitter FAAs | 1645.098 ± 5.958 a | 2431.705 ± 98.043 b | |
Sweet FAAs | 1108.280 ± 35.182 a | 1444.871 ± 24.341 b | |
Non-peptide amino acids | Citrulline | 31.402 ± 2.565 a | 75.304 ± 2.978 b |
Cystine | 35.113 ± 3.528 a | 53.147 ± 2.147 b | |
β-Alanine | 56.368 ± 0.646 a | 51.632 ± 5.878 a | |
Hydroxylysine | 404.169 ± 15.731 a | 937.774 ± 26.285 b | |
Omithine | 147.892 ± 11.110 a | 482.584 ± 7.533 b | |
γ-Aminobutyric acid | 162.108 ± 14.328 a | 157.255 ± 15.722 a | |
Homocysteine | 21.512 ± 0.346 a | 20.267 ± 1.959 a | |
SUM FAAs | 4354.924 ± 72.536 a | 6588.456 ± 166.261 b |
Names | Retention Time (RT) | RI | BLMJ | TGRW | Odor Description | ||
---|---|---|---|---|---|---|---|
Content (μg/L) | Odor Intensity | Content (μg/L) | Odor Intensity | ||||
Alcohols | 6 | 7 | |||||
Ethanol | 8.9577 | 972.4373 | 206.984 | 0.5 | 260.293 | 0.4 | alcoholic |
2-Methyl-1-propanol | 14.8053 | 1120.2487 | 4.461 | 0.4 | 0.583 | 0.2 | solvent |
3-Methyl-1-butanol | 21.0876 | 1233.3929 | 53.079 | 0.5 | 51.332 | 0.5 | whiskey |
β-Phenylethyl alcohol | 56.2091 | 1930.7626 | 17.297 | 0.2 | 26.647 | 0.4 | floral, rose |
3-(Methylthio)-1-propanol | 49.5738 | 1729.0585 | 0.137 | 0.1 | 0.117 | 0.1 | sweet, onion |
1-Hexanol | 29.3376 | 1365.0278 | 0.314 | 0.4 | - | fusel, sweet alcoholic | |
3,7-Dimethyl-1,6-octadien-3-ol | 41.8238 | 1561.6868 | - | 0.499 | 0.2 | rose, blueberry | |
α-Terpineol | 48.8775 | 1709.5367 | - | 0.539 | 0.2 | clove, citrus | |
Olefins | 7 | 3 | |||||
(1R)-(+)-α-Pinene | 11.7752 | 1053.4724 | 17.014 | 0.1 | 0.821 | minty | |
(+)-4-Carene | 18.8289 | 1193.5565 | 1.239 | 0.1 | 0.001 | citrus, pineapple | |
D-Limonene | 20.4698 | 1222.6191 | 441.934 | 0.3 | 21.071 | 0.1 | citrus |
γ-Terpinene | 22.5454 | 1257.6133 | 0.051 | 0.1 | 0.771 | 0.1 | lemon, citrus |
Naphthalene | 50.8224 | 1763.3878 | 0.105 | 0.1 | 0.092 | 0.1 | fuel |
2-Carene | 18.5021 | 1188.2175 | 3.644 | 0.1 | - | citrus, pineapple | |
α-Terpinolene | 25.1472 | 1297.1855 | 8.105 | 0.1 | - | lemon, citrus | |
Esters | 7 | 6 | |||||
Ethyl acetate | 7.6731 | 923.1871 | 1.498 | 0.1 | 2.087 | 0.2 | fruity, sweet |
3-Methyl-1-butanol acetate | 15.678 | 1137.7131 | 0.277 | 0.1 | 0.839 | 0.2 | sweet, banana |
Ethyl hexanoate | 21.9244 | 1247.493 | 0.519 | 0.3 | 1.354 | 0.3 | sweet pineapple |
Ethyl decanoate | 46.9491 | 1664.9882 | 0.443 | 0.3 | 0.198 | 0.1 | fruity, brandy |
2-Phenylethyl acetate | 53.4536 | 1840.7278 | 1.912 | 0.4 | 1.217 | 0.2 | rose, honey, fruity |
Ethyl hexadecanoate | 64.9821 | 2300.7646 | 0.623 | 0.5 | 0.589 | 0.3 | fruity, cream |
Ethyl tetradecanoate | 60.491 | 2090.4304 | 0.021 | 0.4 | - | floral, violet | |
Carboxylic acids | 5 | 1 | |||||
Benzoic acid | 68.6528 | 2461.6125 | 0.239 | 0.2 | 0.502 | 0.2 | phenolic |
Acetic acid | 35.7507 | 1462.8206 | 0.396 | 0.1 | - | vinegar | |
Formic acid | 39.8725 | 1527.6034 | 0.007 | 0.1 | - | vinegar | |
2-Methyl-propanoic acid | 42.8665 | 1579.2532 | 0.233 | 0.1 | - | yogurt, milk, cream | |
Octanoic acid | 59.9975 | 2071.302 | 0.305 | 0.2 | - | vegetable, cheese | |
Ketones | 4 | 1 | |||||
2-Methyl-5-(1-methylethenyl)-trans-cyclohexanone | 45.2853 | 1627.1005 | 0.102 | 0.1 | - | pepper | |
D-Carvone | 50.5315 | 1755.4659 | 0.297 | 0.1 | - | bread, coriander | |
1-(4-Methylphenyl)-ethanone | 52.0122 | 1795.3246 | 2.166 | 0.1 | - | cherry, mimosa, acacia | |
1-(3-Methylphenyl)-ethanone | 52.2475 | 1801.9149 | 0.460 | 0.1 | - | alfalfa, honey, | |
1-(4-Methylphenyl)-ethanone | 52.1658 | 1799.3943 | - | 1.251 | 0.2 | acacia, coumarin | |
Aldehydes | 4 | 1 | |||||
Benzaldehyde | 40.7419 | 1542.9907 | 0.121 | 0.2 | 0.049 | 0.1 | almond |
Furfural | 36.764 | 1477.5765 | 0.425 | 0.1 | - | almond, toasted bread | |
3-Methyl-benzaldehyde | 47.1157 | 1668.7078 | 0.155 | 0.1 | - | cherry, bitter almond | |
2-Methyl-3-phenyl-2-propenal | 57.0753 | 1961.2853 | 0.490 | 0.1 | - | sweet, cinnamon | |
Phenolic compounds | 3 | 1 | |||||
Phenol | 58.7979 | 2024.1401 | 0.189 | 0.1 | 0.524 | 0.2 | phenolic |
Carvacrol | 62.9654 | 2201.4761 | 0.262 | 0.1 | - | spicy, woody | |
Thymol | 63.6257 | 2234.3396 | 0.122 | 0.1 | - | thyme | |
Benzenes | 2 | 2 | |||||
1-Methyl-4-(1-methylethenyl)-benzene | 34.9793 | 1451.3041 | 12.772 | 0.2 | 4.119 | 0.1 | clove, coffee, nutty |
o-Cymene | 24.2353 | 1283.8022 | 102.491 | 0.2 | 3.260 | citrus, woody | |
p-Cymene | 24.2451 | 1283.9487 | - | 3.438 | 0.1 | citrus, woody |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zou, J.; Ge, Y.; Zhang, Y.; Ding, M.; Li, K.; Lin, Y.; Chang, X.; Cao, F.; Qian, Y. Changes in Flavor- and Aroma-Related Fermentation Metabolites and Antioxidant Activity of Glutinous Rice Wine Supplemented with Chinese Chestnut (Castanea mollissima Blume). Fermentation 2022, 8, 266. https://doi.org/10.3390/fermentation8060266
Zou J, Ge Y, Zhang Y, Ding M, Li K, Lin Y, Chang X, Cao F, Qian Y. Changes in Flavor- and Aroma-Related Fermentation Metabolites and Antioxidant Activity of Glutinous Rice Wine Supplemented with Chinese Chestnut (Castanea mollissima Blume). Fermentation. 2022; 8(6):266. https://doi.org/10.3390/fermentation8060266
Chicago/Turabian StyleZou, Jing, Yinan Ge, Yue Zhang, Min Ding, Kuo Li, Yinglan Lin, Xuedong Chang, Fei Cao, and Yunkai Qian. 2022. "Changes in Flavor- and Aroma-Related Fermentation Metabolites and Antioxidant Activity of Glutinous Rice Wine Supplemented with Chinese Chestnut (Castanea mollissima Blume)" Fermentation 8, no. 6: 266. https://doi.org/10.3390/fermentation8060266
APA StyleZou, J., Ge, Y., Zhang, Y., Ding, M., Li, K., Lin, Y., Chang, X., Cao, F., & Qian, Y. (2022). Changes in Flavor- and Aroma-Related Fermentation Metabolites and Antioxidant Activity of Glutinous Rice Wine Supplemented with Chinese Chestnut (Castanea mollissima Blume). Fermentation, 8(6), 266. https://doi.org/10.3390/fermentation8060266