Functional and Healthy Yogurts Fortified with Probiotics and Fruit Peel Powders
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Preparation of Fruit Peel Powder
2.2.2. Activation of Starter Cultures and Probiotics
2.2.3. Preparation of Yogurt
2.2.4. Freeze-Drying of Yogurt
2.2.5. Analysis of Water Holding Capacity
2.2.6. Calculation of Percentage Yield of Freeze Drying
2.2.7. Proximate Analyses of Fresh and Rehydrated Freeze-Dried Yogurt
2.2.8. Analysis of Soluble Carbohydrates in Fresh and RFD Yogurts Using HPLC-RID
2.2.9. Total Phenolic Contents and Antioxidant Properties of Fresh and Rehydrated Freeze-Dried Yogurt
Total Phenolic Content (TPC)
Antioxidant Activity
2.2.10. Color Measurement
2.2.11. Microbiological Analysis of Yogurts
2.2.12. Statistical Analysis
3. Results and Discussion
3.1. Physicochemical Properties of Fresh and Freeze-Dried Yogurts Fortified with Fruit Peel Powder
3.2. Impact of Added Fruit Peel Powder on Yogurt Color
3.3. Sugar Composition of Fresh and FDR Yogurts
3.4. Changes in the Total Phenolic Content and Antioxidant Properties in Probiotic Yogurts Enriched with FPP
3.5. Microbial Viability in Yogurts during Refrigerated Storage
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Balthazar, C.; Santillo, A.; Guimarães, J.; Capozzi, V.; Russo, P.; Caroprese, M.; Marino, R.; Esmerino, E.; Raices, R.S.L.; Silva, M.C.; et al. Novel milk–juice beverage with fermented sheep milk and strawberry (Fragaria× ananassa): Nutritional and functional characterization. J. Dairy Sci. 2019, 102, 10724–10736. [Google Scholar] [CrossRef] [PubMed]
- Kennas, A.; Amellal-Chibane, H.; Kessal, F.; Halladj, F. Effect of pomegranate peel and honey fortification on physicochemical, physical, microbiological and antioxidant properties of yogurt powder. J. Saudi Soc. Agric. Sci. 2020, 19, 99–108. [Google Scholar]
- Hill, C.; Guarner, F.; Reid, G.; Gibson, G.R.; Merenstein, D.J.; Pot, B.; Morelli, L.; Canani, R.B.; Flint, H.J.; Salminen, S.; et al. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol. 2014, 11, 506–514. [Google Scholar] [CrossRef]
- Sah, B.N.P.; Vasiljevic, T.; McKechnie, S.; Donkor, O. Effect of pineapple waste powder on probiotic growth, antioxidant and antimutagenic activities of yogurt. J. Food Sci. Technol. 2016, 53, 1698–1708. [Google Scholar]
- Frakolaki, G.; Giannou, V.; Kekos, D.; Tzia, C. A review of the microencapsulation techniques for the incorporation of probiotic bacteria in functional foods. Crit. Rev. Food Sci. Nutr. 2021, 61, 1515–1536. [Google Scholar] [CrossRef]
- Salminen, S.; Collado, M.C.; Endo, A.; Hill, C.; Lebeer, S.; Quigley, E.M.M.; Sanders, M.E.; Shamir, R.; Swann, J.R.; Szajewska, H.; et al. The International Scientific Association of Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of postbiotics. Nat. Rev. Gastroenterol. Hepatol. 2021, 18, 649–667. [Google Scholar] [CrossRef]
- Prestes, A.A.; Verruck, S.; Vargas, M.O.; Canella, M.H.M.; Silva, C.C.; da Silva Barros, E.L.; Dantas, A.; de Oliveira, L.V.A.; Maran, B.M.; Matos, M. Influence of guabiroba pulp (campomanesia xanthocarpa o. berg) added to fermented milk on probiotic survival under in vitro simulated gastrointestinal conditions. Food Res. Int. 2021, 141, 110135. [Google Scholar]
- Alessandri, G.; Ossiprandi, M.C.; MacSharry, J.; Van Sinderen, D.; Ventura, M. Bifidobacterial dialogue with its human host and consequent modulation of the immune system. Front. Immunol. 2019, 10, 2348. [Google Scholar] [CrossRef]
- Patel, A. Probiotic fruit and vegetable juices-recent advances and future perspective. Int. Food Res. J. 2017, 24, 1850–1857. [Google Scholar]
- Kamal, R.M.; Alnakip, M.E.; Abd El Aal, S.F.; Bayoumi, M.A. Bio-controlling capability of probiotic strain Lactobacillus rhamnosus against some common foodborne pathogens in yogurt. Int. Dairy J. 2018, 85, 1–7. [Google Scholar] [CrossRef]
- Coelho, E.M.; de Souza, M.E.A.O.; Corrêa, L.C.; Viana, A.C.; de Azevêdo, L.C.; dos Santos Lima, M. Bioactive Compounds and Antioxidant Activity of Mango Peel Liqueurs (Mangifera indica L.) Produced by Different Methods of Maceration. Antioxidants 2019, 8, 102. [Google Scholar] [CrossRef] [PubMed]
- Batista, A.L.D.; Silva, R.; Cappato, L.P.; Ferreira, M.V.S.; Nascimento, K.O.; Schmiele, M.; Esmerino, E.A.; Balthazar, C.F.; Silva, H.L.A.; Moraes, J.; et al. Developing a synbiotic fermented milk using probiotic bacteria and organic green banana flour. J. Funct. Foods 2017, 38, 242–250. [Google Scholar] [CrossRef]
- Vicenssuto, G.M.; de Castro, R.J.S. Development of a novel probiotic milk product with enhanced antioxidant properties using mango peel as a fermentation substrate. Biocatal. Agric. Biotechnol. 2020, 24, 101564. [Google Scholar] [CrossRef]
- Gibson, G.R.; Hutkins, R.; Sanders, M.E.; Prescott, S.L.; Reimer, R.A.; Salminen, S.J.; Scott, K.; Stanton, C.; Swanson, K.S.; Cani, P.D. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat. Rev. Gastroenterol. Hepatol. 2017, 14, 491–502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Delgado-Fernández, P.; Corzo, N.; Olano, A.; Hernández-Hernández, O.; Moreno, F.J. Effect of selected prebiotics on the growth of lactic acid bacteria and physicochemical properties of yogurts. Int. Dairy J. 2019, 89, 77–85. [Google Scholar] [CrossRef]
- Kabir, M.R.; Hasan, M.M.; Islam, M.R.; Haque, A.R.; Hasan, S.K. Formulation of yogurt with banana peel extracts to enhance storability and bioactive properties. J. Food Processing Preserv. 2020, 45, e15191. [Google Scholar] [CrossRef]
- Peng, D.; Zahid, H.F.; Ajlouni, S.; Dunshea, F.R.; Suleria, H.A. LC-ESI-QTOF/MS Profiling of Australian Mango Peel By-Product Polyphenols and Their Potential Antioxidant Activities. Processes 2019, 7, 764. [Google Scholar] [CrossRef]
- Zahid, H.F.; R anadheera, C.S.; Fang, Z.; Ajlouni, S. Healthy and Functional Ingredients from Fruit Processing Byproducts: A Review Focusing on Fruit Peels. Int. J. Agric. Environ. Biores. 2019, 04, 336–360. [Google Scholar]
- Othman, N.; Hamid, A.H.; Suleiman, N. Physicochemical properties and sensory evaluation of yogurt nutritionally enriched with papaya. Food Res. 2019, 3, 791–797. [Google Scholar] [CrossRef]
- Carvalho, M.; Perez-Palacios, T.; Ruiz-Carrascal, J. Physico-chemical and sensory characteristics of freeze-dried and air-dehydrated yogurt foam. LWT-Food Sci. Technol. 2017, 80, 328–334. [Google Scholar] [CrossRef]
- Jouki, M.; Khazaei, N.; Rezaei, F.; Taghavian-Saeid, R. Production of synbiotic freeze-dried yogurt powder using microencapsulation and cryopreservation of L. plantarum in alginate-skim milk microcapsules. Int. Dairy J. 2021, 122, 105133. [Google Scholar] [CrossRef]
- Zahid, H.F.; Ranadheera, C.S.; Fang, Z.; Ajlouni, S. Utilization of Mango, Apple and Banana Fruit Peels as Prebiotics and Functional Ingredients. Agriculture 2021, 11, 584. [Google Scholar] [CrossRef]
- do Espírito Santo, A.P.; Cartolano, N.S.; Silva, T.F.; Soares, F.A.; Gioielli, L.A.; Perego, P.; Converti, A.; Oliveira, M.N. Fibers from fruit by-products enhance probiotic viability and fatty acid profile and increase CLA content in yogurts. Int. J. Food Microbiol. 2012, 154, 135–144. [Google Scholar] [CrossRef] [PubMed]
- Zahid, H.F.; Ali, A.; Ranadheera, C.S.; Fang, Z.; Dunshea, F.R.; Ajlouni, S. In vitro bioaccessibility of phenolic compounds and alpha-glucosidase inhibition activity in yoghurts enriched with mango peel powder. Food Bioscience 2022, 102011. [Google Scholar] [CrossRef]
- Chemists, A.O.A.C.; Horwitz, W. Official methods of analysis; Association of Official Analytical Chemists: Washington, DC, USA, 1975; Volume 222. [Google Scholar]
- Costa, M.P.d.; Frasao, B.d.S.; Lima, B.R.C.d.C.; Rodrigues, B.L.; Junior, C.A.C. Simultaneous analysis of carbohydrates and organic acids by HPLC-DAD-RI for monitoring goat’s milk yogurts fermentation. Talanta 2016, 152, 162–170. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.; Bashmil, Y.M.; Cottrell, J.J.; Suleria, H.A.R.; Dunshea, F.R. LC-MS/MS-QTOF Screening and Identification of Phenolic Compounds from Australian Grown Herbs and Their Antioxidant Potential. Antioxidants 2021, 10, 1770. [Google Scholar] [CrossRef]
- Cáceres-Vélez, P.R.; Ali, A.; Fournier-Level, A.; Dunshea, F.R.; Jusuf, P.R. Phytochemical and Safety Evaluations of Finger Lime, Mountain Pepper, and Tamarind in Zebrafish Embryos. Antioxidants 2022, 11, 1280. [Google Scholar] [CrossRef]
- Ali, A.; Zahid, H.F.; Cottrell, J.J.; Dunshea, F.R. A Comparative Study for Nutritional and Phytochemical Profiling of Coffea arabica (C. arabica) from Different Origins and Their Antioxidant Potential and Molecular Docking. Molecules 2022, 27, 5126. [Google Scholar] [CrossRef]
- Hernández-Carranza, P.; Rivadeneyra-Mata, M.; Ramos-Cassellis, M.E.; Aparicio-Fernández, X.; Navarro-Cruz, A.R.; Ávila-Sosa, R.; Ochoa-Velasco, C.E. Characterization of red prickly pear peel (Opuntia ficus-indica L.) and its mucilage obtained by traditional and novel methodologies. J. Food Meas. Charact. 2019, 13, 1111–1119. [Google Scholar]
- Chouchouli, V.; Kalogeropoulos, N.; Konteles, S.J.; Karvela, E.; Makris, D.P.; Karathanos, V.T. Fortification of yogurts with grape (Vitis vinifera) seed extracts. LWT-Food Sci. Technol. 2013, 53, 522–529. [Google Scholar] [CrossRef]
- Tontul, İ.; Ergin, F.; Eroğlu, E.; Küçükçetin, A.; Topuz, A. Physical and microbiological properties of yogurt powder produced by refractance window drying. Int. Dairy J. 2018, 85, 169–176. [Google Scholar] [CrossRef]
- Ismail, E.A.; Aly, A.A.; Atallah, A.A. Quality and microstructure of freeze-dried yogurt fortified with additives as protective agents. Heliyon 2020, 6, e05196. [Google Scholar] [CrossRef] [PubMed]
- Santos, G.d.; Pagani, A.A.C.; Rosenthal, A.; Nunes, T.P.; Silva, M.A.A.P.d. Development and acceptance of freeze-dried yogurt “powder yogurt”. Int. Food Res. J. 2018, 25, 1159–1165. [Google Scholar]
- Casarotti, S.N.; Borgonovi, T.F.; Batista, C.L.; Penna, A.L.B. Guava, orange and passion fruit by-products: Characterization and its impacts on kinetics of acidification and properties of probiotic fermented products. LWT-Food Sci. Technol. 2018, 98, 69–76. [Google Scholar] [CrossRef]
- Ścibisz, I.; Ziarno, M.; Mitek, M. Color stability of fruit yogurt during storage. J. Food Sci. Technol. 2019, 56, 1997–2009. [Google Scholar] [CrossRef]
- Szoltysik, M.; Kucharska, A.Z.; Sokol-Letowska, A.; Dabrowska, A.; Bobak, L.; Chrzanowska, J. The Effect of Rosa spinosissima Fruits Extract on Lactic Acid Bacteria Growth and Other Yogurt Parameters. Foods 2020, 9, 1167. [Google Scholar] [CrossRef]
- Ohlsson, J.A.; Johansson, M.; Hansson, H.; Abrahamson, A.; Byberg, L.; Smedman, A.; Lindmark-Månsson, H.; Lundh, Å. Lactose, glucose and galactose content in milk, fermented milk and lactose-free milk products. Int. Dairy J. 2017, 73, 151–154. [Google Scholar] [CrossRef]
- Pereira, G.A.; Arruda, H.S.; Molina, G.; Pastore, G.M. Extraction optimization and profile analysis of oligosaccharides in banana pulp and peel. J. Food Processing Preserv. 2018, 42, e13408. [Google Scholar] [CrossRef]
- Macfarlane, G.T.; Steed, H.; Macfarlane, S. Bacterial metabolism and health-related effects of galacto-oligosaccharides and other prebiotics. J. Appl. Microbiol. 2008, 104, 305–344. [Google Scholar] [CrossRef]
- Demirkol, M.; Tarakci, Z. Effect of grape (Vitis labrusca L.) pomace dried by different methods on physicochemical, microbiological and bioactive properties of yogurt. Lwt 2018, 97, 770–777. [Google Scholar] [CrossRef]
- Muniandy, P.; Shori, A.B.; Baba, A.S. Influence of green, white and black tea addition on the antioxidant activity of probiotic yogurt during refrigerated storage. Food Packag. Shelf Life 2016, 8, 1–8. [Google Scholar] [CrossRef]
- Dey, T.B.; Chakraborty, S.; Jain, K.K.; Sharma, A.; Kuhad, R.C. Antioxidant phenolics and their microbial production by submerged and solid state fermentation process: A review. Trends Food Sci. Technol. 2016, 53, 60–74. [Google Scholar]
- Ajila, C.M.; Leelavathi, K.; Rao, U. Improvement of dietary fiber content and antioxidant properties in soft dough biscuits with the incorporation of MPP. J. Cereal. Sci. 2008, 48, 319–326. [Google Scholar] [CrossRef]
- Lozano, B.; Castellote, A.I.; Montes, R.; López-Sabater, M.C. Vitamins, fatty acids, and antioxidant capacity stability during storage of freeze-dried human milk. Int. J. Food Sci. Nutr. 2014, 65, 703–707. [Google Scholar] [CrossRef]
- Trigueros, L.; Wojdyło, A.; Sendra, E. Antioxidant Activity and Protein–Polyphenol Interactions in a Pomegranate (Punica granatum L.) Yogurt. J. Agric. Food Chem. 2014, 62, 6417–6425. [Google Scholar] [CrossRef]
- Helal, A.; Tagliazucchi, D. Impact of in-vitro gastro-pancreatic digestion on polyphenols and cinnamaldehyde bioaccessibility and antioxidant activity in stirred cinnamon-fortified yogurt. LWT-Food Sci. Technol. 2018, 89, 164–170. [Google Scholar] [CrossRef]
- Dimitrellou, D.; Salamoura, C.; Kontogianni, A.; Katsipi, D.; Kandylis, P.; Zakynthinos, G.; Varzakas, T. Effect of Milk Type on the Microbiological, Physicochemical and Sensory Characteristics of Probiotic Fermented Milk. Microorganisms 2019, 7, 274. [Google Scholar] [CrossRef]
- Güler-Akın, M.B.; Akın, M.S. Effects of cysteine and different incubation temperatures on the microflora, chemical composition and sensory characteristics of bio-yogurt made from goat’s milk. Food Chem. 2007, 100, 788–793. [Google Scholar] [CrossRef]
- Coman, M.M.; Oancea, A.M.; Verdenelli, M.C.; Cecchini, C.; Bahrim, G.E.; Orpianesi, C.; Cresci, A.; Silvi, S. Polyphenol content and in vitro evaluation of antioxidant, antimicrobial and prebiotic properties of red fruit extracts. Eur. Food Res. Technol. 2018, 244, 735–745. [Google Scholar] [CrossRef]
- Rodríguez-Costa, S.; Cardelle-Cobas, A.; Roca-Saavedra, P.; Porto-Arias, J.J.; Miranda, J.; Cepeda, A. In vitro evaluation of the prebiotic effect of red and white grape polyphenolic extracts. J. Physiol. Biochem. 2018, 74, 101–110. [Google Scholar] [CrossRef]
- Liu, H.; Cui, S.W.; Chen, M.; Li, Y.; Liang, R.; Xu, F.; Zhong, F.J. Protective approaches and mechanisms of microencapsulation to the survival of probiotic bacteria during processing, storage and gastrointestinal digestion: A review. Crit. Rev. Food Sci. Nutr. 2019, 59, 2863–2878. [Google Scholar] [CrossRef] [PubMed]
- Gao, H.-X.; Yu, Z.-L.; He, Q.; Tang, S.-H.; Zeng, W.-C. A potentially functional yogurt co-fermentation with Gnaphalium affine. LWT-Food Sci. Technol. 2018, 91, 423–430. [Google Scholar] [CrossRef]
- Capela, P.; Hay, T.K.C.; Shah, N.P. Effect of cryoprotectants, prebiotics and microencapsulation on survival of probiotic organisms in yogurt and freeze-dried yogurt. Food Res. Int. 2006, 39, 203–211. [Google Scholar] [CrossRef]
- Celik, O.F.; O’Sullivan, D.J. Factors influencing the stability of freeze-dried stress-resilient and stress-sensitive strains of bifidobacteria. J. Dairy Sci. 2013, 96, 3506–3516. [Google Scholar] [CrossRef]
- Hayayumi-Valdivia, M.; Márquez-Villacorta, L.F.; Pretell-Vásquez, C.C. Effect of microencapsulation and MPP on probiotics survival in ice cream. Braz. J. Food Technol. 2021, 24. [Google Scholar] [CrossRef]
- Massounga Bora, A.F.; Li, X.; Zhu, Y.; Du, L. Improved Viability of Microencapsulated Probiotics in a Freeze-Dried Banana Powder During Storage and Under Simulated Gastrointestinal Tract. Probiotics Antimicrob. Proteins 2019, 11, 1330–1339. [Google Scholar] [CrossRef]
- Conde-Islas, A.; Jiménez-Fernández, M.; Cantú-Lozano, D.; Urrea-García, G.; Luna-Solano, G. Effect of the Freeze-Drying Process on the Physicochemical and Microbiological Properties of Mexican Kefir Grains. Processes 2019, 7, 127. [Google Scholar] [CrossRef] [Green Version]
- El-Batawy, O.; Ashoush, I.; Mehanna, N.S. Impact of mango and pomegranate peels supplementation on quality characteristics of yogurt with or without whey powder. World J. Dairy Food Sci. 2014, 9, 57–65. [Google Scholar]
- Januário, J.; da Silva, I.; De Oliveira, A.; De Oliveira, J.; Dionísio, J.; Klososki, S.; Pimentel, T. Probiotic yogurt flavored with organic beet with carrot, cassava, sweet potato or corn juice: Physicochemical and texture evaluation, probiotic viability and acceptance. Int. Food Res. J. 2017, 24, 359–366. [Google Scholar]
Sample Codes | Treatments * |
---|---|
Y-1 | SC only |
Y-2 | SC + 2% BPP |
Y-3 | SC + 2% MPP |
Y-4 | SC + Bb-12+ LC, LGG (No FPP) |
Y-5 | SC + Bb-12+ LC, LGG + 2% BPP |
Y-6 | SC + Bb-12+ LC, LGG + 2% MPP |
Yogurt Types | Parameters | |||||||
---|---|---|---|---|---|---|---|---|
Fresh yogurts | ||||||||
Moisture (%) | Fat (%) | Ash (%) | Protein (%) | WHC (%) | Production Yield (%) | pH | T. A | |
Y-1 | 69.33 ± 5.51 b | 0.01 ± 0.01 e | 2.70 ± 0.16 h | 1.52 ± 0.16 e | 63.23 ± 5.38 a | ------ | 4.51 ± 0.05 a | 0.75 ± 0.05 bc |
Y-2 | 76.01 ± 3.61 a | 2.64 ± 0.29 bc | 6.91 ± 0.52 bc | 2.19 ± 0.14 d | 55.30 ± 5.02 cd | ------ | 4.50 ± 0.07 a | 0.80 ± 0.05 ab |
Y-3 | 69.72 ± 3.61 b | 2.07 ± 0.07 d | 4.48 ± 0.33 g | 2.15 ± 0.13 d | 57.58 ± 3.74 bc | ------ | 4.49 ± 0.10 a | 0.79 ± 0.04 ab |
Y-4 | 68.02 ± 3.61 b | 0.02 ± 0.01 e | 2.76 ± 0.27 h | 1.23 ± 0.14 e | 62.79 ± 4.33 ab | ------ | 4.50 ± 0.08 a | 0.76 ± 0.05 bc |
Y-5 | 76.33 ± 4.51 a | 2.97 ± 0.08 b | 6.39 ± 0.27 cd | 3.57 ± 0.19 b | 57.45 ± 4.03 bc | ------ | 4.49 ± 0.13 a | 0.89 ± 0.04 a |
Y-6 | 72.33 ± 4.04 b | 2.09 ± 0.09 d | 4.95 ± 0.29 fg | 3.16 ± 0.06 c | 57.93 ± 2.48 bc | ------ | 4.46 ± 0.16 a | 0.90 ± 0.03 a |
RFD yogurts | ||||||||
Y-1 | * 7.74 ± 0.63 c | 0.05 ± 0.13 e | 3.22 ± 0.36 h | 2.10 ± 0.22 d | 52.85 ± 1.67 cd | 16.43 ± 1.66 c | 4.13 ± 0.08 a | 0.87 ± 0.08 bc |
Y-2 | * 8.67 ± 1.01 c | 3.77 ± 0.31 a | 8.54 ± 0.44 a | 3.61 ± 0.24 b | 45.33 ± 3.00 e | 18.11 ± 2.26 a | 4.09 ± 0.11 a | 0.91 ± 0.13 b |
Y-3 | * 8.02 ± 0.48 c | 2.81 ± 0.11 bc | 6.11 ± 0.31 de | 3.31 ± 0.12 bc | 49.10 ± 2.52 de | 17.75 ± 3.08 b | 4.07 ± 0.11 a | 0.91 ± 0.24 b |
Y-4 | * 7.93 ± 0.37 c | 0.06 ± 0.13 e | 3.30 ± 0.24 h | 1.93 ± 0.29 d | 52.61 ± 3.63 cd | 16.89 ± 0.92 c | 4.11 ± 0.15 a | 0.88 ± 0.31 bc |
Y-5 | * 8.17 ± 0.33 c | 3.48 ± 0.23 a | 7.56 ± 0.29 b | 4.18 ± 0.16 a | 47.74 ± 4.68 de | 18.81 ± 1.77 a | 4.01 ± 0.14 a | 0.99 ± 0.23 ab |
Y-6 | * 7.90 ± 0.52 c | 2.52 ± 0.28 c | 5.50 ± 0.35 ef | 4.11 ± 0.15 a | 47.58 ± 2.15 e | 17.41 ± 2.38 b | 3.98 ± 0.12 a | 1.01±0.19 a |
Types of yogurts | Parameters | ||
---|---|---|---|
Fresh yogurts | |||
L* | a* | b* | |
Y-1 | 81.32 ± 4.32 ab | −0.24 ± 0.76 c | 23.55 ± 2.86 ab |
Y-2 | 54.11 ± 3.55 f | 4.92 ± 1.07 a | 19.46 ± 2.44 c |
Y-3 | 71.38 ± 2.01 cd | 1.26 ± 0.29 b | 24.91 ± 1.11 ab |
Y-4 | 79.46 ± 2.65 abc | −1.08 ± 0.37 b | 24.52 ± 4.24 abc |
Y-5 | 56.23 ± 4.08 f | 5.78 ± 0.22 d | 19.49 ± 2.48 c |
Y-6 | 66.85 ± 4.47 de | 2.08 ± 0.74 b | 24.62 ± 0.74 ab |
RFD yogurts | |||
Y-1 | 88.42 ± 5.20 a | −0.17 ± 1.09 c | 22.83 ± 1.24 abc |
Y-2 | 59.07 ± 5.29 ef | 4.33 ± 1.97 a | 21.39 ± 2.31 bc |
Y-3 | 75.65 ± 2.01 bcd | 1.26 ± 0.29 b | 27.14 ± 1.11 a |
Y-4 | 82.36 ± 4.54 ab | −1.10 ± 0.37 b | 26.58 ± 1.47 a |
Y-5 | 59.22 ± 4.08 ef | 4.97 ± 1.00 a | 20.81 ± 1.01 bc |
Y-6 | 71.01 ± 4.63 cd | −1.41 ± 0.34 b | 27.62 ± 0.76 a |
Yogurt Types | Detected Sugars | Yogurt Samples | |||||
---|---|---|---|---|---|---|---|
Y-1 | Y-2 | Y-3 | Y-4 | Y-5 | Y-6 | ||
Fresh yogurts | Lactose | 1.69 ± 0.15 ab | 1.52 ± 0.05 b | 1.68 ± 0.21 ab | 1.61 ± 0.23 b | 1.89 ± 0.16 a | 1.54 ± 0.04 b |
Galactose | 1.02 ± 0.07 a | 1.01 ± 0.09 a | 1.02 ± 0.07 a | 1.01 ± 0.21 a | 0.88 ± 0.06 a | 1.01 ± 0.07 a | |
Glucose | 1.42 ± 0.15 a | 0.95 ± 0.20 c | 1.21 ± 0.11 b | 1.47 ± 0.21 a | 1.01 ± 0.06 bc | 1.31 ± 0.04 ab | |
Fructose | N. d | 0.69 ± 0.04 a | 0.58 ± 0.03 a | N. d | 0.65 ± 0.07 a | 0.62 ± 0.05 a | |
1-kestose | N. d | 0.17 ± 0.04 a | N. d | N. d | 0.15 ± 0.10 a | N. d | |
Raffinose | N. d | N. d | 0.15 ± 0.24 a | N. d | N. d | 0.21 ± 0.07 a | |
Total sugars | 4.13 ± 0.37 c | 4.34 ± 0.41 b | 4.64 ± 0.67 a | 4.09 ± 0.65 c | 4.58 ± 0.47 a | 4.69 ± 0.27 a | |
RFD yogurt | Lactose | 1.76 ± 0.13 a | 1.79 ± 0.09 a | 1.82 ± 0.71 a | 1.67 ± 0.18 a | 1.61 ± 0.16 ab | 1.40 ± 0.08 b |
Galactose | 1.08 ± 0.13 a | 0.99 ± 0.07 b | 1.03 ± 0.14 a | 1.07 ± 0.21 a | 1.09 ± 0.06 a | 1.15 ± 0.07 a | |
Glucose | 1.53 ± 0.19 a | 1.08 ± 0.18 b | 1.15 ± 0.19 b | 1.55 ± 0.23 a | 1.21 ± 0.11 b | 1.39 ± 0.09 ab | |
Fructose | N. d | 0.62 ± 0.11 a | 0.59 ± 0.11 b | N. d | 0.61 ± 0.13 a | 0.65 ± 0.11 a | |
1-kestose | N. d | 0.20 ± 0.13 a | N. d | N. d | 0.17 ± 0.15 a | N. d | |
Raffinose | N. d | N. d | 0.25 ± 0.20 a | N. d | N. d | 0.31 ± 0.12 a | |
Total sugars | 4.37 ± 0.45 c | 4.68 ± 0.58 ab | 4.84 ± 1.35 a | 4.29 ± 0.62 b | 4.69 ± 0.63 ab | 4.90 ± 0.45 a |
Storage Days | Parameters | Yogurt Treatments | |||||
---|---|---|---|---|---|---|---|
Y-1 | Y-2 | Y-3 | Y-4 | Y-5 | Y-6 | ||
Fresh yogurt | |||||||
01 | TPC | 0.16 ± 0.01 dA | 0.18 ± 0.02 bcA | 0.24 ± 0.01 aA | 0.06 ± 0.01 dA | 0.19 ± 0.01 bcA | 0.23 ± 0.01 aA |
DPPH | 0.11 ± 0.05 bc | 0.33 ± 0.08 b | 0.93 ± 0.34 a | 0.08 ± 0.04 bc | 0.20 ± 0.06 bc | 0.89 ± 0.33 a | |
ABTS | 0.05 ± 0.01 d | 0.44 ± 0.06 bc | 1.27 ± 0.31 a | 0.07 ± 0.02 d | 0.59 ± 0.06 b | 1.20 ± 0.24 a | |
14 | TPC | 0.06 ± 0.01 bA | 0.15 ± 0.05 abA | 0.19 ± 0.07 aB | 0.04 ± 0.01 bA | 0.16 ± 0.04 aAB | 0.18 ± 0.04 aB |
DPPH | 0.09 ± 0.05 cd | 0.24 ± 0.06 c | 0.83 ± 0.37 a | 0.14 ± 0.09 c | 0.14 ± 0.06 cd | 0.63 ± 0.30 ab | |
ABTS | 0.05 ± 0.02 d | 0.32 ± 0.08 bc | 1.18 ± 0.31 a | 0.05 ± 0.03 d | 0.48 ± 0.11 b | 1.05 ± 0.27 a | |
28 | TPC | 0.04 ± 0.02 hA | 0.11 ± 0.07 aB | 0.13 ± 0.07 aC | 0.03 ± 0.01 hA | 0.13 ± 0.03 aB | 0.15 ± 0.07 aB |
DPPH | 0.04 ± 0.03 d | 0.15 ± 0.05 c | 0.69 ± 0.48 a | 0.04 ± 0.03 d | 0.10 ± 0.06 c | 0.50 ± 0.38 ab | |
ABTS | 0.03 ± 0.01 b | 0.20 ± 0.11 bc | 1.08 ± 0.31 a | 0.03 ± 0.02 b | 0.34 ± 0.19 b | 0.76 ± 0.42 ab | |
RFD | |||||||
01 | TPC | 0.31 ± 0.07 dA | 0.82 ± 0.08 cA | 2.15 ± 0.05 bA | 0.68 ± 0.03 cdA | 2.27 ± 0.18 bA | 2.73 ± 0.11 aA |
DPPH | 1.45 ± 0.16 b cA | 2.58 ± 0.24 bA | 13.67 ± 3.45 aA | 1.16 ± 0.18 bcA | 3.00 ± 0.74 bA | 11.90 ± 3.32 aA | |
ABTS | 2.07 ± 0.07 cA | 8.13 ± 0.40 bA | 46.50 ± 3.12 aA | 1.84 ± 0.21 cA | 8.85 ± 0.81 bA | 44.01 ± 3.16 aA | |
14 | TPC | 0.27 ± 0.01 cdA | 0.79 ± 0.02 cA | 1.67 ± 0.16 bB | 0.56 ± 0.10 cA | 2.11 ± 0.12 aA | 2.15 ± 0.50 aB |
DPPH | 1.20 ± 0.47 cA | 2.33 ± 0.35 cA | 12.18 ± 2.93 aA | 0.71 ± 0.24 dA | 2.19 ± 0.10 cB | 5.05 ± 0.36 bB | |
ABTS | 1.82 ± 0.25 cA | 7.02 ± 0.28 bA | 39.14 ± 6.56 aB | 1.70 ± 0.33 cA | 6.82 ± 0.81 bA | 39.27 ± 7.66 aB | |
28 | TPC | 0.21 ± 0.10 cA | 0.61 ± 0.10 bB | 1.39 ± 0.46 aB | 0.48 ± 0.39b cA | 1.52 ± 0.46 aB | 1.66 ± 0.35 aC |
DPPH | 0.90 ± 0.63 c dA | 1.93 ± 0.46 cA | 11.84 ± 1.03 aA | 0.60 ± 0.21 c dB | 1.88 ± 0.26 cB | 4.64 ± 1.99 bB | |
ABTS | 1.25 ± 0.51 cA | 5.95 ± 1.15 bA | 35.63 ± 8.00 aB | 1.24 ± 0.04 cA | 5.93 ± 2.29 bB | 35.00 ± 7.95 aB |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zahid, H.F.; Ranadheera, C.S.; Fang, Z.; Ajlouni, S. Functional and Healthy Yogurts Fortified with Probiotics and Fruit Peel Powders. Fermentation 2022, 8, 469. https://doi.org/10.3390/fermentation8090469
Zahid HF, Ranadheera CS, Fang Z, Ajlouni S. Functional and Healthy Yogurts Fortified with Probiotics and Fruit Peel Powders. Fermentation. 2022; 8(9):469. https://doi.org/10.3390/fermentation8090469
Chicago/Turabian StyleZahid, Hafza Fasiha, Chaminda Senaka Ranadheera, Zhongxiang Fang, and Said Ajlouni. 2022. "Functional and Healthy Yogurts Fortified with Probiotics and Fruit Peel Powders" Fermentation 8, no. 9: 469. https://doi.org/10.3390/fermentation8090469
APA StyleZahid, H. F., Ranadheera, C. S., Fang, Z., & Ajlouni, S. (2022). Functional and Healthy Yogurts Fortified with Probiotics and Fruit Peel Powders. Fermentation, 8(9), 469. https://doi.org/10.3390/fermentation8090469