Non-Invasive Digital Technologies to Assess Wine Quality Traits and Provenance through the Bottle
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sites and Sample Description
2.2. Near-Infrared Spectroscopy
2.3. Gas Chromatography–Mass Spectroscopy
2.4. Descriptive Sensory Evaluation
2.5. Statistical Analysis and Machine Learning Modelling
3. Results and Discussion
3.1. Near-Infrared Spectroscopy
3.2. Gas Chromatography–Mass Spectroscopy
3.3. Descriptive Sensory Evaluation
3.4. Machine Learning Modelling
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barátossy, G.; Berinkeiné Donkó, M.; Csikorné Vásárhelyi, H.; Héberger, K.; Rácz, A. Comprehensive classification and regression modeling of wine samples using 1H NMR spectra. Foods 2020, 10, 64. [Google Scholar] [CrossRef] [PubMed]
- Van Leeuwen, C.; Seguin, G. The concept of terroir in viticulture. J. Wine Res. 2006, 17, 1–10. [Google Scholar] [CrossRef]
- Gomes, V.M.; Fernandes, A.M.; Faia, A.; Melo-Pinto, P. Comparison of different approaches for the prediction of sugar content in new vintages of whole Port wine grape berries using hyperspectral imaging. Comput. Electron. Agric. 2017, 140, 244–254. [Google Scholar] [CrossRef]
- Silva, R.; Gomes, V.; Mendes-Faia, A.; Melo-Pinto, P. Using support vector regression and hyperspectral imaging for the prediction of oenological parameters on different vintages and varieties of wine grape berries. Remote Sens. 2018, 10, 312. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Li, Q.; Yan, B.; Zhang, L.; Gu, Y. Bionic electronic nose based on MOS sensors array and machine learning algorithms used for wine properties detection. Sensors 2018, 19, 45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Majchrzak, T.; Wojnowski, W.; Płotka-Wasylka, J. Classification of Polish wines by application of ultra-fast gas chromatography. Eur. Food Res. Technol. 2018, 244, 1463–1471. [Google Scholar] [CrossRef]
- da Costa, N.L.; Llobodanin, L.A.G.; de Lima, M.D.; Castro, I.A.; Barbosa, R. Geographical recognition of syrah wines by combining feature selection with extreme learning machine. Measurement 2018, 120, 92–99. [Google Scholar] [CrossRef]
- Garde-Cerdán, T.; da Costa, N.L.; Rubio-Bretón, P.; Barbosa, R.; Baroja, E.; Martínez-Vidaurre, J.M.; Pérez-Álvarez, E.P. The most important parameters to differentiate tempranillo and tempranillo blanco grapes and wines through machine learning. Food Anal. Methods 2021, 14, 2221–2236. [Google Scholar] [CrossRef]
- Merkytė, V.; Longo, E.; Windisch, G.; Boselli, E. Phenolic compounds as markers of wine quality and authenticity. Foods 2020, 9, 1785. [Google Scholar] [CrossRef]
- Ranaweera, R.K.; Capone, D.L.; Bastian, S.E.; Cozzolino, D.; Jeffery, D.W. A review of wine authentication using spectroscopic approaches in combination with chemometrics. Molecules 2021, 26, 4334. [Google Scholar] [CrossRef]
- Han, F.; Zhang, D.; Aheto, J.H.; Feng, F.; Duan, T. Integration of a low-cost electronic nose and a voltammetric electronic tongue for red wines identification. Food Sci. Nutr. 2020, 8, 4330–4339. [Google Scholar] [CrossRef] [PubMed]
- Fuentes, S.; Tongson, E.; Viejo, C.G. Novel digital technologies implemented in sensory science and consumer perception. Curr. Opin. Food Sci. 2021, 41, 99–106. [Google Scholar] [CrossRef]
- Gonzalez Viejo, C.; Fuentes, S. Beer aroma and quality traits assessment using artificial intelligence. Fermentation 2020, 6, 56. [Google Scholar] [CrossRef]
- Viejo, C.G.; Fuentes, S.; Godbole, A.; Widdicombe, B.; Unnithan, R.R. Development of a low-cost e-nose to assess aroma profiles: An artificial intelligence application to assess beer quality. Sens. Actuators B Chem. 2020, 308, 127688. [Google Scholar] [CrossRef]
- Gonzalez Viejo, C.; Fuentes, S.; Hernandez-Brenes, C. Smart detection of faults in beers using near-infrared spectroscopy, a low-cost electronic nose and artificial intelligence. Fermentation 2021, 7, 117. [Google Scholar] [CrossRef]
- Gonzalez Viejo, C.; Fuentes, S.; Torrico, D.D.; Howell, K.; Dunshea, F.R. Assessment of beer quality based on a robotic pourer, computer vision, and machine learning algorithms using commercial beers. J. Food Sci. 2018, 83, 1381–1388. [Google Scholar] [CrossRef]
- Gonzalez Viejo, C.; Fuentes, S. Digital Assessment and Classification of Wine Faults Using a Low-Cost Electronic Nose, Near-Infrared Spectroscopy and Machine Learning Modelling. Sensors 2022, 22, 2303. [Google Scholar] [CrossRef]
- Summerson, V.; Gonzalez Viejo, C.; Szeto, C.; Wilkinson, K.L.; Torrico, D.D.; Pang, A.; Fuentes, S. Classification of smoke contaminated Cabernet Sauvignon berries and leaves based on chemical fingerprinting and machine learning algorithms. Sensors 2020, 20, 5099. [Google Scholar] [CrossRef]
- Summerson, V.; Viejo, C.G.; Torrico, D.; Pang, A.; Fuentes, S. Detection of smoke-derived compounds from bushfires in Cabernet-Sauvignon grapes, must, and wine using Near-Infrared spectroscopy and machine learning algorithms. OenoOne 2020, 54, 1105–1119. [Google Scholar] [CrossRef]
- Summerson, V.; Gonzalez Viejo, C.; Torrico, D.D.; Pang, A.; Fuentes, S. Digital Smoke Taint Detection in Pinot Grigio Wines Using an E-Nose and Machine Learning Algorithms Following Treatment with Activated Carbon and a Cleaving Enzyme. Fermentation 2021, 7, 119. [Google Scholar] [CrossRef]
- Summerson, V.; Gonzalez Viejo, C.; Pang, A.; Torrico, D.D.; Fuentes, S. Assessment of Volatile Aromatic Compounds in Smoke Tainted Cabernet Sauvignon Wines Using a Low-Cost E-Nose and Machine Learning. Modelling 2021, 26, 5108. [Google Scholar] [CrossRef] [PubMed]
- Fuentes, S.; Summerson, V.; Gonzalez Viejo, C.; Tongson, E.; Lipovetzky, N.; Wilkinson, K.L.; Unnithan, R.R. Assessment of Smoke Contamination in Grapevine Berries and Taint in Wines Due to Bushfires Using a Low-Cost E-Nose and an Artificial Intelligence Approach. Sensors 2020, 20, 5108. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez Viejo, C.; Fuentes, S. Digital Detection of Olive Oil Rancidity Levels and Aroma Profiles Using Near-Infrared Spectroscopy, a Low-Cost Electronic Nose and Machine Learning Modelling. Chemosensors 2022, 10, 159. [Google Scholar] [CrossRef]
- Gonzalez Viejo, C.; Harris, N.M.; Fuentes, S. Quality Traits of Sourdough Bread Obtained by Novel Digital Technologies and Machine Learning Modelling. Fermentation 2022, 8, 516. [Google Scholar] [CrossRef]
- Basile, T.; Marsico, A.D.; Perniola, R. Use of Artificial Neural Networks and NIR Spectroscopy for Non-Destructive Grape Texture Prediction. Foods 2022, 11, 281. [Google Scholar] [CrossRef] [PubMed]
- Ferrara, G.; Melle, A.; Marcotuli, V.; Botturi, D.; Fawole, O.A.; Mazzeo, A. The prediction of ripening parameters in Primitivo wine grape cultivar using a portable NIR device. J. Food Compos. Anal. 2022, 114, 104836. [Google Scholar] [CrossRef]
- Rouxinol, M.I.; Martins, M.R.; Murta, G.C.; Mota Barroso, J.; Rato, A.E. Quality Assessment of Red Wine Grapes through NIR Spectroscopy. Agronomy 2022, 12, 637. [Google Scholar] [CrossRef]
- Anjos, O.; Caldeira, I.; Fernandes, T.A.; Pedro, S.I.; Vitória, C.; Oliveira-Alves, S.; Canas, S. PLS-R Calibration Models for Wine Spirit Volatile Phenols Prediction by Near-Infrared Spectroscopy. Sensors 2021, 22, 286. [Google Scholar] [CrossRef]
- Chen, J.; Liao, S.; Yao, L.; Pan, T. Rapid and simultaneous analysis of multiple wine quality indicators through near-infrared spectroscopy with twice optimization for wavelength model. Front. Optoelectron. 2020, 14, 329–340. [Google Scholar] [CrossRef]
- Kljusurić, J.G.; Boban, A.; Mucalo, A.; Budić-Leto, I. Novel application of NIR spectroscopy for non-destructive determination of ‘maraština’ wine parameters. Foods 2022, 11, 1172. [Google Scholar] [CrossRef]
- Fuentes, S.; Torrico, D.D.; Tongson, E.; Gonzalez Viejo, C. Machine learning modeling of wine sensory profiles and color of vertical vintages of pinot noir based on chemical fingerprinting, weather and management data. Sensors 2020, 20, 3618. [Google Scholar] [CrossRef] [PubMed]
- Hencz, A.; Nguyen, L.L.P.; Baranyai, L.; Albanese, D. Assessment of wine adulteration using near infrared spectroscopy and laser backscattering imaging. Processes 2022, 10, 95. [Google Scholar] [CrossRef]
- da Costa, N.L.; Valentin, L.A.; Castro, I.A.; Barbosa, R.M. Predictive modeling for wine authenticity using a machine learning approach. Artif. Intell. Agric. 2021, 5, 157–162. [Google Scholar] [CrossRef]
- Nyitrainé Sárdy, Á.D.; Ladányi, M.; Varga, Z.; Szövényi, Á.P.; Matolcsi, R. The effect of grapevine variety and wine region on the primer parameters of wine based on 1h nmr-spectroscopy and machine learning methods. Diversity 2022, 14, 74. [Google Scholar] [CrossRef]
- Portinale, L.; Leonardi, G.; Arlorio, M.; Coisson, J.D.; Travaglia, F.; Locatelli, M. Authenticity assessment and protection of high-quality Nebbiolo-based Italian wines through machine learning. Chemom. Intell. Lab. Syst. 2017, 171, 182–197. [Google Scholar] [CrossRef]
- Fuentes, S.; Gonzalez Viejo, C.; Torrico, D.D.; Dunshea, F.R. Development of a Biosensory Computer Application to Assess Physiological and Emotional Responses from Sensory Panelists. Sensors 2018, 18, 2958. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez Viejo, C.; Torrico, D.D.; Dunshea, F.R.; Fuentes, S. Development of artificial neural network models to assess beer acceptability based on sensory properties using a robotic pourer: A comparative model approach to achieve an artificial intelligence system. Beverages 2019, 5, 33. [Google Scholar] [CrossRef] [Green Version]
- Ciucci, S.; Ge, Y.; Durán, C.; Palladini, A.; Jiménez-Jiménez, V. Enlightening discriminative network functional modules behind Principal Component Analysis separation in differential-omic science studies. Sci. Rep. 2017, 7, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Cozzolino, D.; Kwiatkowski, M.J.; Waters, E.J.; Gishen, M. A feasibility study on the use of visible and short wavelengths in the near-infrared region for the non-destructive measurement of wine composition. Anal. Bioanal. Chem. 2007, 387, 2289–2295. [Google Scholar] [CrossRef]
- Cozzolino, D.; Smyth, H.E.; Gishen, M. Feasibility study on the use of visible and near-infrared spectroscopy together with chemometrics to discriminate between commercial white wines of different varietal origins. J. Agric. Food Chem. 2003, 51, 7703–7708. [Google Scholar] [CrossRef]
- Company, T.G.S. The Good Scents Company Information System. Available online: http://www.thegoodscentscompany.com/data/rw1038291.html (accessed on 3 October 2022).
- Somkuwar, R.G.; Sharma, A.K.; Kambale, N.; Banerjee, K.; Bhange, M.A.; Oulkar, D.P. Volatome finger printing of red wines made from grapes grown under tropical conditions of India using thermal-desorption gas chromatography-mass spectrometry (TD-GC/MS). J. Food Sci. Technol. 2020, 57, 1119–1130. [Google Scholar] [CrossRef] [PubMed]
- Ieri, F.; Campo, M.; Cassiani, C.; Urciuoli, S.; Jurkhadze, K.; Romani, A. Analysis of aroma and polyphenolic compounds in Saperavi red wine vinified in Qvevri. Food Sci. Nutr. 2021, 9, 6492–6500. [Google Scholar] [CrossRef] [PubMed]
- Barbará, J.A.; Nicolli, K.P.; Souza-Silva, É.A.; Biasoto, A.C.T.; Welke, J.E.; Zini, C.A. Volatile profile and aroma potential of tropical Syrah wines elaborated in different maturation and maceration times using comprehensive two-dimensional gas chromatography and olfactometry. Food Chem. 2020, 308, 125552. [Google Scholar] [CrossRef] [PubMed]
- Kustos, M.; Gambetta, J.M.; Jeffery, D.W.; Heymann, H.; Goodman, S.; Bastian, S.E. A matter of place: Sensory and chemical characterisation of fine Australian Chardonnay and Shiraz wines of provenance. Food Res. Int. 2020, 130, 108903. [Google Scholar] [CrossRef]
- Mayr, C.M.; Geue, J.P.; Holt, H.E.; Pearson, W.P.; Jeffery, D.W.; Francis, I.L. Characterization of the key aroma compounds in Shiraz wine by quantitation, aroma reconstitution, and omission studies. J. Agric. Food Chem. 2014, 62, 4528–4536. [Google Scholar] [CrossRef]
- Feng, T.; Ma, N.; Wang, K.; Zhuang, H.; Chen, D.; Yao, L.; Xu, J. Exploring relationships between aroma, tasty components properties, and marketing price of chinese cabernet sauvignon using gas chromatography mass spectrum and high-performance liquid chromatography. J. Food Qual. 2022, 2022, 1–13. [Google Scholar] [CrossRef]
- Pearson, W.; Schmidtke, L.M.; Francis, I.L.; Carr, B.T.; Blackman, J.W. Characterising inter– and intra–regional variation in sensory profiles of Australian Shiraz wines from six regions. Aust. J. Grape Wine Res. 2020, 26, 372–384. [Google Scholar] [CrossRef]
- Meterology, B.O. Australian Governement; Monthly Rainfall; Station: Dookie Agricultural College; Station Number: 81013. Available online: http://www.bom.gov.au/climate/averages/tables/cw_081013.shtml (accessed on 27 September 2022).
- Sáenz-Navajas, M.P.; Jeffery, D.W. Perspectives on Wines of Provenance: Sensory Typicality, Quality, and Authenticity. ACS Food Sci. Technol. 2021, 1, 986–992. [Google Scholar] [CrossRef]
- Fuentes, S.; Gonzalez Viejo, C.; Wang, X.; Torrico, D.D. Aroma and quality assessment for vertical vintages using machine learning modelling based on weather and management information. In Proceedings of the 21st GiESCO International Meeting, Thessaloniki, Greece, 17–21 June 2019. [Google Scholar]
- Buback. Octanoic Acid Ethyl Ester; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1989. [Google Scholar]
- Buback. 2-Phenylethanol; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1989. [Google Scholar]
- Augustine, M.P.; Harley, S.J.; Lim, V.; Stucky, P. Authentication Device for Full Intact Wine Bottles. U.S. Patent 9,488,599, 8 November 2016. [Google Scholar]
Vintage | Label/Abbreviation | Closure | Alcohol Content % |
---|---|---|---|
2000 | S00 | Cork | 14.2 |
2007 | S07 | Cork | 14.9 |
2008 | S08 | Screw Cap | 14.5 |
2010 | S10 | Cork | 13.8 |
2013 | S13 | Cork | 13.8 |
2014 | S14 | Cork | 13.8 |
2015 | S15 | Cork | 14.3 |
2016 | S16 | Screw Cap | 14.3 |
2017 | S17 | Screw Cap | 14.5 |
2018 | S18 | Cork | 14.5 |
2019 | S19 | Screw Cap | 14.5 |
2020 | S20 | Screw Cap | 14.2 |
2021 | S21 | Cork | 14.5 |
Descriptor | Anchors |
---|---|
Clarity | Light–Dark |
Colour Intensity | Absent–Intense |
Aroma Truffle | Absent–Intense |
Aroma Smoke | Absent–Intense |
Aroma Blackberry | Absent–Intense |
Aroma Blackcurrant | Absent–Intense |
Aroma Prune | Absent–Intense |
Aroma Butter | Absent–Intense |
Aroma Pepper | Absent–Intense |
Aroma Cedar | Absent–Intense |
Aroma Violet | Absent–Intense |
Aroma Redcurrant | Absent–Intense |
Bitter | Absent–Intense |
Sour/Acidic | Absent–Intense |
Sweetness | Absent–Intense |
Astringency | Absent–Intense |
Body | Light–Full |
Warming | Absent–Intense |
Tingling | Absent–Intense |
Perceived Quality | Unacceptable–Excellent |
Label | Volatile Aromatic Compound | Aroma * |
---|---|---|
VAC1 | Silanediol, dimethyl- | NR |
VAC2 | Methane, isocyanato- | NR |
VAC3 | Propanoic acid, anhydride | Like acetaldehyde |
VAC4 | Ethylbenzene | Sweet/Fruity |
VAC5 | Benzene, 1,3-dimethyl- | Plastic |
VAC6 | Styrene | Sweet/Balsam/Floral/Plastic |
VAC7 | Furfuryl ethyl ether | Sweet/Spicy |
VAC8 | 4-Ethylbenzoic acid, decyl ester | NR |
VAC9 | Hexanoic acid, ethyl ester | Sweet/Pineapple/Waxy/Green Banana |
VAC10 | Benzenemethanol, alpha.-methyl- | Fresh/Sweet/Gardenia |
VAC11 | Phenylethyl Alcohol | Floral/Rose |
VAC12 | Phenol, 4-ethyl- | Castoreum/Smoke |
VAC13 | Ethyl hydrogen succinate | Chocolate ** |
VAC14 | Butanedioic acid, diethyl ester | Cooked Apple |
VAC15 | Octanoic acid, ethyl ester | Fruity/Winey/Waxy/Apricot/Banana/Brandy |
VAC16 | Naphthalene, 1,2-dihydro-2,5,8-trimethyl- | NR |
VAC17 | Decanoic acid, ethyl ester | Sweet/Waxy/Apple/Grape/Brandy |
Stage | Samples | Accuracy | Error | Performance (MSE) |
---|---|---|---|---|
Training | 246 | 99.2% | 0.8% | <0.01 |
Testing | 105 | 92.4% | 7.6% | 0.01 |
Overall | 351 | 97.2% | 2.8% | - |
Stage | Samples | Observations | R | Slope | MSE |
---|---|---|---|---|---|
Training | 245 | 4900 | 0.97 | 0.93 | 0.26 |
Validation | 53 | 1060 | 0.92 | 0.89 | 0.56 |
Testing | 53 | 1060 | 0.92 | 0.88 | 0.63 |
Overall | 351 | 7020 | 0.95 | 0.91 | - |
Stage | Samples | Observations | R | Slope | MSE |
---|---|---|---|---|---|
Training | 246 | 4185 | 0.92 | 0.84 | 0.91 × 1013 |
Testing | 105 | 1785 | 0.80 | 0.85 | 2.37 × 1013 |
Validation | 351 | 5967 | 0.88 | 0.84 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Harris, N.; Gonzalez Viejo, C.; Barnes, C.; Fuentes, S. Non-Invasive Digital Technologies to Assess Wine Quality Traits and Provenance through the Bottle. Fermentation 2023, 9, 10. https://doi.org/10.3390/fermentation9010010
Harris N, Gonzalez Viejo C, Barnes C, Fuentes S. Non-Invasive Digital Technologies to Assess Wine Quality Traits and Provenance through the Bottle. Fermentation. 2023; 9(1):10. https://doi.org/10.3390/fermentation9010010
Chicago/Turabian StyleHarris, Natalie, Claudia Gonzalez Viejo, Christopher Barnes, and Sigfredo Fuentes. 2023. "Non-Invasive Digital Technologies to Assess Wine Quality Traits and Provenance through the Bottle" Fermentation 9, no. 1: 10. https://doi.org/10.3390/fermentation9010010
APA StyleHarris, N., Gonzalez Viejo, C., Barnes, C., & Fuentes, S. (2023). Non-Invasive Digital Technologies to Assess Wine Quality Traits and Provenance through the Bottle. Fermentation, 9(1), 10. https://doi.org/10.3390/fermentation9010010