Amelioration of Biogas Production from Waste-Activated Sludge through Surfactant-Coupled Mechanical Disintegration
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection and Characterization
2.2. Disperser Disintegration
2.3. Surfactant-Coupled Disperser Disintegration
2.4. Anaerobic Biodegradability Assay
2.5. Analytical Methods
3. Results and Discussion
3.1. Disperser Disintegration
3.1.1. Soluble Organic Release
3.1.2. Suspended Solid Reduction
3.2. Alkyl Polyglycoside-Coupled Disperser Disintegration
3.2.1. Soluble Organic Release
3.2.2. SS Reduction
3.3. Anaerobic Biodegradability Assay
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Meyer, T.; Edwards, E.A. Anaerobic digestion of pulp and paper mill wastewater and sludge. Water Res. 2014, 65, 321–349. [Google Scholar] [CrossRef] [PubMed]
- Hämäläinen, A.; Kokko, M.; Kinnunen, V.; Hilli, T.; Rintala, J. Hydrothermal carbonization of pulp and paper industry wastewater treatment sludges—Characterization and potential use of hydrochars and filtrates. Bioresour. Technol. 2022, 355, 127258. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Smith, S.R. Enzyme activity of waste activated sludge extracts. Water Sci. Technol. 2020, 80, 1861–1869. [Google Scholar] [CrossRef] [PubMed]
- Sethupathy, A.; Sivashanmugam, P. Enhancing biomethane potential of pulp and paper sludge through disperser mediated polyhydroxyalkanoates. Energy Convers. Manag. 2018, 173, 179–186. [Google Scholar] [CrossRef]
- Kavitha, S.; Saji Pray, S.; Yogalakshmi, K.N.; Adish Kumar, S.; Yeom, I.T.; Rajesh banu, J. Effect of chemo-mechanical disintegration on sludge anaerobic digestion for enhanced biogas production. Environ. Sci. Pollut. Res. 2016, 23, 2402–2414. [Google Scholar] [CrossRef] [PubMed]
- Hanum, F.; Yuan, L.C.; Kamahara, H.; Aziz, H.A.; Atsuta, Y.; Yamada, T.; Daimon, H. Treatment of sewage sludge using anaerobic digestion in Malaysia: Current state and challenges. Front. Energy Res. 2019, 7, 19. [Google Scholar] [CrossRef] [Green Version]
- Kavitha, S.; Rajesh Banu, J.; Kumar, G.; Kaliappan, S.; Yeom, I.T. Profitable ultrasonic assisted microwave disintegration of sludge biomass: Modelling of biomethanation and energy parameter analysis. Bioresour. Technol. 2018, 254, 203–213. [Google Scholar] [CrossRef]
- Kavitha, S.; Jayashree, C.; Adish Kumar, S.; Yeom, I.T.; Banu, J.R. The enhancement of anaerobic biodegradability of waste activated sludge by surfactant mediated biological pretreatment. Bioresour. Technol. 2014, 168, 159–166. [Google Scholar] [CrossRef]
- Yukesh Kannah, R.; Kavitha, S.; Rajesh Banu, J.; Parthiba Karthikeyan, O.; Sivashanmugham, P. Dispersion induced ozone pretreatment of waste activated biosolids: Arriving biomethanation modelling parameters, energetic and cost assessment. Bioresour. Technol. 2017, 244, 679–687. [Google Scholar] [CrossRef]
- Kumar, M.D.; Tamilarasan, K.; Kaliappan, S.; Banu, J.R.; Rajkumar, M.; Kim, S.H. Surfactant assisted disperser pretreatment on the liquefaction of Ulva reticulata and evaluation of biodegradability for energy efficient biofuel production through nonlinear regression modelling. Bioresour. Technol. 2018, 255, 116–122. [Google Scholar] [CrossRef]
- Azizi, K.; Keshavarz Moraveji, M.; Arregi, A.; Amutio, M.; Lopez, G.; Olazar, M. On the pyrolysis of different microalgae species in a conical spouted bed reactor: Bio-fuel yields and characterization. Bioresour. Technol. 2020, 311, 123561. [Google Scholar] [CrossRef]
- Vo, T.-V.; Chou, Y.-Y.; Chen, B.-H. Preparation of Microemulsion from an Alkyl Polyglycoside Surfactant and Tea Tree Oil. Molecules 2021, 26, 1971. [Google Scholar] [CrossRef]
- Zhao, J.; Yang, Q.; Li, X.; Wang, D.; Luo, K.; Zhong, Y.; Xu, Q.; Zeng, G. Enhanced production of short-chain fatty acid from food waste stimulated by alkyl polyglycosides and its mechanism. Waste Manag. 2015, 46, 133–139. [Google Scholar] [CrossRef]
- Xiao, J.; Zhao, L.; Shen, Z. Enhanced sludge anaerobic fermentation using microwave pretreatment combined with biosurfactant alkyl polyglycoside. RSC Adv. 2017, 7, 43772–43779. [Google Scholar] [CrossRef] [Green Version]
- Gao, P.; Guo, L.; Sun, J.; Wang, Y.; She, Z.; Gao, M.; Zhao, Y.; Jin, C. Effect of alkyl polyglycosides on the performance of thermophilic bacteria pretreatment for saline waste sludge hydrolysis. Bioresour. Technol. 2020, 296, 122307. [Google Scholar] [CrossRef]
- Yukesh Kannah, R.; Kavitha, S.; Sivashanmugham, P.; Kumar, G.; Nguyen, D.D.; Chang, S.W.; Rajesh Banu, J. Biohydrogen production from rice straw: Effect of combinative pretreatment, modelling assessment and energy balance consideration. Int. J. Hydrog. Energy 2019, 44, 2203–2215. [Google Scholar] [CrossRef]
- Tapia, J.M.; Muñoz, J.A.; González, F.; Blázquez, M.L.; Malki, M.; Ballester, A. Extraction of extracellular polymeric substances from the acidophilic bacterium Acidiphilium 3.2Sup(5). Water Sci. Technol. 2009, 59, 1959–1967. [Google Scholar] [CrossRef] [Green Version]
- Sethupathy, A.; Arunagiri, A.; Sivashanmugam, P.; Banu, J.R.; Ashokkumar, M. Disperser coupled rhamnolipid disintegration of pulp and paper mill waste biosolid: Characterisation, methane production, energy assessment and cost analysis. Bioresour. Technol. 2020, 297, 122545. [Google Scholar] [CrossRef]
- Sugitha, S.; Kavitha, S.; Kannah, Y.; Kim, S.H.; Zhen, G.; Kumar, G. Profitable disperser coupled surfactant pretreatment of aquatic phytomass for energy efficient solubilization and biomethanation: A study on lignin inhibition and its possible solutions. Sustain. Energy Fuels 2022, 6, 3195–3207. [Google Scholar] [CrossRef]
- Maryam, A.; Zeshan; Badshah, M.; Sabeeh, M.; Khan, S.J. Enhancing methane production from dewatered waste activated sludge through alkaline and photocatalytic pretreatment. Bioresour. Technol. 2021, 325, 124677. [Google Scholar] [CrossRef]
- Kumar, G.; Sivagurunathan, P.; Zhen, G.; Kobayashi, T.; Kim, S.H.; Xu, K. Combined pretreatment of electrolysis and ultra-sonication towards enhancing solubilization and methane production from mixed microalgae biomass. Bioresour. Technol. 2017, 245, 196–200. [Google Scholar] [CrossRef] [PubMed]
- Tamilarasan, K.; Kavitha, S.; Rajesh Banu, J.; Arulazhagan, P.; Yeom, I.T. Energy-efficient methane production from macroalgal biomass through chemo disperser liquefaction. Bioresour. Technol. 2017, 228, 156–163. [Google Scholar] [CrossRef] [PubMed]
- Ushani, U.; Rajesh Banu, J.; Tamilarasan, K.; Kavitha, S.; Tae Yeom, I. Surfactant coupled sonic pretreatment of waste activated sludge for energetically positive biogas generation. Bioresour. Technol. 2017, 241, 710–719. [Google Scholar] [CrossRef] [PubMed]
- Kavitha, S.; Yukesh Kannah, R.; Yeom, I.T.; Do, K.U.; Banu, J.R. Combined thermo-chemo-sonic disintegration of waste activated sludge for biogas production. Bioresour. Technol. 2015, 197, 383–392. [Google Scholar] [CrossRef] [PubMed]
- Zheng, T.; Zhang, K.; Chen, X.; Ma, Y.; Xiao, B.; Liu, J. Effects of low- and high-temperature thermal-alkaline pretreatments on anaerobic digestion of waste activated sludge. Bioresour. Technol. 2021, 337, 125400. [Google Scholar] [CrossRef]
- Atelge, M.R.; Krisa, D.; Kumar, G.; Eskicioglu, C.; Nguyen, D.D.; Chang, S.W.; Atabani, A.E.; Al-Muhtaseb, A.H.; Unalan, S. Biogas production from organic waste: Recent progress and perspectives. Waste Biomass Valorization 2020, 11, 1019–1040. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valsa, V.; S, G.K.; Gondi, R.; Muthu, P.; Sankarapandian, K.; Kumar, G.; Gugulothu, P.; Jeyakumar, R.B. Amelioration of Biogas Production from Waste-Activated Sludge through Surfactant-Coupled Mechanical Disintegration. Fermentation 2023, 9, 57. https://doi.org/10.3390/fermentation9010057
Valsa V, S GK, Gondi R, Muthu P, Sankarapandian K, Kumar G, Gugulothu P, Jeyakumar RB. Amelioration of Biogas Production from Waste-Activated Sludge through Surfactant-Coupled Mechanical Disintegration. Fermentation. 2023; 9(1):57. https://doi.org/10.3390/fermentation9010057
Chicago/Turabian StyleValsa, Vijetha, Geethu Krishnan S, Rashmi Gondi, Preethi Muthu, Kavitha Sankarapandian, Gopalakrishnan Kumar, Poornachandar Gugulothu, and Rajesh Banu Jeyakumar. 2023. "Amelioration of Biogas Production from Waste-Activated Sludge through Surfactant-Coupled Mechanical Disintegration" Fermentation 9, no. 1: 57. https://doi.org/10.3390/fermentation9010057
APA StyleValsa, V., S, G. K., Gondi, R., Muthu, P., Sankarapandian, K., Kumar, G., Gugulothu, P., & Jeyakumar, R. B. (2023). Amelioration of Biogas Production from Waste-Activated Sludge through Surfactant-Coupled Mechanical Disintegration. Fermentation, 9(1), 57. https://doi.org/10.3390/fermentation9010057