Nutritional and Phytochemical Composition of Mahewu (a Southern African Fermented Food Product) Derived from White and Yellow Maize (Zea mays) with Different Inocula
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection and Preparation
2.2. Preparation of Mahewu
2.3. Measurement of pH, Titratable Acidity (TTA), and Total Soluble Solids (TSS) in Mahewu Samples
2.4. Proximate Analysis
2.5. Determination of Mineral Content Using Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES/MS)
2.6. Amino Acid Composition
2.7. Identification of Phenolic Compounds in Raw Maize Flour (RW and RY) and Mahewu Samples Using UHPLC/Q-TOF-MS
2.8. Statistical Analysis
3. Results
3.1. The pH, Titratable Acidity (TTA), and Total Soluble Solids (TSS)
3.2. Proximate Composition of Maize Flour (Yellow and White Maize) and Derived Mahewu Products
3.3. Mineral Composition of Raw Yellow and White Maize Flour as Well as Derived Mahewu Products
3.4. Amino Acid Profile of Yellow Maize Flour, White Maize Flour, and Mahewu Products
3.5. Identification of Phenolic Compounds in Raw Maize Flours (RW and RY) and Mahewu Samples
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ranum, P.; Peña-Rosas, J.P.; Garcia-Casal, M.N. Global maize production, utilization, and consumption. Ann. N. Y. Acad. Sci. 2014, 1312, 105–112. [Google Scholar] [CrossRef] [PubMed]
- Murdia, L.K.; Wadhwani, R.; Wadhawan, N.; Bajpai, P.; Shekhawat, S. Maize utilization in India: An Overview. Am. J. Food Nutr. 2016, 4, 169–176. [Google Scholar] [CrossRef]
- Rouf Shah, T.R.; Prasad, K.; Kumar, P. Maize—A potential source of human nutrition and health: A review. Cogent Food Agric. 2016, 2, 1–9. [Google Scholar] [CrossRef]
- Bento-Silva, A.; Duarte, N.; Mecha, E.; Belo, M.; Patto, M.C.V.; Bronze, M.D.R. Hydroxycinnamic acids and their derivatives in broa, a traditional ethnic maize bread. Foods 2020, 9, 1471. [Google Scholar] [CrossRef]
- Fadahunsi, I.; Soremekun, O. Production, nutritional and microbiological evaluation of mahewu a south production, nutritional and microbiological evaluation of mahewu a South African traditional fermented porridge. J. Adv. Biol. Biotechnol. 2017, 14, 1–10. [Google Scholar] [CrossRef]
- Mashau, M.E.; Maliwichi, L.L.; Jideani, A.I.O. Non-alcoholic fermentation of maize (Zea mays) in Sub-Saharan Africa. Fermentation 2021, 7, 158. [Google Scholar] [CrossRef]
- Gadaga, T.H.; Mutukumira, A.N.; Narvhus, J.A.; Feresu, S.B. A review of traditional fermented foods and beverages of Zimbabwe. Int. J. Food Microbiol. 1999, 53, 1–11. [Google Scholar] [CrossRef]
- Maakelo, P.K.; Bultosa, G.; Kobue-Lekalake, R.I.; Gwamba, J.; Sonno, K. Effects of watermelon pulp fortification on maize mageu physicochemical and sensory acceptability. Heliyon 2021, 7, e07128. [Google Scholar] [CrossRef]
- Adebiyi, J.A.; Obadina, A.O.; Adebo, O.A.; Kayitesi, E. Comparison of nutritional quality and sensory acceptability of biscuits obtained from native, fermented, and malted pearl millet (Pennisetum glaucum) flour. Food Chem. 2017, 232, 210–217. [Google Scholar] [CrossRef]
- Ignat, M.V.; Salanță, L.C.; Pop, O.L.; Pop, C.R.; Tofană, M.; Mudura, E.; Coldea, T.E.; Borșa, A.; Pasqualone, A. Current functionality and potential improvements of non-alcoholic fermented cereal beverages. Foods 2020, 9, 1031. [Google Scholar] [CrossRef]
- Jeyakumar, E.; Lawrence, R. Microbial fermentation for reduction of antinutritional factors. In Current Developments in Biotechnology and Bioengineering: Technologies for Production of Nutraceuticals and Functional Food Products; Elsevier: Amsterdam, The Netherlands, 2022; pp. 239–260. [Google Scholar] [CrossRef]
- Sharma, R.; Garg, P.; Kumar, P.; Bhatia, S.K.; Kulshrestha, S. Microbial fermentation and its role in quality improvement of fermented foods. Fermentation 2020, 6, 106. [Google Scholar] [CrossRef]
- Johnson, J.; Taylor, C.W. Phenolic acids. In Whole Grains and Their Bioactives: Composition and Health; John Wiley & Sons: Chicester, UK, 2019; pp. 357–382. [Google Scholar]
- Fernandesa, C.G.; Sonawaneb, S.K.; SS, A. Cereal based functional beverages: A review. J. Microbiol. Biotechnol. Food Sci. 2018, 8, 914–919. [Google Scholar] [CrossRef]
- Tripathi, A.D.; Mishra, R.; Maurya, K.K.; Singh, R.B.; Wilson, D.W. Estimates for world population and global food availability for global health. In The Role of Functional Food Security in Global Health; Academic Press: Cambridge, MA, USA, 2019; pp. 3–24. [Google Scholar] [CrossRef]
- Deepak, T.S.D.T.S.; Jayadeep, P.A.J.P.A. Prospects of maize (corn) wet milling by-products as a source of functional food ingredients and nutraceuticals. Food Technol. Biotechnol. 2022, 60, 109–120. [Google Scholar] [CrossRef]
- Daji, G.A.; Green, E.; Abrahams, A.; Oyedeji, A.B.; Masenya, K.; Kondiah, K.; Adebo, O.A. Physicochemical properties and bacterial community profiling of optimal mahewu (a fermented food product) prepared using white and yellow maize with different inocula. Foods 2022, 11, 3171. [Google Scholar] [CrossRef]
- Qaku, X.W.; Adetunji, A.; Dlamini, B.C. Fermentability and nutritional characteristics of sorghum mahewu supplemented with Bambara groundnut. J. Food Sci. 2020, 85, 1661–1667. [Google Scholar] [CrossRef] [PubMed]
- AOAC. Official Methods of Analysis; Association of Official Chemist: Gaithersburg, MD, USA, 2010. [Google Scholar]
- AOAC. Official Methods of Analysis; Association of Official Chemist: Gaithersburg, MD, USA, 2006. [Google Scholar]
- Biata, N.R.; Dimpe, K.M.; Ramontja, J.; Mketo, N.; Nomngongo, P.N. Determination of thallium in water samples using inductively coupled plasma optical emission spectrometry (ICP-OES) after ultrasonic assisted-dispersive solid phase microextraction. Microchem. J. 2018, 137, 214–222. [Google Scholar] [CrossRef]
- Adebiyi, J.A.; Njobeh, P.B.; Kayitesi, E. Assessment of nutritional and phytochemical quality of dawadawa (an African fermented condiment) produced from Bambara groundnut (Vigna subterranea). Microchem. J. 2019, 149, 104034. [Google Scholar] [CrossRef]
- Thallinger, B.; Prasetyo, E.N.; Nyanhongo, G.S.; Guebitz, G.M. Antimicrobial enzymes: An emerging strategy to fight microbes and microbial biofilms. Biotechnol. J. 2013, 8, 97–109. [Google Scholar] [CrossRef]
- Simango, C. Lactic acid fermentation of sour porridge and mahewu, a non-alcoholic fermented cereal beverage. JASSA J. Appl. Sci. S. Afr. 2005, 8, 89–98. [Google Scholar] [CrossRef] [Green Version]
- Chelule, P.K.; Mokoena, M.P.; Gqaleni, N. Advantages of traditional lactic acid bacteria fermentation of food in Africa. In Current Research, Technology and Education Topics in Applied Microbiology and Microbial Biotechnology; Formatex Research Center: Badajoz, Spain, 2010; pp. 1160–1167. [Google Scholar]
- Awobusuyi, T.D.; Siwela, M.; Kolanisi, U.; Amonsou, O.E. Provitamin A retention and sensory acceptability of amahewu, a non-alcoholic cereal-based beverage made with provitamin A-biofortified maize. J. Sci. Food Agric. 2016, 96, 1356–1361. [Google Scholar] [CrossRef] [PubMed]
- Kutyauripo, J.; Parawira, W.; Tinofa, S.; Kudita, I.; Ndengu, C. Investigation of shelf-life extension of sorghum beer (chibuku) by removing the second conversion of malt. Int. J. Food Microbiol. 2009, 129, 271–276. [Google Scholar] [CrossRef] [PubMed]
- Assohoun, M.C.N.; Djeni, T.N.; Koussémon-Camara, M.; Brou, K. Effect of fermentation process on nutritional composition and aflatoxins concentration of doklu, a fermented maize based food. Food Nutr. Sci. 2013, 4, 1120–1127. [Google Scholar] [CrossRef] [Green Version]
- Ogodo, A.C.; Ugbogu, O.C.; Onyeagba, R.A.; Okereke, C.O. Microbiological quality, proximate composition and in vitro starch/protein digestibility of Sorghum bicolor flour fermented with lactic acid bacteria consortia. Chem. Biol. Technol. Agric. 2019, 6, 7. [Google Scholar] [CrossRef]
- Adebo, J.A.; Njobeh, P.B.; Gbashi, S.; Oyedeji, A.B.; Ogundele, O.M.; Oyeyinka, S.A.; Adebo, O.A. Fermentation of cereals and legumes: Impact on nutritional constituents and nutrient bioavailability. Fermentation 2022, 8, 63. [Google Scholar] [CrossRef]
- Tou, E.; Mouquet-Rivier, C.; Picq, C.; Traorè, A.; Trèche, S.; Guyot, J. Improving the nutritional quality of ben-saalga, a traditional fermented millet-based gruel, by co-fermenting millet with groundnut and modifying the processing method. LWT 2007, 40, 1561–1569. [Google Scholar] [CrossRef]
- Ogodo, A.C.; Ugbogu, O.C.; Onyeagba, R.A.; Okereke, H.C. Effect of lactic acid bacteria consortium fermentation on the proximate composition and in-vitro starch/protein digestibility of maize (Zea mays) flour. Am. J. Microbiol. Biotechnol. 2017, 4, 35–43. [Google Scholar]
- Awobusuyi, T.D.; Siwela, M. Nutritional properties and consumer’s acceptance of provitamin a-biofortified amahewu combined with Bambara (Vigna Subterranea) flour. Nutrients 2019, 11, 1476. [Google Scholar] [CrossRef] [Green Version]
- Awobusuyi, T.D.; Oyeyinka, S.A.; Siwela, M.; Amonsou, E.O. Nutritional properties of provitamin A-biofortified maize amahewu prepared using different inocula. Food Biosci. 2021, 42, 101217. [Google Scholar] [CrossRef]
- Nkhata, S.G.; Ayua, E.; Kamau, E.H.; Shingiro, J.-B. Fermentation and germination improve nutritional value of cereals and legumes through activation of endogenous enzymes. Food Sci. Nutr. 2018, 21, 2446–2458. [Google Scholar] [CrossRef]
- Samtiya, M.; Aluko, R.; Puniya, A.; Dhewa, T. Enhancing micronutrients bioavailability through fermentation of plant-based foods: A concise review. Fermentation 2021, 7, 63. [Google Scholar] [CrossRef]
- Er, E.Ö.; Öz, E.; Zeynep, Y.; Bak, S. Sodium, magnesium, calcium, manganese, iron, copper, and zinc in serums of beta thalassemia major patients. Biol. Trace Elem. Res. 2021, 3, 888–894. [Google Scholar]
- Swaminathan, R. Magnesium metabolism and its disorders. Clin. Biochem. Rev. 2014, 24, 189–196. [Google Scholar] [CrossRef]
- Babatunde, O.O.; Adeola, O. Additivity of apparent and standardised ileal digestibility of phosphorus in corn and canola meal mixed diets; basal endogenous loss of phosphorus responses to phytase and age in broiler chickens. Br. Poult. Sci. 2021, 62, 244–250. [Google Scholar] [CrossRef]
- Yiannikourides, A.; Latunde-Dada, G. A short review of iron metabolism and pathophysiology of iron disorders. Medicines 2019, 6, 85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, A.; Kukreti, R.; Saso, L.; Kukreti, S. Oxidative stress: A key modulator in neurodegenerative diseases. Molecules 2019, 24, 1583. [Google Scholar] [CrossRef] [Green Version]
- Ekmekcioglu, C.; Elmadfa, I.; Meyer, A.L.; Moeslinger, T. The role of dietary potassium in hypertension and diabetes. J. Physiol. Biochem. 2016, 72, 93–106. [Google Scholar] [CrossRef]
- Hajeb, P.; Sloth, J.J.; Shakibazadeh, S.; Mahyudin, N.A.; Afsah-Hejri, L. Toxic elements in food: Occurrence, binding, and reduction approaches. Compr. Rev. Food Sci. Food Saf. 2014, 13, 457–472. [Google Scholar] [CrossRef]
- FAO/WHO. Limit Test for Heavy Metals in Food Additive Specifications. Explanatory Note. Joint FAO/WHO Expert Committee on Food Additives; FAO: Rome, Italy, 2002. [Google Scholar]
- Elbagermi, M.A.; Edwards, H.G.M.; Alajtal, A.I. Monitoring of heavy metal content in fruits and vegetables collected from production and market sites in the Misurata area of Libya. ISRN Anal. Chem. 2012, 2012, 827645. [Google Scholar] [CrossRef] [Green Version]
- Gürkan, R.; Korkmaz, S.; Altunay, N. Preconcentration and determination of vanadium and molybdenum in milk, vegetables and foodstuffs by ultrasonic-thermostatic-assisted cloud point extraction coupled to flame atomic absorption spectrometry. Talanta 2016, 155, 38–46. [Google Scholar] [CrossRef]
- Oyeyinka, A.T.; Siwela, M.; Pillay, K. A mini review of the physicochemical properties of amahewu, a Southern African traditional fermented cereal grain beverage. LWT 2021, 151, 112159. [Google Scholar] [CrossRef]
- Moiseenko, K.V.; Glazunova, O.A.; Savinova, O.S.; Ajibade, B.O.; Ijabadeniyi, O.A.; Fedorova, T.V. Analytical characterization of the widely consumed commercialized fermented beverages from Russia (kefir and ryazhenka) and South Africa (amasi and mahewu): Potential functional properties and profiles of volatile organic compounds. Foods 2021, 10, 3082. [Google Scholar] [CrossRef] [PubMed]
- He, W.; Wu, G. Metabolism of amino acids in the brain and their roles in regulating food intake. Adv. Exp. Med. Biol. 2020, 1265, 167–185. [Google Scholar] [CrossRef] [PubMed]
- Adeyeye, E. The intercorrelation of the amino acid quality between raw, steeped and germinated guinea corn (Sorghum bicolor) grains. Bull. Chem. Soc. Ethiop. 2008, 22, 11–17. [Google Scholar] [CrossRef] [Green Version]
- Osman, M.A. Effect of traditional fermentation process on the nutrient and antinutrient contents of pearl millet during preparation of Lohoh. J. Saudi Soc. Agric. Sci. 2011, 10, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Awadalkareem, A.; Mustafa, A. Protein, mineral content and amino acid profile of sorghum flour as influenced by soybean protein concentrate supplementation. Pak. J. Nutr. 2008, 3, 475–479. [Google Scholar] [CrossRef] [Green Version]
- Moench, L.; Processing, D.; Mohammed, N.A.; Ahmed, I.A.M.; Babiker, E.E.; Materials, A. Nutritional evaluation of sorghum flour (Sorghum bicolor. l. moench) during processing of injera. Int. Sch. Scintific Res. Innov. 2011, 5, 99–103. [Google Scholar]
- Krishnan, R.; Dharmaraj, U.; Malleshi, N.G. Influence of decortication, popping and malting on bioaccessibility of calcium, iron and zinc in finger millet. LWT 2012, 48, 169–174. [Google Scholar] [CrossRef]
- Yasuda, M.; Matsumoto, T.; Sakaguchi, M.; Kinjyo, S. Changes in protein and nitrogen compounds of tofuyo prepared by Aspergillus oryzae during fermentation studies on manufacturing of tofuyo in Okinawa, part IX. Nippon. Shokuhin Kogyo Gakkaishi 1994, 41, 184–190. [Google Scholar] [CrossRef] [Green Version]
- Norziah, M.H.; Ching, C.Y. Nutritional composition of edible seaweed Gracilaria changgi. Food Chem. 2000, 68, 69–76. [Google Scholar] [CrossRef]
- Aoki, H.; Uda, I.; Tagami, K.; Furuya, Y.; Endo, Y.; Fujimoto, K. The production of a new tempeh-like fermented soybean containing a high level of γ-aminobutyric acid by anaerobic incubation with Rhizopus. Biosci. Biotechnol. Biochem. 2003, 67, 1018–1023. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Xue, Z.; Lin, J.; Wang, Y.; Ying, H.; Lv, Q.; Hua, C.; Wang, M.; Chen, S.; Zhou, B. Proline improves cardiac remodeling following myocardial infarction and attenuates cardiomyocyte apoptosis via redox regulation. Biochem. Pharmacol. 2020, 178, 114065. [Google Scholar] [CrossRef] [PubMed]
- Duan, Y.; Li, F.; Li, Y.; Tang, Y.; Kong, X.; Feng, Z.; Anthony, T.G.; Watford, M.; Hou, Y.; Wu, G.; et al. The role of leucine and its metabolites in protein and energy metabolism. Amino Acids 2016, 48, 41–51. [Google Scholar] [CrossRef] [PubMed]
- Columbus, D.A.; Fiorotto, M.L.; Davis, T.A. Leucine is a major regulator of muscle protein synthesis in neonates. Amino Acids 2015, 47, 259–270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Breuillé, D.; Béchereau, F.; Buffière, C.; Denis, P.; Pouyet, C.; Obled, C. Beneficial effect of amino acid supplementation, especially cysteine, on body nitrogen economy in septic rats. Clin. Nutr. 2006, 25, 634–642. [Google Scholar] [CrossRef] [PubMed]
- Swallah, M.S.; Sun, H.; Affoh, R.; Fu, H.; Yu, H. Antioxidant potential overviews of secondary metabolites (polyphenols) in fruits. Int. J. Food Sci. 2020, 2020, 9081686. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Zhao, Y.; Sun, Y.; Lu, X.; Yang, X. Isolation, characterization, and hepatoprotective effects of the raffinose family oligosaccharides from Rehmannia glutinosa Libosch. J. Agric. Food Chem. 2013, 61, 7786–7793. [Google Scholar] [CrossRef] [PubMed]
- Fang, H.; Zhang, A.; Yu, J.; Wang, L.; Liu, C.; Zhou, X.; Sun, H.; Song, Q.; Wang, X. Insight into the metabolic mechanism of scoparone on biomarkers for inhibiting Yanghuang syndrome. Sci. Rep. 2016, 6, 37519. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daji, G.; Steenkamp, P.; Madala, N.; Dlamini, B. Phytochemical composition of Solanum retroflexum analysed with the aid of ultra-performance liquid chromatography hyphenated to quadrupole-time-of-flight mass spectrometry (UPLC-qTOF-MS). J. Food Qual. 2018, 2018, 3678795. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Tao, Y.; Zhang, X.; Shao, S.; Han, Y.; Chu, D.-T.; Xie, G.; Ye, X. Metabolic profile of ginkgo kernel juice fermented with lactic aicd bacteria: A potential way to degrade ginkgolic acids and enrich terpene lactones and phenolics. Process Biochem. 2019, 76, 25–33. [Google Scholar] [CrossRef]
- Nani, B.D.; Sardi, J.D.C.O.; Lazarini, J.G.; Silva, D.R.; Massariolli, A.P.; Cunha, T.M.; de Alencar, S.M.; Franchin, M.; Rosalen, P.L. Anti-inflammatory and anti-Candida effects of brazilian organic propolis, a promising source of bioactive molecules and functional food. J. Agric. Food Chem. 2020, 68, 2861–2871. [Google Scholar] [CrossRef]
- Pandit, N.; Singla, R.K.; Shrivastava, B. Current updates on oxazolidinone and its significance. Int. J. Med. Chem. 2012, 2012, 159285. [Google Scholar] [CrossRef] [PubMed]
- Dalibalta, S.; Majdalawieh, A.F.; Manjikian, H. Health benefits of sesamin on cardiovascular disease and its associated risk factors. Saudi Pharm. J. 2020, 28, 1276–1289. [Google Scholar] [CrossRef]
- Cabrera, J.; Saavedra, E.; del Rosario, H.; Perdomo, J.; Loro, J.F.; Cifuente, D.A.; Tonn, C.E.; García, C.; Quintana, J.; Estévez, F. Gardenin B-induced cell death in human leukemia cells involves multiple caspases but is independent of the generation of reactive oxygen species. Chem. Interact. 2016, 256, 220–227. [Google Scholar] [CrossRef] [PubMed]
- Johnson, J.B.; Mani, J.S.; Broszczak, D.; Prasad, S.S.; Ekanayake, C.P.; Strappe, P.; Valeris, P.; Naiker, M. Hitting the sweet spot: A systematic review of the bioactivity and health benefits of phenolic glycosides from medicinally used plants. Phytother. Res. 2021, 35, 3484–3508. [Google Scholar] [CrossRef] [PubMed]
- Bornhövd, E.; Burgdorf, W.H.; Wollenberg, A. Macrolactam immunomodulators for topical treatment of inflammatory skin diseases. J. Am. Acad. Dermatol. 2001, 45, 736–743. [Google Scholar] [CrossRef] [PubMed]
- Alam, A.; Subhan, N.; Hossain, H.; Hossain, M.; Reza, H.M.; Rahman, M.; Ullah, M.O. Hydroxycinnamic acid derivatives: A potential class of natural compounds for the management of lipid metabolism and obesity. Nutr. Metab. 2016, 13, 27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rech, C.; Ribeiro, L.P.; Bento, J.M.S.; Pott, C.A.; Nardi, C. Monocrotaline presence in the Crotalaria (Fabaceae) plant genus and its influence on arthropods in agroecosystems. Braz. J. Biol. 2024, 84, 1–14. [Google Scholar] [CrossRef]
- Fukumoto, S.; Morishita, A.; Furutachi, K.; Terashima, T.; Nakayama, T.; Yokogoshi, H. Effect of flavour components in lemon essential oil on physical or psychological stress. Stress Health 2008, 24, 3–12. [Google Scholar] [CrossRef]
- Arendse, W.; Jideani, V. Effects of some weak acids and Moringa oleifera leaf extract powder on the colour of dried apple. Processes 2022, 10, 206. [Google Scholar] [CrossRef]
- Furuta, A.; Tsubuki, M.; Endoh, M.; Miyamoto, T.; Tanaka, J.; Salam, K.A.; Akimitsu, N.; Tani, H.; Yamashita, A.; Moriishi, K.; et al. Identification of hydroxyanthraquinones as novel inhibitors of Hepatitis C virus NS3 helicase. Int. J. Mol. Sci. 2015, 16, 18439–18453. [Google Scholar] [CrossRef]
- Škubník, J.; Pavlíčková, V.; Ruml, T.; Rimpelová, S. Current perspectives on taxanes: Focus on their bioactivity, delivery and combination therapy. Plants 2021, 10, 569. [Google Scholar] [CrossRef]
- Richieri, G.V.; Anel, A.; Kleinfeld, A.M. Interactions of long-chain fatty acids and albumin: Determination of free fatty acid levels using the fluorescent probe ADIFAB. Biochemistry 1993, 32, 7574–7580. [Google Scholar] [CrossRef]
- Rendon, M.I.; Berson, D.S.; Cohen, J.L.; Roberts, W.E.; Starker, I.; Wang, B. Evidence and considerations in the application of chemical peels in skin disorders and aesthetic resurfacing. J. Clin. Aesthet. Dermatol. 2010, 3, 32–43. [Google Scholar]
- Badowski, E.M.; Yanful, P.K. Dronabinol oral solution in the management of anorexia and weight loss in AIDS and cancer. Ther. Clin. Risk Manag. 2018, 14, 643–651. [Google Scholar] [CrossRef] [Green Version]
- Marangoni, F.; Agostoni, C.; Borghi, C.; Catapano, A.L.; Cena, H.; Ghiselli, A.; La Vecchia, C.; Lercker, G.; Manzato, E.; Pirillo, A.; et al. Dietary linoleic acid and human health: Focus on cardiovascular and cardiometabolic effects. Atherosclerosis 2020, 292, 90–98. [Google Scholar] [CrossRef] [Green Version]
- Adebo, O.A.; Njobeh, P.B.; Adebiyi, J.A.; Kayitesi, E. Co-influence of fermentation time and temperature on physicochemical properties, bioactive components and microstructure of ting (a Southern African food) from whole grain sorghum. Food Biosci. 2018, 25, 118–127. [Google Scholar] [CrossRef]
- Towo, E.E.; Svanberg, U.; Ndossi, G.D. Effect of grain pre-treatment on different extractable phenolic groups in cereals and legumes commonly consumed in Tanzania. J. Sci. Food Agric. 2003, 83, 980–986. [Google Scholar] [CrossRef]
- Siyuan, S.; Tong, L.; Liu, R.H. Corn phytochemicals and their health benefits. Food Sci. Hum. Wellness 2018, 7, 185–195. [Google Scholar] [CrossRef]
WM | pH | TTA | TSS | |||
---|---|---|---|---|---|---|
BF | AF | BF | AF | BF | AF | |
SM | 5.96 bc ± 0.01 | 3.54 b ± 0.01 | 0.20 b ± 0 | 0.60 c ± 0 | 5.20 a ± 0.21 | 4.67 a ± 0.21 |
W | 6.39 d ± 0.01 | 4.51 d ± 0.01 | 0.15 a ± 0.03 | 0.47 a ± 0.06 | 5.90 d ± 0.31 | 5.17 d ± 0.31 |
MM | 5.90 a ± 0.02 | 3.41 a ± 0.02 | 0.20 b ± 0 | 0.68 d ± 0.03 | 5.61 c ± 0.15 | 5.03 c ± 0.15 |
MWM | 5.95 b ± 0.01 | 3.63 c ± 0.01 | 0.20 b ± 0 | 0.57 b ± 0.03 | 5.50 b ± 0.17 | 4.70 b ± 0.17 |
YM | ||||||
SM | 5.97 bc ± 0.02 | 3.47 b ± 0.02 | 0.20 b ± 0 | 0.60 c ± 0 | 5.90 d ± 0.12 | 5.17 c ± 0.15 |
W | 6.41 d ± 0.01 | 4.65 c ± 0.01 | 0.15 a ± 0.03 | 0.38 a ± 0.03 | 5.50 b ± 0.12 | 4.93 b ± 0.12 |
MM | 5.96 b ± 0.01 | 3.49 b ± 0.01 | 0.20 a ± 0 | 0.57 b ± 0.03 | 5.61 c ± 0.01 | 5.53 d ± 0.12 |
MYM | 5.91 a ± 0.01 | 3.44 a ± 0.01 | 0.20 b ± 0 | 0.62 d ± 0.03 | 5.20 a ± 0.15 | 4.80 a ± 0.36 |
Nutrients | YMSG | YW | YMM | YMY | RY | WSG | WW | WM | WMW | RW |
---|---|---|---|---|---|---|---|---|---|---|
Moisture | 4.57 cd ± 0.03 | 2.38 a ± 0.35 | 3.66 b ± 0.45 | 2.64 a ± 0.14 | 6.68 e ± 0.27 | 4.11 bc ± 0.22 | 4.18 bc ± 0.64 | 4.48 cd ± 0.33 | 5.01 d ± 0.06 | 8.65 f ± 0.27 |
Ash | 1.89 a ± 0.19 | 1.86 a ± 0.17 | 2.02 a ± 0.37 | 2.0 a ± 0 | 2.62 b ± 0.65 | 2.0 a ± 0 | 2.0 a ± 0 | 2.14 ab ± 0.02 | 2.15 ab ± 0.01 | 4.43 c ± 0.44 |
Protein | 8.64 bc ± 0.14 | 9.7 e ± 0.09 | 8.68 bc ± 0.10 | 8.59 b ± 0.13 | 8.19 a ± 0.08 | 8.75 bc ± 0.05 | 8.78 c ± 0.06 | 8.97 d ± 0.10 | 9 d ± 0.06 | 8.78 c ± 0.11 |
Fiber | 10.98 abcd ± 0.28 | 10.69 ab ± 0.10 | 10.77 abc ± 0.35 | 10.64 a ± 0 | 11.09 cd ± 0.01 | 10.82 abc ± 0.04 | 10.79 abc ± 0.11 | 10.87 abc ± 0.23 | 11.03 bcd ± 0.01 | 11.30 d ± 0.29 |
Fat | 1.66 a ± 0.01 | 1.65 a ± 0.01 | 1.55 a ± 0.19 | 1.66 a ± 0.01 | 2.32 b ± 0.01 | 1.66 a ± 0.01 | 1.66 a ± 0.01 | 1.52 a ± 0.25 | 1.66 a ± 0.01 | 2.20 b ± 0.18 |
Carbohydrate | 72.27 d ± 0.06 | 73.95 fg ± 0.23 | 73.31 ef ± 0.90 | 74.47 g ± 0.14 | 69.10 b ± 0.72 | 72.65 de ± 0.21 | 72.59 de ± 0.80 | 72.02 d ± 0.29 | 71.15 c ± 0.09 | 64.64 a ± 0.61 |
Minerals | YMSG | YW | YMM | YMY | RY | WSG | WW | WM | WMW | RW |
---|---|---|---|---|---|---|---|---|---|---|
Na | 155.85 g ± 0.03 | 167.14 h ± 0.02 | 150.07 de ± 0.02 | 149.26 cd ± 0.02 | 1.12 a ± 0 | 155.20 g ± 0.01 | 153.06 f ± 0.03 | 148.89 c ± 0.03 | 153.58 f ± 0.02 | 1.77 b ± 0 |
Mg | 1102.82 g ± 0.01 | 1112.71 i ± 0.01 | 1057.39 d ± 0.02 | 1069.07 e ± 0.02 | 971.42 b ± 0 | 1094.29 f ± 0.02 | 1109.29 h ± 0.04 | 1045.90 c ± 0.03 | 1113.51 ij ± 0.02 | 900.79 a ± 0 |
p | 2224.36 i ± 0.03 | 2251.45 j ± 0.03 | 2050.47 e ± 0.04 | 2174.18 h ± 0.03 | 2102.97 g ± 0 | 1822.93 b ± 0.02 | 1945.62 bc ± 0.02 | 2001.51 d ± 0.04 | 2062.39 f ± 0.04 | 1707.79 a ± 0 |
k | 3163.83 gh ± 0.03 | 3283.38 hi ± 0.02 | 3051.61 f ± 0.02 | 3076.38 g ± 0.02 | 2984.93 d ± 0 | 2882.11 b ± 0.02 | 3039.42 e ± 0.02 | 2945.72 c ± 0.01 | 3129.97 gh ± 0.02 | 2751.96 a ± 0 |
Ca | 270.94 f ± 0.81 | 268.92 e ± 0.81 | 237.30 d ± 0.64 | 299.45 g ± 0.36 | 0 | 217.67 c ± 5.20 | 213.47 b ± 2.00 | 367.39 h ± 0.51 | 386.98 I ± 0.29 | 126.01 a ± 0.11 |
V | 0.03 ab ± 0.42 | 0.03 ab ± 0.32 | 0.02 a ± 0.23 | 0.03 ab ± 0.31 | 0 | 0.03 ab ± 0.17 | 0.02 a ± 0.65 | 0.05 c ± 0.10 | 0.08 d ± 0.17 | 0.02 a ± 0 |
Cr | 0.54 e ± 0.26 | 0.01 a ± 0.13 | 0.22 c ± 0.08 | 0 | 0.14 b ± 0.01 | 1.39 d ± 0.06 | 0 | 0.35 d ± 0.12 | 0 | 0 |
Mn | 5.70 d ± 0.04 | 7.67 i ± 0.04 | 5.12 c ± 0.02 | 4.93 b ± 0.04 | 4.84 a ± 0 | 7.04 f ± 0.03 | 8.78 j ± 0.04 | 7.61 h ± 0.03 | 7.42 g ± 0.05 | 6.48 e ± 0 |
Fe | 26.55 f ± 0.03 | 29.79 h ± 0.03 | 39.00 i ± 0.02 | 20.30 c ± 0.03 | 22.89 d ± 0 | 27.87 fg ± 0.02 | 23.43 de ± 0.02 | 29.29 h ± 0.02 | 17.09 b ± 0.02 | 13.99 a ± 0 |
Co | 0.05 cd ± 0.28 | 0.04 c ± 0.31 | 0.03 ab ± 0.52 | 0.03 ab ± 0.34 | 0.02 a ± 0 | 0.06 de ± 0.25 | 0.04 c ± 0.32 | 0.11 fg ± 0.14 | 0.10 f ± 0.12 | 0.10 f ± 0 |
Ni | 1.11 j ± 0.08 | 0.58 e ± 0.11 | 0.70 h ± 0.13 | 0.66 g ± 0.07 | 0.45 d ± 0 | 0.83 i ± 0.06 | 0.28 a ± 0.16 | 0.62 f ± 0.16 | 0.37 c ± 0.09 | 0.30 b ± 0 |
Cu | 3.70 f ± 0.02 | 2.92 d ± 0.01 | 2.82 c ± 0.03 | 13.22 j ± 0.02 | 1.41 a ± 0 | 7.57 h ± 0.03 | 3.25 e ± 0.02 | 9.79 i ± 0.01 | 3.92 g ± 0.02 | 2.07 b ± 0 |
Zn | 14.57 de ± 0.05 | 13.84 cd ± 0.04 | 13.15 cd ± 0.04 | 13.04 cd ± 0.05 | 12.47 bc ± 0 | 14.38 de ± 0.05 | 15.04 ef ± 0.04 | 10.97 a ± 0.05 | 11.15 ab ± 0.02 | 10.31 a ± 0 |
Mo | 0.31 i ± 0.16 | 0.22 gh ± 0.18 | 0.18 de ± 0.18 | 0.19 ef ± 0.14 | 0.17 d ± 0 | 0.18 bc ± 0.16 | 0.02 a ± 0.66 | 0.13 c ± 0.11 | 0.10 b ± 0.15 | 0.21 g ± 0 |
Pb | 0.02 ab ± 0.17 | 0.04 cd ± 0.15 | 0.02 ab ± 0.13 | 2.93 g ± 0.25 | 0.01 a ± 0 | 0.03 bc ± 0.14 | 0.01 a ± 0.16 | 0.05 ef ± 0.13 | 0.03 bc ± 0.12 | 0.04 cd ± 0 |
Amino Acid (g/100 g) | YMSG | YW | YMM | YMY | RY | WSG | WW | WM | WMW | RW |
---|---|---|---|---|---|---|---|---|---|---|
Essential | ||||||||||
Arginine | 0.47 ab ± 0.03 | 0.52 fg ± 0.09 | 0.46 a ± 0.09 | 0.52 fg ± 0.09 | 0.52 fg ± 0.02 | 0.48 bc ± 0.07 | 0.53 gh ± 0.05 | 0.5 de ± 0.08 | 0.51 ef ± 0.10 | 0.49 cd ± 0.02 |
Threonine | 0.32 b ± 0.04 | 0.37 ef ± 0.07 | 0.31 a ± 0.02 | 0.36 de ± 0.05 | 0.34 c ± 0.03 | 0.34 c ± 0.06 | 0.39 g ± 0.04 | 0.35 cd ± 0.09 | 0.36 de ± 0.10 | 0.36 de ± 0.09 |
Valine | 0.43 ab ± 0.12 | 0.49 gh ± 0.06 | 0.44 bc ± 0.08 | 0.42 a ± 0.09 | 0.45 cd ± 0.05 | 0.46 de ± 0.14 | 0.48 fg ± 0.04 | 0.48 fg ± 0.06 | 0.49 gh ± 0.10 | 0.47 ef ± 0.13 |
Phenylalanine | 0.39 a ± 0.09 | 0.46 e ± 0.08 | 0.41 bc ± 0.06 | 0.41 bc ± 0.10 | 0.41 bc ± 0.06 | 0.39 a ± 0.09 | 0.41 bc ± 0.04 | 0.4 b ± 0.05 | 0.42 cd ± 0.07 | 0.42 cd ± 0.11 |
Isoleucine | 0.32 a ± 0.07 | 0.39 e ± 0.09 | 0.34 bc ± 0.03 | 0.32 a ± 0.11 | 0.33 ab ± 0.09 | 0.33 ab ± 0.06 | 0.34 bc ± 0.08 | 0.34 bc ± 0.07 | 0.35 cd ± 0.07 | 0.34 bc ± 0.13 |
Leucine | 0.91 a ± 0.03 | 1.04 gh ± 0.02 | 0.95 b ± 0.06 | 0.97 cd ± 0.08 | 0.96 bc ± 0.10 | 0.95 b ± 0.08 | 0.98 de ± 0.07 | 0.98 de ± 0.07 | 1.01 f ± 0.09 | 1.03 g ± 0.05 |
Histidine | 0.35 g ± 0.11 | 0.39 h ± 0.04 | 0.22 d ± 0.09 | 0.24 e ± 0.05 | 0.13 a ± 0.08 | 0.29 f ± 0.10 | 0.19 c ± 0.07 | 0.17 b ± 0.09 | 0.19 c ± 0.06 | 0.29 f ± 0.10 |
Lysine | 0.25 ab ± 0.09 | 0.29 ef ± 0.06 | 0.29 ef ± 0.10 | 0.24 a ± 0.09 | 0.24 a ± 0.08 | 0.25 ab ± 0.07 | 0.28 e ± 0.11 | 0.26 bc ± 0.05 | 0.27 cd ± 0.06 | 0.26 bc ± 0.17 |
Non-essential | ||||||||||
Serine | 0.42 ab ± 0.09 | 0.46 de ± 0.02 | 0.43 bc ± 0.11 | 0.48 fg ± 0.04 | 0.45 d ± 0.06 | 0.41 a ± 0.05 | 0.48 fg ± 0.03 | 0.45 d ± 0.04 | 0.48 fg ± 0.10 | 0.47 ef ± 0.09 |
Aspartic acid | 0.54 b ± 0.08 | 0.6 ef ± 0.10 | 0.42 a ± 0.01 | 0.59 e ± 0.03 | 0.59 e ± 0.02 | 0.54 b ± 0.04 | 0.6 ef ± 0.08 | 0.56 c ± 0.05 | 0.57 cd ± 0.09 | 0.57 cd ± 0.06 |
Glutamic acid | 1.59 b ± 0.06 | 1.77 fg ± 0.08 | 1.46 a ± 0.03 | 1.75 e ± 0.13 | 1.73 d ± 0.08 | 1.66 c ± 0.09 | 1.87 i ± 0.11 | 1.76 ef ± 0.07 | 1.75 e ± 0.15 | 1.78 gh ± 0.04 |
Glycine | 0.35 b ± 0.01 | 0.38 de ± 0.10 | 0.33 a ± 0.03 | 0.39 ef ± 0.03 | 0.35 b ± 0.05 | 0.35 b ± 0.09 | 0.37 cd ± 0.06 | 0.37 cd ± 0.08 | 0.39 ef ± 0.07 | 0.36 bc ± 0.01 |
Alanine | 0.6 a ± 0.04 | 0.64 de ± 0.05 | 0.6 a ± 0.02 | 0.65 ef ± 0.01 | 0.61 ab ± 0.05 | 0.6 a ± 0.05 | 0.63 cd ± 0.11 | 0.64 de ± 0.08 | 0.64 de ± 0.04 | 0.62 bc ± 0.08 |
Tyrosine | 0.21 cd ± 0.08 | 0.24 f ± 0.03 | 0.18 a ± 0.09 | 0.19 ab ± 0.10 | 0.18 a ± 0.07 | 0.21 cd ± 0.08 | 0.21 cd ± 0.12 | 0.21 cd ± 0.07 | 0.2 bc ± 0.05 | 0.23 e ± 0.09 |
Proline | 0.67 b ± 0.10 | 0.77 fg ± 0.08 | 0.65 a ± 0.04 | 0.76 ef ± 0.05 | 0.7 c ± 0.11 | 0.74 d ± 0.07 | 0.75 de ± 0.08 | 0.78 gh ± 0.03 | 0.76 ef ± 0.13 | 0.81 i ± 0.10 |
HO-Proline | 0.02 ab ± 0 | 0.01 a ± 0 | 0.01 a ± 0.01 | 0.02 ab ± 0.01 | 0.02 ab ± 0 | 0.01 a ± 0 | 0.01 a ± 0.01 | 0.02 ab ± 0 | 0.01 a ± 0 | 0.01 a ± 0.01 |
Methionine | 0.11 cd ± 0.05 | 0.1 bc ± 0.04 | 0.1 bc ± 0.01 | 0.17 f ± 0.08 | 0.08 a ± 0.01 | 0.09 ab ± 0.03 | 0.14 e ± 0.02 | 0.11 cd ± 0.03 | 0.11 cd ± 0.06 | 0.14 e ± 0.09 |
Cmpd. No. | tR (min) | m/z | F | Cmpd | Polyphenol Class | Concentration (μg/g) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
YMSG | YW | YMM | YMY | RY | WSG | WW | WM | WMW | RW | ||||||
1 | 3.78 | 503.18 | 252,179,117 | Raffinose | Oligosaccharides | ND | ND | ND | 2.5 a ± 0.09 | ND | ND | ND | 260.6 c ± 1.39 | 5.4 b ± 1.10 | ND |
2 | 7.19 | 205.06 | 179,173,133 | Scoparone | Coumarins and derivatives | ND | 0.5 ab ± 0.03 | ND | ND | 0.4 a ± 0.02 | ND | ND | ND | ND | 1.1 c ± 0.09 |
3 | 7.60 | 353.10 | 190,174,130 | Chlorogenic acid | Quinic acids and derivatives | 0.9 c ± 0.06 | ND | ND | ND | 2.6 f ± 0.04 | 1.3 e ± 0.08 | 0.5 a ± 0.06 | 1.1 d ± 0.02 | ND | 0.7 b ± 0.05 |
4 | 7.71 | 323.14 | 192,146,125 | Blumealactone C | Terpene lactones | 1.8 de ± 0.9 | ND | 0.1 a ± 0.03 | 1.7 d ± 0.10 | ND | ND | ND | ND | 1.1 b ± 0.06 | 1.4 c ± 0.09 |
5 | 7.82 | 315.13 | 259,183,151 | Gibberellin A9 | C19-gibberellin 6-carboxylic acids | 1.4 b ± 0.11 | ND | 2.1 c ± 0.09 | ND | ND | ND | 0.9 a ± 0.04 | ND | ND | ND |
6 | 7.90 | 206.08 | 204,198,175 | (+)-Streptazolin | Oxazolidinones | 65.1 h ± 0.26 | 174.5 j ± 0.42 | 0.5 a ± 0.08 | 70.8 I ± 0.18 | 34.8 f ± 0.11 | 2.1 d ± 0.09 | 10.1 e ± 0.16 | 1.1 c ± 0.03 | 0.9 b ± 0.07 | 48.1 g ± 0.19 |
7 | 8.12 | 353.11 | 191,173,135 | (+)-Sesamin | Furanoid lignans | ND | 1.7 c ± 0.04 | ND | ND | ND | 0.5 a ± 0.04 | ND | ND | 0.5 a ± 0.09 | 1.1 b ± 0.06 |
8 | 8.20 | 357.13 | 276,214,178 | Gardenin B | 8-O-methylated flavonoids | 1.2 b ± 0.02 | ND | 0.8 a ± 0.11 | ND | ND | ND | 1.8 c ± 0.07 | ND | ND | ND |
9 | 8.40 | 447.16 | 288,175,107 | 4-Hydroxymethyl-2-methoxyphenyl-1-O-beta-D-apiofuranosyl-(1->6)-O-beta-D-glucopyranoside | Phenolic glycosides | 0.8 b ± 0.05 | ND | ND | ND | ND | 0.5 a ± 0.03 | ND | ND | ND | ND |
10 | 8.75 | 436.24 | 433,313,223 | Lunarine | Macrolactams | 74.1 I ± 0.14 | 69.3 h ± 0.11 | 76.1 j ± 0.19 | 64.2 f ± 0.21 | 11.9 b ± 0.16 | 19.0 d ± 0.25 | 67.1 g ± 0.33 | 15.3 c ± 0.29 | 26.4 e ± 0.33 | 9.4 a ± 0.29 |
11 | 8.78 | 263.17 | 229,192,132 | Subaphylline | Hydroxycinnamic acids and derivatives | ND | ND | ND | ND | ND | 3.4 c ± 0.10 | ND | 2.0 a ± 0.09 | 2.1 ab ± 0.09 | ND |
12 | 9.30 | 324.13 | 315,283,164 | Monocrotaline | Pyrrolizines | 1.2 d ± 0.04 | 1.8 f ± 0.06 | 0.7 b ± 0.05 | 1.3 de ± 0.05 | 0.8 bc ± 0.07 | 0.8 bc ± 0.09 | 0.3 a ± 0.08 | ND | ND | 1.3 de ± 0.05 |
13 | 9.52 | 165.08 | 1,659,944 | Perillic acid | Menthane monoterpenoids | 32.4 h ± 0.16 | 81.9 j ± 0.11 | 63.5 i ± 0.11 | 27.9 g ± 0.10 | 0.5 a ± 0.07 | 7.9 e ± 0.08 | 14.8 f ± 0.09 | 1.6 c ± 0.07 | 2.2 d ± 0.09 | 0.8 b ± 0.05 |
14 | 9.98 | 261.16 | 259,248,187 | [1R-(1alpha,4abeta,6alpha,8aalpha)]-1,2,4a,5,6,8a-Hexahydro-6-hydroxy-4,7-dimethyl-a-methylene-1-naphthaleneacetic acid methyl ester | Sesquiterpenoids | 1.2 e ± 0.05 | 4.3 h ± 0.09 | ND | 2.4 g ± 0.07 | 1.1 d ± 0.07 | ND | 1.3 ef ± 0.06 | 0.5 a ± 0.06 | 0.9 bc ± 0.08 | 0.8 b ± 0.03 |
15 | 10.48 | 187.13 | 184,169,127 | Dimethyltryptamine | Tryptamines and derivatives | 27.9 j ± 0.18 | 13.6 h ± 0.13 | 16.2 i ± 0.14 | 8.8 g ± 0.09 | 6.2 e ± 0.11 | 3.4 c ± 0.13 | 2.8 a ± 0.08 | 4.9 d ± 0.08 | 2.9 ab ± 0.16 | 7.1 f ± 0.13 |
16 | 10.63 | 366.14 | 357,301,253 | Isatidine | Alkaloids and derivatives | 2.9 e ± 0.09 | 1.4 d ± 0.07 | 0.5 a ± 0.08 | 1.1 b ± 0.10 | ND | ND | 1.2 bc ± 0.05 | 1.2 bc ± 0.13 | 1.2 bc ± 0.08 | ND |
17 | 10.76 | 159.10 | 156,146,129 | Tryptamine | Tryptamines and derivatives | 106.9 g ± 0.14 | 379.9 h ± 0.13 | 1.1 b ± 0.05 | 2.6 d ± 0.10 | ND | 1.7 c ± 0.09 | 76.7 f ± 0.11 | 0.1 a ± 0.05 | 4.2 e ± 0.10 | ND |
18 | 10.95 | 366.14 | 359,356,221 | Casuarine 6-alpha-D-glucoside | O-glycosyl compounds | 0.8 b ± 0.03 | 1.3 d ± 0.06 | 1.1 c ± 0.03 | 1.1 c ± 0.05 | ND | ND | 0.5 a ± 0.07 | ND | ND | 0.4 a ± 0.02 |
19 | 11.12 | 409.20 | 366,278,174 | Heliocide H1 | Hydroxyanthraquinones | 72.2 g ± 0.15 | 100.7 i ± 0.18 | 76.4 h ± 0.15 | 66.0 f ± 0.17 | 111.8 j ± 0.12 | 32.6 e ± 0.13 | 3.8 a ± 0.10 | 10.0 c ± 0.10 | 13.4 d ± 0.11 | 5.9 b ± 0.13 |
20 | 11.23 | 439.19 | 431,343,227 | 10-Deacetyl-2-debenzoylbaccatin III | Taxanes and derivatives | 0.8 a ± 0.09 | 2.6 b ± 0.06 | 15.6 d ± 0.10 | 4.0 c ± 0.10 | 140.5 j ± 0.10 | 40.6 e ± 0.08 | 72.6 g ± 0.12 | 69.7 f ± 0.11 | 84.2 h ± 0.14 | 93.8 i ± 0.11 |
21 | 12.92 | 329.25 | 297,203,171 | 9,12,13-TriHOME | Long-chain fatty acids | 343.8 e ± 0.20 | 241.7 c ± 0.21 | 364.6 f ± 0.11 | 347.1 g ± 0.24 | 116.4 b ± 0.19 | 318.6 d ± 0.22 | 446.2 j ± 0.14 | 399.8 h ± 0.21 | 407.8 i ± 0.25 | 102.8 a ± 0.21 |
22 | 13,11 | 331.27 | 318,187,126 | Floionolic acid | Long-chain fatty acids | 1.1 e ± 0.08 | 204.7 f ± 0.09 | 0.7 b ± 0.05 | 0.7 b ± 0.04 | 0.8 bc ± 0.05 | 1.1 e ± 0.08 | 0.9 cd ± 0.04 | 0.7 b ± 0.05 | 0.5 a ± 0.04 | 0.7 b ± 0.06 |
23 | 13.61 | 564.34 | 353,314,143 | JSTX 3 | Resorcinols | 19.2 a ± 0.10 | 147.2 e ± 0.15 | 177.4 f ± 0.11 | 108.9 d ± 0.10 | 231.7 i ± 0.18 | 204.0 j ± 0.21 | 195.9 h ± 0.16 | 184.4 g ± 0.19 | 62.2 b ± 0.20 | 69.9 c ± 0.16 |
24 | 13.94 | 313.26 | 311,287,216 | Dronabinol | 2,2-dimethyl-1-benzopyrans | 227.2 g ± 0.10 | 113.8 c ± 0.11 | 227.6 g ± 0.12 | 222.6 f ± 0.18 | 93.5 b ± 0.14 | 154.1 e ± 0.15 | 147.4 d ± 0.18 | 358.0 i ± 0.18 | 295.4 h ± 0.16 | 74.5 a ± 0.20 |
25 | 14.12 | 311.24 | 309,297,214 | 9(S)-HPODE | Lineolic acids and derivatives | 112.8 d ± 0.17 | 42.3 b ± 0.19 | 126.8 f ± 0.19 | 666.2 h ± 0.14 | 6.3 a ± 0.10 | 294.7 f ± 0.20 | 113.1 de ± 0.10 | 80.9 c ± 0.22 | 612.0 g ± 0.11 | 6.3 a ± 0.09 |
26 | 14.35 | 295.24 | 265,221,131 | Alpha-dimorphecolic acid | Lineolic acids and derivatives | 188.4 d ± 0.19 | 182.3 c ± 0.28 | 200.5 g ± 0.26 | 207.3 h ± 0.13 | 119.8 a ± 0.22 | 189.5 de ± 0.21 | 257.2 i ± 0.13 | 285.4 j ± 0.17 | 195.3 f ± 0.16 | 136.6 b ± 0.19 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Daji, G.A.; Green, E.; Adebo, O.A. Nutritional and Phytochemical Composition of Mahewu (a Southern African Fermented Food Product) Derived from White and Yellow Maize (Zea mays) with Different Inocula. Fermentation 2023, 9, 58. https://doi.org/10.3390/fermentation9010058
Daji GA, Green E, Adebo OA. Nutritional and Phytochemical Composition of Mahewu (a Southern African Fermented Food Product) Derived from White and Yellow Maize (Zea mays) with Different Inocula. Fermentation. 2023; 9(1):58. https://doi.org/10.3390/fermentation9010058
Chicago/Turabian StyleDaji, Grace Abosede, Ezekiel Green, and Oluwafemi Ayodeji Adebo. 2023. "Nutritional and Phytochemical Composition of Mahewu (a Southern African Fermented Food Product) Derived from White and Yellow Maize (Zea mays) with Different Inocula" Fermentation 9, no. 1: 58. https://doi.org/10.3390/fermentation9010058
APA StyleDaji, G. A., Green, E., & Adebo, O. A. (2023). Nutritional and Phytochemical Composition of Mahewu (a Southern African Fermented Food Product) Derived from White and Yellow Maize (Zea mays) with Different Inocula. Fermentation, 9(1), 58. https://doi.org/10.3390/fermentation9010058