Preliminary Investigation of Different Types of Inoculums and Substrate Preparation for Biohydrogen Production
Abstract
:1. Introduction
2. Materials and Methods
2.1. Inoculum
2.2. Substrate
2.3. Preliminarily Investigation Experiment
2.3.1. First Phase: Inoculum Heat Treatments
2.3.2. Second Phase: Feasibility Study Using Different Inoculums and Substrates
2.3.3. Third Phase: Feasibility Study Using Different Substrate Concentrations
2.4. Analytical Method
3. Results
3.1. First Phase: Inoculum Heat Treatment
3.2. Second Phase: Effects of Different Inoculums and Substrates on Biohydrogen Production Rate
3.3. Third Phase: Effects of Different Substrate Concentrations on Biohydrogen Production Rate
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zainal, B.S.; Zinatizadeh, A.A.; Chyuan, O.H.; Mohd, N.S.; Ibrahim, S. Effects of Process, Operational and Environmental Variables on Biohydrogen Production Using Palm Oil Mill Effluent (POME). Int. J. Hydrogen Energy 2018, 43, 10637–10644. [Google Scholar] [CrossRef]
- Malaysian Palm Oil Board (MPOB) Oil Palm & the Environment. Available online: http://mpob.gov.my/en/palm-info/environment/520-achievements (accessed on 28 November 2018).
- Kamyab, H.; Chelliapan, S.; Din, M.F.M.; Rezania, S.; Khademi, T.; Kumar, A. Palm Oil Mill Effluent as an Environmental Pollutant. In Palm Oil; InTech: London, UK, 2018; pp. 13–28. [Google Scholar]
- Assawamongkholsiri, T.; Reungsang, A.; Pattra, S. Effect of Acid, Heat and Combined Acid-Heat Pretreatments of Anaerobic Sludge on Hydrogen Production by Anaerobic Mixed Cultures. Int. J. Hydrogen Energy 2013, 38, 6146–6153. [Google Scholar] [CrossRef]
- Akhbari, A.; Chuen, O.C.; Ibrahim, S. Start-up Study of Biohydrogen Production from Palm Oil Mill Effluent in a Lab-Scale up-Flow Anaerobic Sludge Blanket Fixed-Film Reactor. Int. J. Hydrogen Energy 2021, 46, 10191–10204. [Google Scholar] [CrossRef]
- Akhbari, A.; Chuen, O.C.; Zinatizadeh, A.A.; Ibrahim, S. Start-Up Study on Biohydrogen from Palm Oil Mill Effluent in a Pilot-Scale Reactor. Clean 2020, 48, 2000192. [Google Scholar] [CrossRef]
- Zainal, B.S.; Akhbari, A.; Zinatizadeh, A.A.; Mohammadi, P.; Danaee, M.; Mohd, N.S.; Ibrahim, S. UASFF Start-up for Biohydrogen and Biomethane Production from Treatment of Palm Oil Mill Effluent. Int. J. Hydrogen Energy 2018, 44, 20725–20737. [Google Scholar] [CrossRef]
- Sarangi, P.K.; Nanda, S. Biohydrogen Production Through Dark Fermentation. Chem. Eng. Technol. 2020, 43, 601–612. [Google Scholar] [CrossRef]
- Bélafi-Bakó, K.; Kumar, G.; Bakonyi, P.; Periyasamy, S.; Kim, S.H.; Nemestóthy, N.; Bélafi-Bakó, K. Lignocellulosic Biohydrogen: Practical Challenges and Recent Progress. Renew. Sustain. Energy Rev. 2015, 44, 728–737. [Google Scholar] [CrossRef]
- Magrini, F.E.; de Almeida, G.M.; da Maia Soares, D.; Fuentes, L.; Ecthebehere, C.; Beal, L.L.; da Silveira, M.M.; Paesi, S. Effect of Different Heat Treatments of Inoculum on the Production of Hydrogen and Volatile Fatty Acids by Dark Fermentation of Sugarcane Vinasse. Biomass Convers. Biorefin. 2021, 11, 2443–2456. [Google Scholar] [CrossRef]
- Mohan, S.V.; Chiranjeevi, P.; Mohanakrishna, G. A Rapid and Simple Protocol for Evaluating Biohydrogen Production Potential (BHP) of Wastewater with Simultaneous Process Optimization. Int. J. Hydrogen Energy 2012, 37, 3130–3141. [Google Scholar] [CrossRef]
- Mohammadi, P.; Ibrahim, S.; Mohamad Annuar, S.M. Comparative Study on the Effect of Various Pretreatment Methods on the Enrichment of Hydrogen Producing Bacteria in Anaerobic Granulated Sludge from Brewery Wastewater. Korean J. Chem. Eng. 2012, 29, 1347–1351. [Google Scholar] [CrossRef]
- Mu, Y.; Yu, H.Q.; Wang, G. A Kinetic Approach to Anaerobic Hydrogen-Producing Process. Water Res. 2007, 41, 1152–1160. [Google Scholar] [CrossRef]
- Norfadilah, N.; Raheem, A.; Harun, R.; Ahmadun, F.R. Bio-Hydrogen Production from Palm Oil Mill Effluent (POME): A Preliminary Study. Int. J. Hydrogen Energy 2016, 41, 11960–11964. [Google Scholar] [CrossRef]
- Akhbari, A.; Kutty, P.K.; Chuen, O.C.; Ibrahim, S. A Study of Palm Oil Mill Processing and Environmental Assessment of Palm Oil Mill Effluent Treatment. Environ. Eng. Res. 2020, 25, 212–221. [Google Scholar] [CrossRef] [Green Version]
- Zainal, B.S.; Gunasegaran, K.; Tan, G.Y.A.; Danaee, M.; Mohd, N.S.; Ibrahim, S.; Chyuan, O.H.; Nghiem, L.D.; Mahlia, T.M.I. Effect of Temperature and Hydraulic Retention Time on Hydrogen Production from Palm Oil Mill Effluent (POME) in an Integrated Up-Flow Anaerobic Sludge Fixed-Film (UASFF) Bioreactor. Environ. Technol. Innov. 2022, 28, 102903. [Google Scholar] [CrossRef]
- Lin, C.Y.; Wu, S.Y.; Lin, P.J.; Chang, J.S.; Hung, C.H.; Lee, K.S.; Lay, C.H.; Chu, C.Y.; Cheng, C.H.; Chang, A.C.; et al. A Pilot-Scale High-Rate Biohydrogen Production System with Mixed Microflora. Int. J. Hydrog. Energy 2011, 36, 8758–8764. [Google Scholar] [CrossRef]
- Uyub, S.Z.; Mohd, N.S.; Ibrahim, S. Heat Pre-Treatment of Beverages Wastewater on Hydrogen Production. IOP Conf. Ser. Mater. Sci. Eng. 2017, 210, 012023. [Google Scholar] [CrossRef]
- Woo, J.H.; Song, Y.C. Influence of Temperature and Duration of Heat Treatment Used for Anaerobic Seed Sludge on Biohydrogen Fermentation. KSCE J. Civ. Eng. 2010, 14, 141–147. [Google Scholar] [CrossRef]
- American Public Health Association (APHA). Standard Methods for the Examination of Water and Wastewater, 23rd ed.; American Public Health Association: Washington, DC, USA, 1999. [Google Scholar]
- Akhbari, A.; Akbar, A.; Vafaeifard, M.; Mohammadi, P.; Zainal, B.S.; Ibrahim, S. Effect of Operational Variables on Biological Hydrogen Production from Palm Oil Mill Effluent by Dark Fermentation Using Response Surface Methodology. Desalination Water Treat. 2018, 137, 101–113. [Google Scholar] [CrossRef]
- Wang, K.; Yin, J.; Shen, D.; Li, N. Anaerobic Digestion of Food Waste for Volatile Fatty Acids (VFAs) Production with Different Types of Inoculum: Effect of PH. Bioresour. Technol. 2014, 161, 395–401. [Google Scholar] [CrossRef]
- Goud, R.K.; Sarkar, O.; Mohan, S.V. Regulation of Biohydrogen Production by Heat-Shock Pretreatment Facilitates Selective Enrichment of Clostridium Sp. Int. J. Hydrogen Energy 2013, 39, 7572–7586. [Google Scholar] [CrossRef]
- Noike, T.; Takabatake, H.; Mizuno, O.; Ohba, M. Inhibition of Hydrogen Fermentation of Organic Wastes by Lactic Acid Bacteria. Int. J. Hydrogen Energy 2002, 27, 1367–1371. [Google Scholar] [CrossRef]
- Valdez-Vazquez, I.; Poggi-Varaldo, H.M. Hydrogen Production by Fermentative Consortia. Renew. Sustain. Energy Rev. 2009, 13, 1000–1013. [Google Scholar] [CrossRef]
- Aghajani Delavar, M.; Wang, J. Numerical Investigation of PH Control on Dark Fermentation and Hydrogen Production in a Microbioreactor. Fuel 2021, 292, 120355. [Google Scholar] [CrossRef]
- Hobbs, S.R.; Landis, A.E.; Rittmann, B.E.; Young, M.N.; Parameswaran, P. Enhancing Anaerobic Digestion of Food Waste through Biochemical Methane Potential Assays at Different Substrate: Inoculum Ratios. Waste Manag. 2018, 71, 612–617. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mutsvene, B.; Chetty, M.; Kumari, S.; Bux, F. Biohydrogen Production from Brewery Wastewater in an Anaerobic Baffled Reactor. A Preliminary Techno-Economic Evaluation. S. Afr. J. Chem. Eng 2023, 43, 9–23. [Google Scholar] [CrossRef]
- Gerardi, M.H. Wastewater Bacteria; Gerardi, M., Ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1979. [Google Scholar]
- Pachapur, V.L.; Kutty, P.; Pachapur, P.; Brar, S.K.; le Bihan, Y.; Galvez-Cloutier, R.; Buelna, G. Seed Pretreatment for Increased Hydrogen Production Using Mixed-Culture Systems with Advantages over Pure-Culture Systems. Energies 2019, 12, 530. [Google Scholar] [CrossRef] [Green Version]
- Yilmazer Hitit, Z.; Zampol Lazaro, C.; Hallenbeck, P.C. Increased Hydrogen Yield and COD Removal from Starch/Glucose Based Medium by Sequential Dark and Photo-Fermentation Using Clostridium Butyricum and Rhodopseudomonas Palustris. Int. J. Hydrogen Energy 2017, 42, 18832–18843. [Google Scholar] [CrossRef]
- Regueira, A.; Bevilacqua, R.; Lema, J.M.; Carballa, M.; Mauricio-Iglesias, M. A Metabolic Model for Targeted Volatile Fatty Acids Production by Cofermentation of Carbohydrates and Proteins. Bioresour. Technol 2020, 298, 122535. [Google Scholar] [CrossRef]
- Yossan, S.; O-Thong, S.; Prasertsan, P. Effect of Initial PH, Nutrients and Temperature on Hydrogen Production from Palm Oil Mill Effluent Using Thermotolerant Consortia and Corresponding Microbial Communities. Int. J. Hydrogen Energy 2012, 37, 13806–13814. [Google Scholar] [CrossRef]
- García-Depraect, O.; Gómez-Romero, J.; León-Becerril, E.; López-López, A. A Novel Biohydrogen Production Process: Co-Digestion of Vinasse and Nejayote as Complex Raw Substrates Using a Robust Inoculum. Int. J. Hydrogen Energy 2017, 42, 5820–5831. [Google Scholar] [CrossRef]
- Ren, N.Q.; Zhao, L.; Chen, C.; Guo, W.Q.; Cao, G.L. A Review on Bioconversion of Lignocellulosic Biomass to H2: Key Challenges and New Insights. Bioresour. Technol. 2016, 215, 92–99. [Google Scholar] [CrossRef]
- Alvira, P.; Ballesteros, M.; Negro, M.J. Pretreatment Technologies for an Efficient Bioethanol Production Process Based on Enzymatic Hydrolysis: A Review. Bioresour. Technol. 2010, 101, 4851–4861. [Google Scholar] [CrossRef] [PubMed]
- Dias, C.; Santos, J.A.L.; Reis, A.; Lopes da Silva, T. Impact of Brewery Wastewater Inhibitors in Pure and Mixed Cultures of the Yeast Rhodosporidium Toruloides NCYC 921 and the Microalga Tetradesmus Obliquus ACOI 204/07. Biochem. Eng. J. 2022, 185, 108518. [Google Scholar] [CrossRef]
- Malakahmad, A.; Abd Lahin, F.; Yee, W. Biodegradation of High-Strength Palm Oil Mill Effluent (POME) through Anaerobes Partitioning in an Integrated Baffled Reactor Inoculated with Anaerobic Pond Sludge. Water Air Soil Pollut. 2014, 225, 1883. [Google Scholar] [CrossRef]
- Nurliyana, M.Y.; H’ng, P.S.; Rasmina, H.; Kalsom, M.S.U.; Chin, K.L.; Lee, S.H.; Lum, W.C.; Khoo, G.D. Effect of C/N Ratio in Methane Productivity and Biodegradability during Facultative Co-Digestion of Palm Oil Mill Effluent and Empty Fruit Bunch. Ind. Crops Prod. 2016, 76, 409–415. [Google Scholar] [CrossRef]
- Montalvo, S.; Gonzalez, P.; Mena, C.; Guerrero, L.; Borja, R. Influence of the Food to Microorganisms (F/M) Ratio Andtemperature on Batch Anaerobic Digestion Processes Withandwithout Zeolite Addition. J. Environ. Sci. Health A Tox. Hazard. Subst. Environ. Eng. 2012, 47, 1785–1794. [Google Scholar] [CrossRef]
- Hamza, R.A.; Sheng, Z.; Iorhemen, O.T.; Zaghloul, M.S.; Tay, J.H. Impact of Food-to-Microorganisms Ratio on the Stability of Aerobic Granular Sludge Treating High-Strength Organic Wastewater. Water Res. 2018, 147, 287–298. [Google Scholar] [CrossRef] [PubMed]
- Kongjan, P.; Inchan, S.; Chanthong, S. Hydrogen Production from Xylose by Moderate Thermophilic Mixed Cultures Using Granules and Biofilm Up-Flow Anaerobic Reactors. Int. J. Hydrogen Energy 2018, 44, 3317–3324. [Google Scholar] [CrossRef]
- El-Kahlout, K.A.; Rahma, A.A.A.; El-Bashiti, T.A.; El-Ashgar, N.M. Biohydrogen Production by Modified Anaerobic Fluidized Bed Reactor (AFBR) Using Mixed Bacterial Cultures in Thermophilic Condition. IUG J. Nat. Stud. 2017, 25, 21–32. [Google Scholar]
- Khanal, S.K.; Chen, W.H.; Li, L.; Sung, S. Biological Hydrogen Production: Effects of PH and Intermediate Products. Int. J. Hydrogen Energy 2004, 29, 1123–1131. [Google Scholar] [CrossRef]
- Lay, J.-J.; Lee, Y.-J.; Noike, T. Feasibility of Biological Hydrogen Production from Organic Fraction of Municipal Solid Waste. Water Resour. 1999, 33, 2579–2586. [Google Scholar] [CrossRef]
- Mizuno, O.; Dinsdale, R.; Hawkes, F.R.; Hawkes, D.L.; Noike, T. Enhancement of Hydrogen Production from Glucose by Nitrogen Gas Sparging. Bioresour. Technol. 2000, 73, 59–65. [Google Scholar] [CrossRef]
- Kumar, G.; Cho, S.K.; Sivagurunathan, P.; Anburajan, P.; Mahapatra, D.M.; Park, J.H.; Pugazhendhi, A. Insights into Evolutionary Trends in Molecular Biology Tools in Microbial Screening for Biohydrogen Production through Dark Fermentation. Int. J. Hydrogen Energy 2018, 43, 19885–19901. [Google Scholar] [CrossRef]
Parameters | Inoculum | Substrates | ||||
---|---|---|---|---|---|---|
Carlsberg Sludge | POME Sludge | Carlsberg | POME | F&B | Raw POME | |
Initial Chemical Oxygen Demand (COD) (g/L) | - | - | 12.5 | 13 | 2.5 | 28 |
Initial pH | 7.2 | 7.3 | 7.2 | 6.9 | 7.0 | 4.9 |
Total Suspended Solid (TSS) (g TSS/L) | 35 | 50 | - | - | - | - |
Volatile Suspended Solid (VSS) (g VSS/L) | 24 | 35 | - | - | - | - |
Moisture Content (%) | n. d | n. d | n. d | 80 1 | n. d | 95–96 1 |
Bacterial Identification 2 | n. d | Lactobacillus acidophilic (Gram-positive facultative anaerobe) | - | - | - | - |
Plate Count (CFU/mL) 2 | n. d | 2.4 × 107 | - | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zainal, B.S.; Zaini, S.; Zinatizadeh, A.A.; Mohd, N.S.; Ibrahim, S.; Ker, P.J.; Mohamed, H. Preliminary Investigation of Different Types of Inoculums and Substrate Preparation for Biohydrogen Production. Fermentation 2023, 9, 127. https://doi.org/10.3390/fermentation9020127
Zainal BS, Zaini S, Zinatizadeh AA, Mohd NS, Ibrahim S, Ker PJ, Mohamed H. Preliminary Investigation of Different Types of Inoculums and Substrate Preparation for Biohydrogen Production. Fermentation. 2023; 9(2):127. https://doi.org/10.3390/fermentation9020127
Chicago/Turabian StyleZainal, Bidattul Syirat, Sabrina Zaini, Ali Akbar Zinatizadeh, Nuruol Syuhadaa Mohd, Shaliza Ibrahim, Pin Jern Ker, and Hassan Mohamed. 2023. "Preliminary Investigation of Different Types of Inoculums and Substrate Preparation for Biohydrogen Production" Fermentation 9, no. 2: 127. https://doi.org/10.3390/fermentation9020127
APA StyleZainal, B. S., Zaini, S., Zinatizadeh, A. A., Mohd, N. S., Ibrahim, S., Ker, P. J., & Mohamed, H. (2023). Preliminary Investigation of Different Types of Inoculums and Substrate Preparation for Biohydrogen Production. Fermentation, 9(2), 127. https://doi.org/10.3390/fermentation9020127