The Effect of a Glutathione (GSH)-Containing Cryo-Protectant on the Viability of Probiotic Cells Using a Freeze-Drying Process
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microorganisms and Cultivate Preparation
2.2. Preparation of Cryoprotectants and Vacuum Freeze-Drying
2.3. Viable Counts and Cell Viability Determination
2.4. Determination of Simulated Gastrointestinal Tract Tolerance of Freeze-Dried Probiotics
2.5. Conditions for the Accelerated Stability Test Using the Different Strains
2.6. Animal Cell Culture and Adhesion Assay on Intestinal Epithelial Cells
2.7. Scanning Electron Microscopy (SEM)
2.8. Statistical Analysis
3. Results and Discussion
3.1. Viability of Bacteria after Freeze-Drying
3.2. Survival of Non-Coated and Coated Bacteria under In Vitro Simulated Gastrointestinal Conditions
3.3. Survival of Non-Coated and Coated Bacteria under the Accelerated Stability Test
3.4. Adhesion Assay on Intestinal Epithelial Cells
3.5. Scanning Electron Microscopy (SEM)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Son, S.J.; Koh, J.H.; Park, M.R.; Ryu, S.; Lee, W.J.; Yun, B.; Lee, J.H.; Oh, S.; Kim, Y. Effect of the Lactobacillus rhamnosus Strain GG and Tagatose as a Synbiotic Combination in a Dextran Sulfate Sodium-Induced Colitis Murine Model. J. Dairy Sci. 2019, 102, 2844–2853. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kailasapathy, K. Survival of Free and Encapsulated Probiotic Bacteria and Their Effect on the Sensory Properties of Yoghurt. LWT Food Sci. Technol. 2006, 39, 1221–1227. [Google Scholar] [CrossRef]
- Nami, Y.; Abdullah, N.; Haghshenas, B.; Radiah, D.; Rosli, R.; Khosroushahi, A.Y. Assessment of Probiotic Potential and Anticancer Activity of Newly Isolated Vaginal Bacterium Lactobacillus plantarum 5BL. Microbiol. Immunol. 2014, 58, 492–502. [Google Scholar] [CrossRef] [PubMed]
- Meng, X.C.; Stanton, C.; Fitzgerald, G.F.; Daly, C.; Ross, R.P. Anhydrobiotics: The Challenges of Drying Probiotic Cultures. Food Chem. 2008, 106, 1406–1416. [Google Scholar] [CrossRef]
- Semyonov, D.; Ramon, O.; Kaplun, Z.; Levin-Brener, L.; Gurevich, N.; Shimoni, E. Microencapsulation of Lactobacillus paracasei by Spray Freeze Drying. Food Res. Int. 2010, 43, 193–202. [Google Scholar] [CrossRef]
- Stummer, S.; Toegel, S.; Rabenreither, M.C.; Unger, F.M.; Wirth, M.; Viernstein, H.; Salar-Behzadi, S. Fluidized-Bed Drying as a Feasible Method for Dehydration of Enterococcus faecium M74. J. Food Eng. 2012, 111, 156–165. [Google Scholar] [CrossRef]
- Ta, L.P.; Bujna, E.; Antal, O.; Ladányi, M.; Juhász, R.; Szécsi, A.; Kun, S.; Sudheer, S.; Gupta, V.K.; Nguyen, Q.D. Effects of Various Polysaccharides (Alginate, Carrageenan, Gums, Chitosan) and Their Combination with Prebiotic Saccharides (Resistant Starch, Lactosucrose, Lactulose) on the Encapsulation of Probiotic Bacteria Lactobacillus casei 01 Strain. Int. J. Biol. Macromol. 2021, 183, 1136–1144. [Google Scholar] [CrossRef]
- Khodadadi, P.; Tabandeh, F.; Alemzadeh, I.; Soltani, M. Effects of Sucrose, Skim Milk and Yeast Powder on Survival of Lactobacillus rhamnosus GG Encapsulated with Alginate during One-Week Storage at Room Conditions. Appl. Food Biotechnol. 2022, 9, 251–259. [Google Scholar] [CrossRef]
- Zhen, N.; Zeng, X.; Wang, H.; Yu, J.; Pan, D.; Wu, Z.; Guo, Y. Effects of Heat Shock Treatment on the Survival Rate of Lactobacillus acidophilus after Freeze-Drying. Food Res. Int. 2020, 136, 109507. [Google Scholar] [CrossRef]
- Savedboworn, W.; Teawsomboonkit, K.; Surichay, S.; Riansa-ngawong, W.; Rittisak, S.; Charoen, R.; Phattayakorn, K. Impact of Protectants on the Storage Stability of Freeze-Dried Probiotic Lactobacillus plantarum. Food Sci. Biotechnol. 2019, 28, 795. [Google Scholar] [CrossRef]
- Santivarangkna, C.; Wenning, M.; Foerst, P.; Kulozik, U. Damage of Cell Envelope of Lactobacillus helveticus during Vacuum Drying. J. Appl. Microbiol. 2007, 102, 748–756. [Google Scholar] [CrossRef] [PubMed]
- Cui, S.; Hu, K.; Qian, Z.; Mao, B.; Zhang, Q.; Zhao, J.; Tang, X.; Zhang, H. Improvement of Freeze-Dried Survival of Lactiplantibacillus plantarum Based on Cell Membrane Regulation. Microorganisms 2022, 10, 1985. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Hugenholtz, J.; Abee, T.; Molenaar, D. Glutathione Protects Lactococcus Lactis against Oxidative Stress. Appl. Environ. Microbiol. 2003, 69, 5739. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.; Fu, R.Y.; Hugenholtz, J.; Li, Y.; Chen, J. Glutathione Protects Lactococcus lactis against Acid Stress. Appl. Environ. Microbiol. 2007, 73, 5268–5275. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Du, G.C.; Zhang, Y.; Liao, X.Y.; Wang, M.; Li, Y.; Chen, J. Glutathione Protects Lactobacillus sanfranciscensis against Freeze-Thawing, Freeze-Drying, and Cold Treatment. Appl. Environ. Microbiol. 2010, 76, 2989–2996. [Google Scholar] [CrossRef] [Green Version]
- Fahey, R.C.; Brown, W.C.; Adams, W.B.; Worsham, M.B. Occurrence of Glutathione in Bacteria. J. Bacteriol. 1978, 133, 1126. [Google Scholar] [CrossRef] [Green Version]
- de Menezes, M.F.D.S.C.; da Silva, T.M.; Etchepare, M.D.A.; Fonseca, B.D.S.; Sonza, V.P.; Codevilla, C.F.; Barin, J.S.; da Silva, C.D.B.; de Menezes, C.R. Improvement of the Viability of Probiotics (Lactobacillus acidophilus) by Multilayer Encapsulation. Ciência Rural 2019, 49, 9. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.Y.; Kang, C.-H. Probiotics Alleviate Oxidative Stress in H2O2-Exposed Hepatocytes and t-BHP-Induced C57BL/6 Mice. Microorganisms 2022, 10, 234. [Google Scholar] [CrossRef]
- Nguyen, T.H.; Kim, Y.G.; Kim, J.S.; Jeong, Y.; Park, H.M.; Kim, J.W.; Kim, J.E.; Kim, H.; Paek, N.S.; Kang, C.H. Evaluating the Cryoprotective Encapsulation of the Lactic Acid Bacteria in Simulated Gastrointestinal Conditions. Biotechnol. Bioprocess Eng. 2020, 25, 287–292. [Google Scholar] [CrossRef]
- Carvalho, A.S.; Silva, J.; Ho, P.; Teixeira, P.; Malcata, F.X.; Gibbs, P. Relevant Factors for the Preparation of Freeze-Dried Lactic Acid Bacteria. Int. Dairy J. 2004, 14, 835–847. [Google Scholar] [CrossRef]
- Cook, M.T.; Tzortzis, G.; Charalampopoulos, D.; Khutoryanskiy, V.V. Microencapsulation of Probiotics for Gastrointestinal Delivery. J. Control Release 2012, 162, 56–67. [Google Scholar] [CrossRef] [Green Version]
- da Silva, M.N.; Tagliapietra, B.L.; do Amaral Flores, V.; dos Santos Richards, N.S.P. Pereira dos Santos Richards, N.S. In Vitro Test to Evaluate Survival in the Gastrointestinal Tract of Commercial Probiotics. Curr. Res. Food Sci. 2021, 4, 320–325. [Google Scholar] [CrossRef] [PubMed]
- Makinen, K.; Berger, B.; Bel-Rhlid, R.; Ananta, E. Science and Technology for the Mastership of Probiotic Applications in Food Products. J. Biotechnol. 2012, 162, 356–365. [Google Scholar] [CrossRef] [PubMed]
- Eom, J.S.; Song, J.; Choi, H.S. Protective Effects of a Novel Probiotic Strain of Lactobacillus plantarum JSA22 from Traditional Fermented Soybean Food Against Infection by Salmonella Enterica Serovar Typhimurium. J. Microbiol. Biotechnol. 2015, 25, 479–491. [Google Scholar] [CrossRef] [PubMed]
- Halim, M.; Mohd Mustafa, N.A.; Othman, M.; Wasoh, H.; Kapri, M.R.; Ariff, A.B. Effect of Encapsulant and Cryoprotectant on the Viability of Probiotic pediococcus Acidilactici ATCC 8042 during Freeze-Drying and Exposure to High Acidity, Bile Salts and Heat. LWT 2017, 81, 210–216. [Google Scholar] [CrossRef]
- Kim, S.I.; Kim, J.W.; Kim, K.T.; Kang, C.H. Survivability of Collagen-Peptide Microencapsulated Lactic Acid Bacteria during Storage and Simulated Gastrointestinal Conditions. Fermentation 2021, 7, 177. [Google Scholar] [CrossRef]
- Hongpattarakere, T.; Rattanaubon, P.; Buntin, N. Improvement of Freeze-Dried Lactobacillus plantarum Survival Using Water Extracts and Crude Fibers from Food Crops. Food Bioprocess Technol. 2013, 6, 1885–1896. [Google Scholar] [CrossRef]
Strains | Coating | Initial Counts (Log CFU/mL) | SGF and SIF (Log CFU/mL) | Survival Rate (%) |
---|---|---|---|---|
Lactococcus lactis MG5125 | No coating | 10.14 ± 0.02 | 7.70 ± 0.04 | 75.92 ± 0.43 b |
GSH coating | 9.00 ± 0.01 | 6.98 ± 0.01 | 77.50 ± 0.08 a | |
Bifidobacterium animalis ssp. lactis MG741 | No coating | 9.62 ± 0.15 | 8.79 ± 0.02 | 91.39 ± 0.25 b |
GSH coating | 8.52 ±0.10 | 8.52 ± 0.03 | 99.98 ± 0.31 a | |
Lactiplantibacillus plantarum MG4229 | No coating | 8.13 ± 0.02 | 7.02 ± 0.06 | 86.35 ± 0.60 b |
GSH coating | 9.95 ± 0.01 | 8.87 ± 0.12 | 89.13 ± 1.20 a | |
Limosilactobacillus fermentum MG4295 | No coating | 9.67 ± 0.01 | 8.42 ± 0.01 | 87.13 ± 0.08 b |
GSH coating | 9.72 ± 0.03 | 9.56 ± 0.01 | 98.38 ± 0.14 a | |
Lactiplantibacillus plantarum MG4296 | No coating | 8.16 ± 0.02 | 7.41 ± 0.09 | 90.84 ± 1.12 a |
GSH coating | 9.63 ± 0.05 | 8.60 ± 0.05 | 89.36 ± 0.57 a | |
Lacticaseibacillus paracasei MG5012 | No coating | 9.82 ± 0.02 | 9.34 ± 0.01 | 95.12 ± 0.08 b |
GSH coating | 9.73 ± 0.08 | 9.57 ± 0.00 | 98.34 ± 0.04 a |
Strains | Coating | Day 0 (Log CFU/g) | Day 7 (Log CFU/g) | Survival Rate (%) |
---|---|---|---|---|
Lactococcus lactis MG5125 | No coating | 12.06 ± 0.03 | 11.2 ± 0.02 | 92.87 ± 0.16 b |
GSH coating | 11.74 ± 0.02 | 11.6 ± 0.01 | 98.85 ± 0.09 a | |
Bifidobacterium animalis ssp. lactis MG741 | No coating | 11.7 ± 0.04 | 9.25 ± 0.05 | 79.09 ± 0.41 b |
GSH coating | 11.26 ± 0.05 | 11.02 ± 0.03 | 97.92 ± 0.18 a | |
Lactiplantibacillus plantarum MG4229 | No coating | 9.85 ± 0.06 | 6.73 ± 0.02 | 68.31 ± 0.54 b |
GSH coating | 11.18 ± 0.03 | 10.5 ± 0.05 | 93.99 ± 0.24 a | |
Limosilactobacillus fermentum MG4295 | No coating | 10.51 ± 0.03 | 8.93 ± 0.03 | 84.98 ± 0.29 b |
GSH coating | 11.06 ± 0.02 | 9.6 ± 0.06 | 86.82 ± 0.54 a | |
Lactiplantibacillus plantarum MG4296 | No coating | 10.04 ± 0.08 | 6.51 ± 0.03 | 64.84 ± 0.33 b |
GSH coating | 11.36 ± 0.04 | 10.3 ± 0.13 | 90.69 ± 1.12 a | |
Lacticaseibacillus paracasei MG5012 | No coating | 11.92 ± 0.02 | 9.41 ± 0.07 | 78.91 ± 0.56 b |
GSH coating | 11.78 ± 0.00 | 11.01 ± 0.05 | 93.47 ± 0.41 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen, T.H.; Kim, J.-S.; Kwon, H.-J.; Kang, C.-H. The Effect of a Glutathione (GSH)-Containing Cryo-Protectant on the Viability of Probiotic Cells Using a Freeze-Drying Process. Fermentation 2023, 9, 187. https://doi.org/10.3390/fermentation9020187
Nguyen TH, Kim J-S, Kwon H-J, Kang C-H. The Effect of a Glutathione (GSH)-Containing Cryo-Protectant on the Viability of Probiotic Cells Using a Freeze-Drying Process. Fermentation. 2023; 9(2):187. https://doi.org/10.3390/fermentation9020187
Chicago/Turabian StyleNguyen, Trung Hau, Jin-Seong Kim, Hyuk-Ju Kwon, and Chang-Ho Kang. 2023. "The Effect of a Glutathione (GSH)-Containing Cryo-Protectant on the Viability of Probiotic Cells Using a Freeze-Drying Process" Fermentation 9, no. 2: 187. https://doi.org/10.3390/fermentation9020187
APA StyleNguyen, T. H., Kim, J. -S., Kwon, H. -J., & Kang, C. -H. (2023). The Effect of a Glutathione (GSH)-Containing Cryo-Protectant on the Viability of Probiotic Cells Using a Freeze-Drying Process. Fermentation, 9(2), 187. https://doi.org/10.3390/fermentation9020187