A Review Unveiling Various Machine Learning Algorithms Adopted for Biohydrogen Productions from Microalgae
Abstract
:1. Introduction
2. Types of Machine Learning
2.1. Artificial Neural Networks
2.2. Random Forest
2.3. Support Vector Machines
2.4. Regression
3. Importance of Machine Learning in Biohydrogen Production
3.1. Relationship Study
3.2. Classification of Results
3.3. Prediction of Microalgal Hydrogen Production
4. Comparative Analyses among ML Techniques
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ameen, F.; Altuner, E.E.; Tiri, R.N.E.; Gulbagca, F.; Aygun, A.; Sen, F.; Majrashi, N.; Orfali, R.; Dragoi, E.N. Highly active iron (II) oxide-zinc oxide nanocomposite synthesized Thymus vulgaris plant as bioreduction catalyst: Characterization, hydrogen evolution and photocatalytic degradation. Int. J. Hydrogen Energy 2022, in press. [Google Scholar] [CrossRef]
- Limongi, A.R.; Viviano, E.; De Luca, M.; Radice, R.P.; Bianco, G.; Martelli, G. Biohydrogen from microalgae: Production and applications. Appl. Sci. 2021, 11, 1616. [Google Scholar] [CrossRef]
- Al Husnain, L.; Alajlan, L.; AlKahtani, M.D.; Ameen, F. Avicennia marina endophytic fungi shows antagonism against tomato pathogenic fungi. J. Saudi Soc. Agric. Sci. 2022, in press. [Google Scholar] [CrossRef]
- Ozbas, E.E.; Aksu, D.; Ongen, A.; Aydin, M.A.; Ozcan, H.K. Hydrogen production via biomass gasification, and modeling by supervised machine learning algorithms. Int. J. Hydrogen Energy 2019, 44, 17260–17268. [Google Scholar] [CrossRef]
- Sydney, E.B.; Duarte, E.R.; Burgos, W.J.M.; de Carvalho, J.C.; Larroche, C.; Soccol, C.R. Development of short chain fatty acid-based artificial neuron network tools applied to biohydrogen production. Int. J. Hydrogen Energy 2020, 45, 5175–5181. [Google Scholar] [CrossRef]
- Safarian, S.; Ebrahimi Saryazdi, S.M.; Unnthorsson, R.; Richter, C. Modeling of hydrogen production by applying biomass gasification: Artificial neural network modeling approach. Fermentation 2021, 7, 71. [Google Scholar] [CrossRef]
- Coşgun, A.; Günay, M.E.; Yıldırım, R. Exploring the critical factors of algal biomass and lipid production for renewable fuel production by machine learning. Renew. Energy 2021, 163, 1299–1317. [Google Scholar] [CrossRef]
- Bhola, V.; Swalaha, F.M.; Nasr, M.; Bux, F. Fuzzy intelligence for investigating the correlation between growth performance and metabolic yields of a Chlorella sp. exposed to various flue gas schemes. Bioresour. Technol. 2017, 243, 1078–1086. [Google Scholar] [CrossRef]
- Sharma, P.; Sivaramakrishnaiah, M.; Deepanraj, B.; Saravanan, R.; Reddy, M.V. A novel optimization approach for biohydrogen production using algal biomass. Int. J. Hydrogen Energy 2022, in press. [Google Scholar] [CrossRef]
- Salameh, T.; Sayed, E.T.; Olabi, A.G.; Hdaib, I.I.; Allan, Y.; Alkasrawi, M.; Abdelkareem, M.A. Adaptive Network Fuzzy Inference System and Particle Swarm Optimization of Biohydrogen Production Process. Fermentation 2022, 8, 483. [Google Scholar] [CrossRef]
- Subramaniyan, S.B.; Ameen, F.; Zakham, F.A.; Anbazhagan, V. Activity of Lipid Loaded Lectin against co-infection of Candida albicans and Staphylococcus aureus using the Zebrafish model. J. Appl. Microbiol. 2022, 134, lxac050. [Google Scholar]
- Maind, S.B.; Wankar, P. Research paper on basic of artificial neural network. Int. J. Recent Innov. Trends Comput. Commun. 2014, 2, 96–100. [Google Scholar]
- Singaravelu, D.K.; Binjawhar, D.N.; Ameen, F.; Veerappan, A. Lectin-Fortified Cationic Copper Sulfide Nanoparticles Gain Dual Targeting Capabilities to Treat Carbapenem-Resistant Acinetobacter baumannii Infection. ACS Omega 2022, 7, 43934–43944. [Google Scholar] [CrossRef] [PubMed]
- Boateng, E.Y.; Otoo, J.; Abaye, D.A. Basic tenets of classification algorithms K-nearest-neighbor, support vector machine, random forest and neural network: A review. J. Data Anal. Inf. Process. 2020, 8, 341–357. [Google Scholar] [CrossRef]
- Ameen, F.; Al-Homaidan, A.A. Treatment of heavy metal–polluted sewage sludge using biochar amendments and vermistabilization. Environ. Monit. Assess. 2022, 194, 861. [Google Scholar] [CrossRef]
- Nasr, N.; Hafez, H.; El Naggar, M.H.; Nakhla, G. Application of artificial neural networks for modeling of biohydrogen production. Int. J. Hydrogen Energy 2013, 38, 3189–3195. [Google Scholar] [CrossRef] [Green Version]
- Alaguprathana, M.; Poonkothai, M.; Ameen, F.; Bhat, S.A.; Mythili, R.; Sudhakar, C. Sodium hydroxide pre-treated Aspergillus flavus biomass for the removal of reactive black 5 and its toxicity evaluation. Environ. Res. 2022, 214, 113859. [Google Scholar] [CrossRef]
- Jiang, T.; Gradus, J.L.; Rosellini, A.J. Supervised machine learning: A brief primer. Behav. Ther. 2020, 51, 675–687. [Google Scholar] [CrossRef] [PubMed]
- Almansob, A.; Bahkali, A.H.; Ameen, F. Efficacy of gold nanoparticles against drug-resistant nosocomial fungal pathogens and their extracellular enzymes: Resistance profiling towards established antifungal agents. Nanomaterials 2022, 12, 814. [Google Scholar] [CrossRef]
- Fang, Y.; Ma, L.; Yao, Z.; Li, W.; You, S. Process optimization of biomass gasification with a Monte Carlo approach and random forest algorithm. Energy Convers. Manag. 2022, 264, 115734. [Google Scholar] [CrossRef]
- Soundararajan, D.; Natarajan, L.; Trilokesh, C.; Harish, B.S.; Ameen, F.; Islam, M.A.; Uppuluri, K.B.; Anbazhagan, V. Isolation of exopolysaccharide, galactan from marine Vibrio sp. BPM 19 to template the synthesis of antimicrobial platinum nanocomposite. Process Biochem. 2022, 122, 267–274. [Google Scholar] [CrossRef]
- Hassan, S.; Khurshid, Z.; Bhat, S.A.; Kumar, V.; Ameen, F.; Ganai, B.A. Marine bacteria and omic approaches: A novel and potential repository for bioremediation assessment. J. Appl. Microbiol. 2022, 133, 2299–2313. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.; Yin, J. Application of random forest algorithm in physical education. Sci. Program. 2021, 2021, 1996904. [Google Scholar] [CrossRef]
- Karatzoglou, A.; Meyer, D.; Hornik, K. Support vector machines in R. J. Stat. Softw. 2006, 15, 1–28. [Google Scholar] [CrossRef] [Green Version]
- Kecman, V. Support vector machines—An introduction. In Support Vector Machines: Theory and Applications; Springer: Berlin/Heidelberg, Germany, 2005; pp. 1–47. [Google Scholar]
- Afridi, M.S.; Ali, S.; Salam, A.; César Terra, W.; Hafeez, A.; Ali, B.; AlTami, M.S.; Ameen, F.; Ercisli, S.; Marc, R.A.; et al. Plant Microbiome Engineering: Hopes or Hypes. Biology 2022, 11, 1782. [Google Scholar] [CrossRef] [PubMed]
- Kadam, V.S.; Kanhere, S.; Mahindrakar, S. Regression techniques in machine learning &applications: A review. Int. J. Res. Appl. Sci. Eng. Technol. 2020, 8, 826–830. [Google Scholar]
- Gudeta, K.; Bhagat, A.; Julka, J.M.; Sinha, R.; Verma, R.; Kumar, A.; Kumari, S.; Ameen, F.; Bhat, S.A.; Amarowicz, R.; et al. Vermicompost and Its Derivatives against Phytopathogenic Fungi in the Soil: A Review. Horticulturae 2022, 8, 311. [Google Scholar] [CrossRef]
- Sharma, S.; Rana, V.S.; Rana, N.; Sharma, U.; Gudeta, K.; Alharbi, K.; Ameen, F.; Bhat, S.A. Effect of Organic Manures on Growth, Yield, Leaf Nutrient Uptake and Soil Properties of Kiwifruit (Actinidia deliciosa Chev.) cv. Allison. Plants 2022, 11, 3354. [Google Scholar] [CrossRef]
- Maulud, D.; Abdulazeez, A.M. A review on linear regression comprehensive in machine learning. J. Appl. Sci. Technol. Trends 2020, 1, 140–147. [Google Scholar] [CrossRef]
- Paine, C.T.; Marthews, T.R.; Vogt, D.R.; Purves, D.; Rees, M.; Hector, A.; Turnbull, L.A. How to fit nonlinear plant growth models and calculate growth rates: An update for ecologists. Methods Ecol. Evol. 2012, 3, 245–256. [Google Scholar] [CrossRef]
- Sripontan, Y.; Chiu, C.; Tanansathaporn, S.; Leasen, K.; Manlong, K. Modeling the Growth of Black Soldier Fly Hermetia illucens (Diptera: Stratiomyidae): An Approach to Evaluate Diet Quality. J. Econ. Entomol. 2020, 113, 742–751. [Google Scholar] [CrossRef]
- Wang, Q.; Gong, Y.; Liu, S.; Wang, D.; Liu, R.; Zhou, X.; Nghiem, L.D.; Zhao, Y. Free ammonia pretreatment to improve bio-hydrogen production from anaerobic dark fermentation of microalgae. ACS Sustain. Chem. Eng. 2018, 7, 1642–1647. [Google Scholar] [CrossRef]
- Wang, Y.; Tang, M.; Ling, J.; Wang, Y.; Liu, Y.; Jin, H.; He, J.; Sun, Y. Modelling biohydrogen production using different data driven approaches. Int. J. Hydrogen Energy 2021, 46, 29822–29833. [Google Scholar] [CrossRef]
- Hosseinzadeh, A.; Zhou, J.L.; Altaee, A.; Li, D. Machine learning modeling and analysis of biohydrogen production from wastewater by dark fermentation process. Bioresour. Technol. 2022, 343, 126111. [Google Scholar] [CrossRef]
- Ameen, F.; Dawoud, T.M.; Alshehrei, F.; Alsamhary, K.; Almansob, A. Decolorization of acid blue 29, disperse red 1 and congo red by different indigenous fungal strains. Chemosphere 2021, 271, 129532. [Google Scholar] [CrossRef] [PubMed]
- Wong, Y.M.; Wu, T.Y.; Juan, J.C. A review of sustainable hydrogen production using seed sludge via dark fermentation. Renew. Sustain. Energy Rev. 2014, 34, 471–482. [Google Scholar] [CrossRef]
- Gibson, G.R.; Macfarlane, G.T.; Cummings, J.H. Sulphate reducing bacteria and hydrogen metabolism in the human large intestine. Gut 1993, 34, 437. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; Liu, J.; He, H.; Yang, S.; Wang, Y.; Hu, J.; Jin, H.; Cui, T.; Yang, G.; Sun, Y. A Review of Enhancement of Biohydrogen Productions by Chemical Addition Using a Supervised Machine Learning Method. Energies 2021, 14, 5916. [Google Scholar] [CrossRef]
- Monroy, I.; Buitron, G. Diagnosis of undesired scenarios in hydrogen production by photo-fermentation. Water Sci. Technol. 2018, 78, 1652–1657. [Google Scholar] [CrossRef] [PubMed]
- Alalayah, W.M.; Alhamed, Y.; Al-Zahrani, A.A.; Edris, G.; Al-Turaif, H.A. Merits of utilizing an artificial neural network as a prediction model for bio-hydrogen production. Rev. Chim. 2014, 65, 458–465. [Google Scholar]
- Liu, Y.; Min, J.; Feng, X.; He, Y.; Liu, J.; Wang, Y.; He, J.; Do, H.; Sage, V.; Yang, G.; et al. A Review of Biohydrogen Productions from Lignocellulosic Precursor via Dark Fermentation: Perspective on Hydrolysate Composition and Electron-Equivalent Balance. Energies 2020, 13, 2451. [Google Scholar] [CrossRef]
- Sharma, A.K.; Ghodke, P.K.; Goyal, N.; Nethaji, S.; Chen, W.H. Machine learning technology in biohydrogen production from agriculture waste: Recent advances and future perspectives. Bioresour. Technol. 2022, 364, 128076. [Google Scholar] [CrossRef] [PubMed]
- Hossain, M.S.; Ong, Z.C.; Ismail, Z.; Noroozi, S.; Khoo, S.Y. Artificial neural networks for vibration based inverse parametric identifications: A review. Appl. Soft Comput. 2017, 52, 203–219. [Google Scholar] [CrossRef]
- Buskirk, T.D. Surveying the Forests and Sampling the Trees: An overview of Classification and Regression Trees and Random Forests with applications in Survey Research. Surv. Pract. 2018, 11, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Ameen, F.; Al-Homaidan, A.A.; Al-Sabri, A.; Almansob, A.; AlNAdhari, S. Antioxidant, anti-fungal and cytotoxic effects of silver nanoparticles synthesized using marine fungus Cladosporium halotolerans. Appl. Nanosci. 2023, 13, 623–631. [Google Scholar] [CrossRef]
- Matsuki, K.; Kuperman, V.; Van Dyke, J.A. The Random Forests statistical technique: An examination of its value for the study of reading. Sci. Stud. Read. 2016, 20, 20–33. [Google Scholar] [CrossRef] [Green Version]
- Hossain, S.K.S.; Ayodele, B.V.; Ali, S.S.; Cheng, C.K.; Mustapa, S.I. Comparative Analysis of Support Vector Machine Regression and Gaussian Process Regression in Modeling Hydrogen Production from Waste Effluent. Sustainability 2022, 14, 7245. [Google Scholar] [CrossRef]
- Alshehrei, F.; Ameen, F. Vermicomposting: A management tool to mitigate solid waste. Saudi J. Biol. Sci. 2021, 28, 3284–3293. [Google Scholar] [CrossRef] [PubMed]
- Çolakoglu, N.; Akkaya, B. Comparison of multi-class classification algorithms on early diagnosis of heart diseases. In y-BIS 2019 Conference Book: Recent Advances in Data Science and Business Analytics, Istanbul, Turkey, 25–28 September 2019; Mimar Sinan Fine Arts University Publications: Istanbul, Turkey, 2019; p. 162. [Google Scholar]
Kernel Functions | Type of Classifier |
---|---|
Linear, dot product | |
Complete polynomial of degree d | |
Gaussian RBF | |
Multilayer perceptron | |
Inverse multiquadric function |
Model | Equation |
---|---|
Exponential | |
Power-Law | |
Asymptotic non-linear | Logistic: |
Gompertz: | |
Brody: | |
Richards: | |
Parameter | Definition |
Body width at time = t | |
Body width at time = 0 | |
Asymptotic growth limit of body width | |
Growth rate | |
Shape and scaling parameter of power-law model | |
Growth constant in asymptotic non-linear models | |
Shape and scaling parameter of Richards model |
Machine Learning Technique | Advantage | Disadvantage |
---|---|---|
Artificial neural network | Flexible Capable of modelling complex interactions | Requires large training data Unable to predict output beyond training data space |
Random forest | Suitable for limited data sets Safeguard against overfitting | Computationally intensive Biased PVI for correlated predictors |
Support vector machine | Customizable error tolerance Can manage highly unstructured data | Prone to overfitting Time intensive for large data sets |
Regression | Easy to interpret and visualize | Prone to overfitting |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmad Sobri, M.Z.; Redhwan, A.; Ameen, F.; Lim, J.W.; Liew, C.S.; Mong, G.R.; Daud, H.; Sokkalingam, R.; Ho, C.-D.; Usman, A.; et al. A Review Unveiling Various Machine Learning Algorithms Adopted for Biohydrogen Productions from Microalgae. Fermentation 2023, 9, 243. https://doi.org/10.3390/fermentation9030243
Ahmad Sobri MZ, Redhwan A, Ameen F, Lim JW, Liew CS, Mong GR, Daud H, Sokkalingam R, Ho C-D, Usman A, et al. A Review Unveiling Various Machine Learning Algorithms Adopted for Biohydrogen Productions from Microalgae. Fermentation. 2023; 9(3):243. https://doi.org/10.3390/fermentation9030243
Chicago/Turabian StyleAhmad Sobri, Mohamad Zulfadhli, Alya Redhwan, Fuad Ameen, Jun Wei Lim, Chin Seng Liew, Guo Ren Mong, Hanita Daud, Rajalingam Sokkalingam, Chii-Dong Ho, Anwar Usman, and et al. 2023. "A Review Unveiling Various Machine Learning Algorithms Adopted for Biohydrogen Productions from Microalgae" Fermentation 9, no. 3: 243. https://doi.org/10.3390/fermentation9030243
APA StyleAhmad Sobri, M. Z., Redhwan, A., Ameen, F., Lim, J. W., Liew, C. S., Mong, G. R., Daud, H., Sokkalingam, R., Ho, C. -D., Usman, A., Nagaraju, D. H., & Rao, P. V. (2023). A Review Unveiling Various Machine Learning Algorithms Adopted for Biohydrogen Productions from Microalgae. Fermentation, 9(3), 243. https://doi.org/10.3390/fermentation9030243