Fucoxanthin as a Biofunctional Compound in Goat Milk Yogurt: Stability and Physicochemical Effects
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Manufacture of Yogurt
2.3. Analysis of Composition of Yogurts
2.4. Quantification of Fucoxanthin
2.5. Microstructure Analysis and Particle Size Determination
2.6. Determination of pH, Titrable Acidity, and Water-Holding Capacity
2.7. Instrumental Color and Texture Analyses
2.8. Measurement of Lipid Oxidation
2.9. Statistical Analysis
3. Results and Discussion
3.1. Chemical Composition of Yogurts
3.2. Stability of Fucoxanthin in Goat Milk Yogurt during Processing and Storage
3.3. Effects of Fucoxanthin on the Physicochemical Properties of Yogurt
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
HPLC | High-Performance Liquid Chromatography |
TCA | Trichloroacetic acid |
TBA | 2-Thiobarbituric Acid |
NaOH | Sodium hydroxide |
TBME | Tert-Butyl Methyl Ether |
CYM | Control Yogurt Mix |
FXYM | Fucoxanthin Yogurt Mix |
CY | Control Yogurt (without fucoxanthin) |
FXY | Fucoxanthin Yogurt (with fucoxanthin, 0.052 mg/g of yogurt mix) |
TBARS | Thiobarbituric Acid Reactive Substances |
WHC | Water Holding Capacity |
AOAC | Association of Official Analytical Chemists |
RCF | Relative Centrifugal Force (x g) |
CLSM | Confocal Laser Scanning Microscopy |
Y | Yogurt sample |
WE | Whey Expelled |
TBARSA530 | Thiobarbituric Acid Reactive Substances measured at 530 nm |
N | Newtons |
References
- Ichimura, T.; Osada, T.; Yonekura, K.; Horiuchi, H. A new method for producing superior set yogurt, focusing on heat treatment and homogenization. J. Dairy Sci. 2022, 105, 2978–2987. [Google Scholar] [CrossRef]
- Sfakianakis, P.; Tzia, C. Conventional and innovative processing of milk for yogurt manufacture; Development of texture and flavor: A review. Foods 2014, 3, 176–193. [Google Scholar] [CrossRef]
- Salehi, F. Quality, physicochemical, and texture properties of dairy products containing fruits and vegetables: A review. Food Sci. Nutr. 2021, 9, 4666–4686. [Google Scholar] [CrossRef]
- Park, Y.W. Goat Milk: Composition, Characteristics. In Encyclopedia of Animal Science; Pond, W.G., Bell, N., Eds.; Marcel Dekker, Inc.: New York, NY, USA, 2005; pp. 474–477. [Google Scholar]
- Kaur, H.; Kaur, G.; Ali, S.A. Dairy-based probiotic-fermented functional foods: An update on their health-promoting properties. Fermentation 2022, 8, 425. [Google Scholar] [CrossRef]
- Miyashita, K.; Beppu, F.; Hosokawa, M.; Liu, X.; Wang, S. Nutraceutical characteristics of the brown seaweed carotenoid fucoxanthin. Arch. Biochem. Biophys. 2020, 15, 686. [Google Scholar] [CrossRef]
- Ojulari, O.V.; Lee, S.; Nam, J.-O. Therapeutic effects of seaweed derived xanthophyl carotenoid on obesity management; overview of the last decade. Int. J. Mol. Sci. 2020, 21, 2502. [Google Scholar] [CrossRef] [Green Version]
- Chuyen, V.H.; Eun, J.B. Marine carotenoids: Bioactivities and potential benefits to human health. Crit. Rev. Food Sci. 2017, 57, 2600–2610. [Google Scholar] [CrossRef]
- Bonet, M.L.; Canas, J.A.; Ribot, J.; Palou, A. Carotenoids in adipose tissue biology and obesity. Subcell. Biochem. 2016, 79, 377–414. [Google Scholar] [CrossRef]
- Gammone, M.A.; D’Orazio, N. Anti-obesity activity of the marine carotenoid fucoxanthin. Mar. Drugs 2015, 13, 2196–2214. [Google Scholar] [CrossRef]
- Muradian, K.H.; Vaserman, A.; Min, K.J.; Fraifeld, V.E. Fucoxanthin and lipid metabolism: A minireview. Nutr. Metab. Cardiovasc. Dis. 2015, 25, 891–897. [Google Scholar] [CrossRef]
- Peng, J.; Yuan, J.-P.; Wu, C.-F.; Wang, J.-H. Fucoxanthin, a marine carotenoid present in brown seaweeds and diatoms: Metabolism and bioactivities relevant to human health. Mar. Drugs 2011, 9, 1806–1828. [Google Scholar] [CrossRef]
- Yun, Y.W. Possible anti-obesity therapeutics from nature—A review. Phytochemistry 2010, 71, 1625–1641. [Google Scholar] [CrossRef]
- Maeda, H.; Hosokawa, M.; Sashima, T.; Funayama, K.; Miyashita, K. Fucoxanthin from edible seaweed, Undaria pinnatifida, shows antiobesity effect through UCP1 expression in white adipose tissues. Biochem. Biophys. Res. Commun. 2005, 332, 392–397. [Google Scholar] [CrossRef]
- Oliyaei, M.; Moosavi-Nasab, M.; Tamaddon, A.M.; Tanideh, N. Antidiabetic effect of fucoxanthin extracted from Sargassum angustifolium on streptozotocin-nicotinamide-induced type 2 diabetic mice. Food Sci. Nutr. 2021, 9, 3521–3529. [Google Scholar] [CrossRef] [PubMed]
- Abidov, M.; Ramazanov, Z.; Seifulla, R.; Grachev, S. The effects of Xanthigen™ in the weight management of obese premenopausal women with non-alcoholic fatty liver disease and normal liver fat. Diabetes Obes. Metab. 2010, 12, 72–81. [Google Scholar] [CrossRef] [PubMed]
- Hitoe, S.; Shimoda, H. Seaweed fucoxanthin supplementation improves obesity parameters in mildly obese Japanese subjects. Funct. Food Health Dis. 2017, 7, 246–262. [Google Scholar] [CrossRef]
- Din, N.A.S.; Mohd Alayudin, A.S.; Sofian-Seng, N.S.; Rahman, H.A.; Mohd Razali, N.S.; Lim, S.J.; Wan Mustapha, W.A. Brown algae as functional food source of fucoxanthin: A review. Foods 2022, 11, 2235. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Xu, Y.; Zhao, L.; Yan, H.; Wang, S.; Wang, D. The stability and bioaccessibility of fucoxanthin in spray-dried microcapsules based on various biopolymers. RSC Adv. 2018, 8, 35139. [Google Scholar] [CrossRef] [Green Version]
- Zhao, D.; Kim, S.M.; Pan, C.H.; Chung, D. Effects of heating, aerial exposure, and illumination on stability of fucoxanthin in canola oil. Food Chem. 2014, 145, 505–513. [Google Scholar] [CrossRef]
- Nuñez de González, M.T.; Attaie, R.; Mora-Gutierrez, A.; Woldesenbet, S.; Jung, Y. Stability of fucoxanthin in pasteurized skim and whole goat milk. Foods 2021, 10, 1647. [Google Scholar] [CrossRef]
- Mok, I.K.; Yoon, J.R.; Pan, C.H.; Kim, S.M. Development, quantification, method validation, and stability study of a novel fucoxanthin-fortified milk. J. Agric. Food Chem. 2016, 64, 6196–6202. [Google Scholar] [CrossRef] [PubMed]
- Mok, I.K.; Lee, J.K.; Kim, J.H.; Pan, C.H.; Kim, S.M. Fucoxanthin bioavailability from fucoxanthin-fortified milk: In vivo and in vitro study. Food Chem. 2018, 258, 79–86. [Google Scholar] [CrossRef] [PubMed]
- AOAC International. Official Methods of Analysis, 18th ed.; AOAC International: Arlington, VA, USA, 2005. [Google Scholar]
- Kim, S.; Hyeonbin, O.; Lee, P.; Kim, Y. The quality characteristics, antioxidant activity, and sensory evaluation of reduced-fat yogurt and non-fat yogurt supplemented with basil seed gum as a fat substitute. J. Dairy Sci. 2020, 103, 1324–1336. [Google Scholar] [CrossRef] [PubMed]
- Texture Technologies Corp. Yogurt Tested Three Ways. Application Study. 2012. Available online: https://texturetechnologies.com/application-studies/yogurt-three-methods (accessed on 2 March 2021).
- Semeniuc, C.A.; Mandrioli, M.; Rodriguez-Estrada, M.T.; Muste, S.; Lercker, G. Thiobarbituric acid reactive substances in flavored phytosterol-enriched drinking yogurts during storage: Formation and matrix interferences. Eur. Food Res. Technol. 2016, 242, 431–439. [Google Scholar] [CrossRef]
- Hii, S.L.; Choong, P.Y.; Woo, K.K.; Wong, C.L. Stability studies of fucoxanthin from Sargassum binderi. Aust. J. Basic Appl. Sci. 2010, 4, 4580–4584. [Google Scholar]
- Zhao, D.; Yu, D.; Kim, M.; Gu, M.Y.; Kim, S.M.; Pan, C.H.; Kim, G.H.; Chung, D. Effects of temperature, light, and pH on the stability of fucoxanthin in an oil-in-water emulsion. Food Chem. 2019, 291, 87–93. [Google Scholar] [CrossRef]
- Domagała, J.; Wszołek, M.; Tamime, A.Y.; Kupiec-Teahan, B. The effect of transglutaminase concentration on the texture, syneresis and microstructure of set-type goat’s milk yoghurt during the storage period. Small Rumin. Res. 2013, 112, 154–161. [Google Scholar] [CrossRef]
- O’Sullivan, A.M.; O’Grady, M.N.; O’Callaghan, Y.C.; Smyth, T.J.; O’Brien, N.M.; Kerry, J.P. Seaweed extracts as potential functional ingredients in yogurt. Innov. Food Sci. Emerg. Technol. 2016, 37, 293–299. [Google Scholar] [CrossRef]
- Nguyen, H.T.H.; Afsar, S.; Day, L. Differences in the microstructure and rheological properties of low-fat yoghurts from goat, sheep and cow milk. Food Res. Int. 2018, 108, 423–429. [Google Scholar] [CrossRef]
- Domagała, J. Instrumental texture, syneresis and microstructure of yoghurts prepared from goat, cow and sheep milk. Int. J. Food Prop. 2009, 12, 605–615. [Google Scholar] [CrossRef]
- Domagała, J. Instrumental texture, syneresis, and microstructure of yoghurts prepared from ultrafiltrated goat milk: Effect of degree of concentration. Int. J. Food Prop. 2012, 15, 558–568. [Google Scholar] [CrossRef]
Composition (%) | CY | FXY |
---|---|---|
Moisture | 73.86 ± 1.109 | 73.19 ± 1.109 |
fat | 5.87 ± 0.501 | 6.53 ± 0.501 |
Protein | 6.04 ± 0.289 | 5.39 ± 0.289 |
Ash | 1.32 ± 0.073 | 1.25 ± 0.073 |
Treatment | Recovery of Fucoxanthin (%) |
---|---|
Yogurt mix before heating | 98.25 ± 1.53 a |
Yogurt mix after heating | 98.83 ± 1.53 a |
Yogurt (freshly prepared) | 90.13 ± 1.53 b |
Storage Time (Week) | Recovery of Fucoxanthin (%) |
---|---|
0 | 90.19 ± 1.30 |
1 | 90.73 ± 1.30 |
2 | 88.12 ± 1.30 |
3 | 87.64 ± 1.30 |
4 | 88.50 ± 1.30 |
Main Effect | Particle Size (μm) |
---|---|
Treatment | |
CY | 6.00 ± 0.162 b |
FXY | 6.65 ± 0.162 a |
Storage time (week) | |
0 | 6.15 ± 0.162 |
4 | 6.50 ± 0.162 |
Parameters | Treatment (T) | Storage Time (ST, Weeks) | T × ST | ||||||
---|---|---|---|---|---|---|---|---|---|
CY (n = 24) | FXY (n = 24) | SE | 1 (n = 12) | 2 (n = 12) | 3 (n = 12) | 4 (n = 12) | SE | (p-Value) | |
pH | 4.29 b | 4.42 a | 0.06 | 4.44 | 4.35 | 4.30 | 4.31 | 0.12 | S* (p = 0.006) |
Acidity (% lactic acid) | 0.82 a | 0.73 b | 0.05 | 0.73 | 0.70 | 0.92 | 0.74 | 0.11 | NS (p = 0.950) |
Water-holding capacity (%) | 81.42 a | 79.43 b | 2.76 | 82.82 | 78.23 | 80.30 | 80.36 | 5.44 | NS (p = 0.283) |
Parameters | Treatment (T) | Storage Time (Weeks) | T × ST | ||||||
---|---|---|---|---|---|---|---|---|---|
CY (n = 24) | FXY (n = 24) | SE | 1 (n = 12) | 2 (n = 12) | 3 (n = 12) | 4 (n = 12) | SE | (p-Value) | |
HunterLab color | |||||||||
L* | 90.95 a | 81.47 b | 0.09 | 86.00 | 86.19 | 86.20 | 86.45 | 0.16 | NS (p = 0.354) |
a* | −2.05 b | 7.67 a | 0.14 | 2.76 | 2.89 | 2.83 | 2.75 | 0.29 | S* (p = 0.0003) |
b* | 11.73 b | 38.24 a | 0.19 | 25.27 | 25.13 | 24.96 | 24.58 | 0.38 | S* (p ˂ 0.0001) |
Firmness (Newtons) | 0.71 a | 0.61 b | 0.01 | 0.62 | 0.73 | 0.70 | 0.61 | 0.01 | NS (p = 0.724) |
TBARS (at A530) | 0.35 | 0.33 | 0.04 | 0.33 | 0.33 | 0.36 | 0.32 | 0.07 | NS (p = 0.691) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nuñez de González, M.T.; Attaie, R.; Woldesenbet, S.; Mora-Gutierrez, A.; Jung, Y. Fucoxanthin as a Biofunctional Compound in Goat Milk Yogurt: Stability and Physicochemical Effects. Fermentation 2023, 9, 273. https://doi.org/10.3390/fermentation9030273
Nuñez de González MT, Attaie R, Woldesenbet S, Mora-Gutierrez A, Jung Y. Fucoxanthin as a Biofunctional Compound in Goat Milk Yogurt: Stability and Physicochemical Effects. Fermentation. 2023; 9(3):273. https://doi.org/10.3390/fermentation9030273
Chicago/Turabian StyleNuñez de González, Maryuri T., Rahmat Attaie, Selamawit Woldesenbet, Adela Mora-Gutierrez, and Yoonsung Jung. 2023. "Fucoxanthin as a Biofunctional Compound in Goat Milk Yogurt: Stability and Physicochemical Effects" Fermentation 9, no. 3: 273. https://doi.org/10.3390/fermentation9030273
APA StyleNuñez de González, M. T., Attaie, R., Woldesenbet, S., Mora-Gutierrez, A., & Jung, Y. (2023). Fucoxanthin as a Biofunctional Compound in Goat Milk Yogurt: Stability and Physicochemical Effects. Fermentation, 9(3), 273. https://doi.org/10.3390/fermentation9030273