Potential and Restrictions of Food-Waste Valorization through Fermentation Processes
Abstract
:1. Introduction
2. Food Waste: Definition, Classification Based on Value Chain Link and Chemical Composition
2.1. Definition and Classification
- Food or products that deviate from the end goal: Products with physical and organoleptic properties that do not meet the standard.
- Food or products discarded by retailers or consumers: Expired expiration date.
- Food or food fragments, and edible and inedible products that are discarded in domestic kitchens, food establishments, or markets.
2.2. Chemical Characterization of Food Waste
Chemical Composition * | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Fraction | Precooked Food Waste [33] | Fruit Peel Waste [34] | Fresh Vegetable Waste [35] | Rice, Vegetables and Meats [36] | Household Food Waste [37] | Restaurant Food Waste [37] | Kitchen Waste [38] | Kitchen Waste [38] | Organic Municipal Solid Waste [39] | Kitchen Garbage [33] | Municipal Solid Waste [40] |
Moisture ** | 82.8% | N.R. | 89.81% | 81.9% | N.R. | 71.6% | 80.3% | 61.3% | N.R. | 75.2% | 85.7% |
Total sugar *** | N.R. | N.R. | N.R. | 44.6% | N.R. | N.R. | 59.8% | 85.2% | 35.0% | 37.9% | 46.6% |
Starch | 41.5% | N.R. | N.R. | 39.0% | 33.1% | 30.7% | N.R. | N.R. | N.R. | 34.8% | 31.2% |
Cellulose | 2.1% | 21.5% | 26.9% | N.R. | 31.9% | 16.1% | N.R. | N.R. | 28.8% | N.R. | 2.6% |
Hemicellulose | N.R. | 11.8% | 51.4% | N.R. | 35.0% | 3.1% | N.R. | N.R. | 22.7% | N.R. | N.R. |
Lignin | N.R. | 8.0% | 21.7% | N.R. | N.R. | N.R. | 0.8% | N.R. | N.R. | N.R. | N.R. |
Carbohydrates | 56.4% | 58.7% | N.R. | N.R. | N.R. | 50.0% | N.R. | N.R. | N.R. | N.R. | N.R. |
Fats | N.R. | N.R. | N.R. | N.R. | N.R. | N.R. | 15.7% | 7.9% | 9.7% | 13.7% | N.R. |
Protein | N.R. | N.R. | N.R. | 16.4% | N.R. | N.R. | 21.8% | 5.4% | N.R. | 11.9% | 19.6% |
Pectin | N.R. | N.R. | N.R. | N.R. | N.R. | N.R. | N.R. | N.R. | 2.7% | N.R. | N.R. |
Ash | N.R. | N.R. | N.R. | N.R. | N.R. | N.R. | 1.9% | 1.5% | 1.1% | 1.7% | N.R. |
Total and volatile solids | |||||||||||
Fraction | Precooked food waste [41] | Fruit peel waste [42] | Fresh vegetable waste [41] | Rice, Vegetables, and meats [43] | Organic fraction of municipal solid waste [44] | Household food waste [45] | Cafeteria food waste [45] | Kitchen waste [45] | Organic municipal solid waste [46] | Kitchen garbage [47] | Municipal solid waste [48] |
Moisture | N.R. | N.R. | N.R. | N.R. | N.R. | N.R. | 76.6% | 90.3% | 81.0% | N.R. | 74.0% |
Total solid | 30.4% | 9.7% | 12.2% | 53.6% | 24.8% | 50.6% | 51.8% | 52.2% | 51.4% | 52.4% | 54.0% |
Volatile solid | 69.6% | 90.3% | 87.8% | 46.4% | 75.2% | 49.4% | 48.2% | 47.8% | 48.6% | 47.6% | 46.0% |
Ratio carbon to nitrogen | |||||||||||
Fraction | Precooked food waste [41] | Fruit peel waste [49] | Fresh vegetable waste [41] | Rice, Vegetables, and meats [43] | Organic fraction of municipal solid waste [44] | Household food waste [45] | Cafeteria food waste [45] | Kitchen waste [45] | Organic municipal solid waste [46] | Kitchen garbage [47] | Municipal solid waste [48] |
C/N | 21.69 | 21.10 | 5.65 | 21.7 | 12.6 | 18.00 | 23.00 | 11.00 | 13.20 | 24.50 | 14.80 |
Chemical Composition (%) * | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Fraction | Fermented Cheese Whey [50] | Apple Pomace [51] | Watermelon Rinds [52] | Potato Peels [53] | Coffee Cut-Stem [54] | Oil Palm Rachis [55] | Plantain Peel [56] | Avocado Seed [57] | Tomato Pomace [58] | Carrot Waste [51] | Sugarcane Bagasse [29] | Orange Peel [31] | Wastewater from Cheese Whey [59] | Rice Husk [60] |
Moisture ** | 6.9% | 4.7% | 10.6% | 65.0% | 4.00% | N.R. | N.R. | 46.10% | 84.7% | 5.5% | N.R. | 77.38% | N.R. | N.R. |
Total Sugar *** | N.R. | N.R. | N.R. | N.R. | 1.7% | 15.6% | 10.4% | 38.9% | N.R. | N.R. | 8.6% | 21.4% | 25.3% | 8.1% |
Cellulose | N.R. | 7.3% | 15.5% | 25.8% | 32.4% | 42.0% | 10.5% | N.R. | 27.8% | 27.2% | 31.5% | 19.3% | N.R. | 28.8% |
Hemicellulose | N.R. | 20.8% | 17.8% | 5.5% | 13.8% | 23.1% | 12.8% | 34.8% | 33.6% | 11.2% | 21.5% | 11.4% | N.R. | 12.3% |
Lignin | N.R. | 17.4% | 7.8% | 6.6% | 46.6% | 17.3% | 2.6% | 12.0% | 16.2% | 29.2% | 27.2% | 2.0% | N.R. | 24.3% |
Carbohydrates | 86.2% | 46.9% | 43.4% | 28.8% | N.R. | N.R. | N.R. | N.R. | 13.8% | 29.0% | 8.6% | 21.4% | N.R. | 8.1% |
Starch | N.R. | N.R. | N.R. | 31.7% | N.R. | N.R. | 45.6% | N.R. | 2.4% | N.R. | N.R. | N.R. | N.R. | N.R. |
Pectin | N.R. | 7.6% | 15.5% | 1.6% | N.R. | N.R. | N.R. | N.R. | 6.1% | 3.4% | N.R. | 15.0% | N.R. | N.R. |
Fats | 0.9% | N.R. | N.R. | N.R. | N.R. | N.R. | N.R. | 5.7% | N.R. | N.R. | N.R. | 3.7% | 43.4% | N.R. |
Protein | 12.9% | N.R. | N.R. | N.R. | 4.6% | N.R. | 7.7% | 6.2% | N.R. | N.R. | N.R. | 4.0% | 3.8% | 2.9% |
Ash | N.R. | N.R. | N.R. | N.R. | 0.9% | 2.0% | 10.4% | 2.5% | N.R. | N.R. | 2.5% | 1.7% | 27.5% | 15.5% |
Total and volatile solids | ||||||||||||||
Fraction | Fermented cheese whey [61] | Apple pomace [62] | Watermelon rinds [63] | Potato peels [64] | Coffee cut-stem [65] | Oil palm rachis [66] | Plantain peel [67] | Avocado seed [68] | Tomato pomace [69] | Carrot waste [70] | Sugarcane bagasse [30] | Orange peel [32] | Wastewater from cheese whey [71] | Rice husk [72] |
Moisture | N.R. | N.R. | 26.9% | N.R. | N.R. | N.R. | N.R. | 13.2% | 83.14% | N.R. | N.R. | 79.8% | N.R. | N.R. |
Total solid | 67.3% | 17.3% | 55.3% | 9.1% | 50.2% | 45.1% | 11.0 | 50.3% | 15.4% | 9.8% | 56.0% | 51.1% | 50.4% | 52.6% |
Volatile solid | 32.7% | 82.7% | 44.7% | 90.9% | 49.8% | 54.9% | 89.0 | 49.7% | 84.6% | 90.2% | 44.0% | 48.9% | 49.6% | 47.4% |
Ratio of carbon and nitrogen | ||||||||||||||
Fraction | Fermented cheese whey [61] | Apple pomace [73] | Watermelon rinds [74] | Potato peels [75] | Coffee cut-stem [76] | Oil palm rachis [55] | Plantain peel [67] | Avocado seed [77] | Tomato pomace [78] | Carrot waste [79] | Sugarcane bagasse [30] | Orange peel [80] | Wastewater from cheese whey [71] | Rice husk [72] |
C/N | 8.13 | 61.89 | 42.76 | 10.7 | 48.9 | 62.8 | 39.0 | 57.5 | 11.00 | 27.00 | 33.69 | 33.83 | 5.8 | 38.48 |
3. Trends of Fermentation Products Obtained from Food-Waste Valorization
3.1. Classification Based on Micro-Organism, Mode of Cultivation, Water Activity, Oxygen Requirement, Nutrient Metabolism and Number of Inoculums
3.2. Pretreatment and Sacarification Stage (Upstream)
3.3. Products Obtained from Food-Waste Fermentation
3.3.1. Energy Production
Micro-Organism | Water Activity | Oxygen Requirement | Product | Substrate | Operational Conditions | Yields and Productivity | Ref. |
---|---|---|---|---|---|---|---|
Candida rugosa | SMF | Anaerobic | Biogas | Food loss: Meat industry waste (pig meat) | Batch reactor volume: 80 mL; Inoculum concentration: 8 gVS/L; Temperature: 37 °C; Stirring rate: 150 rpm; pH: 7.0 | Biogas: 50.60%wt (Biomethane: 707 L/kg-VS) | [136] |
Pig slurry (Firmicutes and Bacteroidetes) | SMF | Anaerobic | Biogas | Food loss: Tomato pomace (TP) and vegetable sludge (VS) | Anaerobic digester volume: 300 L; Semicontinuous mode; pH: 6.3–7.8; Temperature: 35 °C; Substrate load ratio: 70%:30% (TP and VS: Pig slurry); Stirring rate: 8–10 rpm; Total solids concentration: 6%; Total operating time: 110 days | Biogas: 60%wt | [137] |
Agro-industrial wastewater treatment sludge | SMF | Anaerobic | Biogas | Food waste: Frozen food factory including fresh vegetable waste (VW) and precooked food waste (FW) | Batch reactor volume: 200 mL; pH: 7.0–8.0 Temperature: 35 °C; HRT: 31 days OLR: 3.5 gCOD/L-d; Sludge concentration: 22.2% wet basis; VW concentration: 32.3% wet basis; FW concentration: 45.5% wet basis | Biogas: 57%wt | [41] |
Clostridium acetobutylicum | SSF | Anaerobic | Biohydrogen | Food loss: Defatted rice bran | Batch fermentation; Fermentation volume: 200 mL; Temperature: 34 °C pH: 5.5; Inoculum amount: 12.5%(v/v) | Biohydrogen: 10.55%wt (Biohydrogen: 117.24 mL/g sugar consumed) | [138] |
Wastewater from chemical treatment | SSF | Anaerobic | Hydrogen | Food waste: Canteen-based composite food waste | Acidophilic microenvironment was used; Batch reactor was used; Fermentation volume: 180 mL; Temperature: 29 °C; pH: 6.0; Time: 71 h | Hydrogen: 14.06%wt (Hydrogen: 69.95 mmol) | [122] |
Buttiauxella sp. 4, Rahnella sp. 10, and Raoultella sp. 47 | SSF | Anaerobic | Hydrogen | Food waste: Vegetable waste | Substrate particle size: 5 mm; Fermentation volume: 50 mL; Inoculum concentration: 10%v/v; Temperature: 28 °C; pH: 6.70; Stirring rate: 120 rpm | Hydrogen: 0.771%wt (Hydrogen: 85.65 mlH2/gVS) | [139] |
Micro-organisms from wastewater of sweet potato processing factory | SSF | Aerobic | Hydrogen | Food waste: Kitchen waste and white rice | CSTR fermentation; Fermentation volume: 3 L; Temperature: 55 °C; pH: 5.4; Stirring rate: 160 rpm; Fermentation time: 20 days | Hydrogen: 0.255%wt (Hydrogen: 1.27 mmol/gCOD) | [140] |
Anaerobic digester sludge | SSF | Anaerobic | Hydrogen and methane | Food waste: Potato waste, kitchen garbage, and soybean pulp | CSTR fermentation; Volume for hydrogenesis: 1 L; Volume for methanogenesis: 5 L; Time for hydrogenesis: 2 days; Time for methanogenesis: 10 days; Temperature: 55 °C; pH:5.5; Inoculum load: Added to fill ¼ volume of reactor | VS of Potato waste Hydrogen: 0.765%wt (Hydrogen: 85 mL/gVS) Methane: 22.206%wt (Methane: 338 mL/gVS) VS of Kitchen garbage Hydrogen: 0.594%wt (Hydrogen: 66 mL/gVS) Methane: 23.91%wt (Methane: 364 mL/gVS) VS of Soybean pulp Hydrogen: 0.18%wt (Hydrogen: 20 mL/gVS) Methane: 21.61%wt (Methane: 329 mL/gVS) | [125] |
Sludge from anaerobic treatment of vinasse | SMF | Anaerobic | Biohythane (hydrogen and methane) | Food loss: Coffee residues | CSTR reactor; Fermentation volume: 4.3 L HRT: 55 days; OLR: 0.19 kg-VS-m3/d Temperature: 55 °C; pH: 5.5–6.0; Stirring rate: 2000 rpm | H2: 34.45%wt (H2: 30–40% in volume) CH4: 44.01%wt (CH4: 70% in volume) | [141] |
Thermoanaerobacterium for hydrogen stage and Methanosarcina sp. for methane stage | SSF | Anaerobic | Biohythane (hydrogen and methane) | Food loss: Palm oil mill effluent (POME) | Temperature: 55 °C; Hydraulic retention time for hydrogen (HRT): 2 days; Organic loading rate for hydrogen (OLR): 27.5 gCOD/L-d; HRT for methane: 10 days OLR: 5.5 gCOD/L-d; pH: 5.0–6.5; POME is mixed with CH4 at a ratio of 1:1 before feeding the reactor tank | Biohythane: 38.60%wt (Biohythane: 1.93 L/L-d) Composition H2: 11%wt CO2: 37%wt CH4: 52%wt | [142] |
Saccharomyces cerevisiae | SSF | Anaerobic | Ethanol | Food loss: Pineapple waste | Fermentation volume: 1 L; Substrate concentration: 3 g/L; Glucose content: 4.43%wt; Inoculum concentration: 3 g/L Temperature: 30 °C; pH: 4.0; Incubation period: 3 days | Ethanol: 8.7%wt | [143] |
Pichia stipitis | SMF | Aerobic | Ethanol | Food loss: Defatted rice bran | Batch fermentation; Fermentation media: 300 mL in 500 mL flask; Stirring rate: 200 rpm; pH: 5.5; Temperature: 30 °C; Culture medium: 5.0 g/L xylose and glucose; Inoculum volume: 8.5 mL; Initial sugars: 33.55 g/L | Ethanol: 42%wt (Ethanol: 0.42 g/g sugar used) | [144] |
Zymomonas mobilis—ZM4 | SMF | Anaerobic | Ethanol | Food waste from a local supermarket | Fermentation volume: 3 L; Glucose concentration in medium: 200 g/L; Substrate load: 50 kg; Water load: 25 kg Glucoamylase: 20,000 U/g; Temperature: 50 °C; pH: 4.0; Stirring rate: 100 rpm; Time: 6 h | Ethanol: 50%wt (Ethanol: 50 g/g glucose) | [145] |
Clostridium saccharoperbutylacetonicum | SMF | Anaerobic | Acetone, butanol, ethanol, acetic acid, and butyric acid | Food loss: Rice bran | Batch fermentation; Fermentation volume: 150 mL; Substrate concentration: 10%(w/v); Initial pH: 6.5; Initial temperature: 30 °C; Fermentation time: 120 h; Inoculum concentration: 10%(w/v) | Acetone: 0.23%wt; Butanol: 2.31%wt; Ethanol: 0.21%wt; Acetic acid: 1.24%wt; Butyric acid: 1.90%wt Acetone: 0.23; Butanol: 2.31; Ethanol: 0.21; Acetic acid: 1.24; Butyric acid: 1.90(g/L) | [146] |
Clostridium kluyver | SMF | Anaerobic | Ethanol, acetate, and butyrate | Food waste: Fruit vegetable waste (FVW) | FVW was smashed and homogenized. Batch fermentation; Fermentation volume: 1 L; Volatile solids concentration: 50 g/L; Inoculum to substrate ratio; Temperature: 35 °C; pH: 6.3 | Ethanol: 1.6%wt Acetate: 10.8%wt Butyrate: 6.6%wt (g/L) Ethanol: 0.8 Acetate: 5.4 Butyrate: 3.3 | [147] |
Clostridium beijerinckii | SMF | Anaerobic | Acetone, butanol, and ethanol | Food waste: | Fermentation volume: 150 mL; Food-waste medium load: 50 mL; Stock buffer solution: KH2PO4, 0.5 g/L; K2HPO4, 0.5 g/L; and NH4CH3CO2, 2.2 g/L; Temperature: 35 °C pH: 6.0; Incubation period: 72 h | Acetone: 4.0%wt Butanol: 7.7%wt Ethanol: 0.7%wt Acetone: 4.0 g/100 g Butanol: 7.7 g/100 g Ethanol: 0.7 g/100 g | [148] |
Clostridium sp. strain—BOH3 | SMF | Anaerobic | Acetone, butanol, and hydrogen | Food waste from local food courts in Singapore | Fermentation volume: 160 mL; Substrate concentration: 60 g/L; Temperature: 35 °C pH: 5.0–5.2; Incubation time: 20 h; Stirring rate: 130 rpm | Butanol: 8.00%wt Acetone: 3.00%wt Hydrogen: 0.016%wt (Hydrogen: 0.08 mmol/g) | [149] |
Clostridium saccharoperbutylacetonicum | IS | Anaerobic | Acetone, butanol, and ethanol | Food waste: Bakery wastes, fruit wastes, and vegetables wastes | Food wastes were homogenized in a blender; Fermentation volume: 245 mL. Immobilized-cell system: Activated carbon; Activated carbon particle size: 3–6 mm; Dilution rate: 0.10 h−1; Temperature: 30 °C; Time: 12 h | Butanol: 10.47%wt (Butanol: 10.47 g/L) ABE: 43%wt | [150] |
3.3.2. Biomaterials
Micro-Organism | Water Activity | Oxygen Requirement | Product | Substrate | Operational Conditions | Yields and Productivity | Ref. |
---|---|---|---|---|---|---|---|
Pleurotus sapidus | SSF | Anaerobic | Nanocellulose | Food loss: Sunflower seed hulls | Control medium: 2 g/L malt extract, 0.2 g/L yeast extract, and 1 g/L saccharose. Temperature: 85 °C; Fermentation time: 3 h | Microcrystalline cellulose: 63.4%wt Nanocrystalline cellulose: 66.7%wt | [159] |
Trichoderma reesei | SSF | Aerobic | Xylose | Food loss: Brewers spent grain | Fermentation: 3 days; pH: 7.00; Temperature: 30 °C; Brewers spent grain: 20 g/L; Stirring rate: 180 rpm; Inoculum concentration: 1 × 106 spores/mL; Sterile solution: 0.8%(w/v) NaCl, 0.05%(w/v) | Xylose: 3.83%wt (Xylose: 38.3 mg/g of Brewers’ spent grain) | [160] |
Bacillus amyloliquefaciens | SSF | Aerobic | Poly γ-glutamic acid | Food loss: Soybean dregs | Continuous batch fermentation; Fermentation volume: 5 L; Initial moisture of substrate: 70%; Substrate load: 400 g (375.6 g fresh soybean dregs and 24.4 g molasses meal); Inoculum size: 12%; Fermentation temperature: 30 °C Initial pH: 8.0; Fermentation time: 72 h | Poly γ-glutamic acid: 6.58%wt (Poly γ-glutamic acid: 65.79 g/kg) | [161] |
Activated sludge | SMF | Anaerobic | Polyhydroxyalkanoates (PHA) | Food loss: Fermented cheese whey | Fermentation volume: 500 mL; Inoculum: Cheese whey ratio: 1:5; Inoculum load: 50 g Total Suspended Solids/L; Incubation time: 96 h; Stirring rate: 150 rpm; Fermentation temperature: 37 °C; pH: 5.5 | PHA: 28.2%wt (PHA: 28.2 g/L) | [61] |
Xanthomonas citri | SSF | Aerobic | Xanthan | Food loss: Potato peel | Substrate load: 50 g; Temperature: 28 °C pH: 7.2; Time: 24 h | Xanthan: 5.80%wt (Xanthan: 2.90 g/50 g peel) | [162] |
Haloferax mediterranei | SSF | Aerobic | Poly(3-hydroxybutyrate-co-3-hydroxyvalerate): (P(3HB-co-3HV)) | Food loss: Cheese whey | Batch fermentation mode; Fermentation volume: 2 L; Temperature: 37 °C; pH: 7.2 Air flow rate: 1 vvm; Dissolved oxygen concentration: 20%; Stirring rate: 200–800 rpm | P(3HB-co-3HV): 9.6%wt (P(3HB-co-3HV): 9.6 g/L) | [163] |
Recombinant Escherichia coli | SSF | Aerobic | Polyhydroxybutyrate (PHB) | Food loss: Corn steep liquor | Fermentation volume: 50 mL; Inoculum concentration: 0.01 g dry cell/L; Temperature: 37 °C; pH: 7.2; Antifoam concentration: 30µL/L; Incubation period: 48 h | PHB: 6.12%wt (PHB: 6.12 g/L) | [164] |
3.3.3. Organic Acids
Micro-Organism | Water Activity | Oxygen Requirement | Product | Substrate | Operational Conditions | Yields and Productivity | Ref. |
---|---|---|---|---|---|---|---|
Penicillium echinulatum | SSF | Anaerobic | Lactic acid | Food loss: Rice husk | Fermentation volume: 1.0 L; pH: 6.0; Nutrients solution (g/L): proteose peptone, 10.0; yeast extract, 5.0; ammonium citrate, 2.0; and dipotassium phosphate, 2.0.; Temperature: 30 °C | Lactic acid: 12.69%wt (Lactic acid: 12.69 g/L) | [169] |
Lactobacillus rhamnosus | SSF | Anaerobic | Lactic acid | Food loss: Brewer spent grains | Batch fermentation; Stirring rate: 15 rpm Fermentation volume: 300 mL; Brewer spent grains: 200 mL; Brewer yeast: 50 g/L Inoculum concentration: 5%(v/v); Temperature: 37 °C; pH: 6.2 | Lactic acid: 89%wt | [170] |
Lactobacillus paracasei | SSF | Anaerobic | Lactic acid | Food loss: Molasses-enriched potato stillage | Batch fermentation (48 h) and Fed-batch fermentation (24 h); 200 mL of stillage + 32 g of molasses; pH: 6.5; Adaption media (g/L): Peptone, 10; meat extract, 10; yeast extract, 5; K2HPO4, 2; C2H9NaO5, 5; C6H17N3O7, 2, and 1 L of distillated water | Lactic acid: 89.0%wt (Lactic acid: 0.89 g/g) | [171] |
Bacillus coagulans | SSF | Anaerobic | L-lactic acid | Food loss: Defatted rice bran | Batch fermentation; Fermentation volume: 1 L; Substrate load: 20%(w/w); Temperature: 52 °C; Stirring rate: 400 rpm; pH: 6; Inoculum concentration: 6%(v/v); Fermentation time: 25 h | Lactic acid yield: 90%wt Lactic acid productivity: 33.7%wt (Lactic acid productivity: 2.7 g/L-h) | [172] |
Lacticaseibacillus rhamnosus and Aspergillus niger | SSF and SMF | Aerobic | Lactic acid | Food loss: Dry corn stover | SSF: Fermentation time: 250 mL; Glucoamylase: 8%(w/w); Inoculum: 6%(v/v); Substrate: Chopped to a sized of 3–5 cm; Substrate load: 25 g (dry basis); Temperature: 35 °C; pH: 4.6; Stirring rate: 120 rpm; Time: 96 h SF: Fermented substrate was mixed with glucoamylase: 1850 U/g; pH: 5.3 | Lactic acid: 45.5%wt (Lactic acid: 45.5%w/w) | [173] |
Yarrowia lipolytica | SSF | Aerobic | Citric acid, mannitol, arabitol, and erythritol | Food loss: Olive-mill wastewater | Fermentation volume: 250 mL; Substrate concentration: 8.98 g/L; Stirring rate: 180 rpm; Peptone: 1.0 g/L; Yeast extract: 1.0 g/L; pH: 5.0–6.0; Temperature: 28 °C; Fermentation time: 191 h | Citric acid: 27.0%wt Mannitol: 15.0%wt Arabitol: 5.0%wt Erythritol: 23.0%wt (g/g of raw material) Citric acid: 0.27 Mannitol: 0.15 Arabitol: 0.05 Erythritol: 0.23 | [174] |
Aspergillus ornatus and Alternaria alternata | SSF | Aerobic | Citric acid | Food loss: Apple Pomace and peanut shell | Fermentation volume: 500 mL; Substrate load: 25 g; Substrate mixture ratio: 50:50; Moisture content: 50%; Nutritional ingredient: Arginine; Temperature: 30 °C pH: 5.0; Time: 48 h; Stirring rate: 180 rpm | Citric acid: 5.28%wt (Citric acid: 2.64 mg/mL) | [175] |
Digested sludge inoculum | SSF | Anaerobic | Propionic acid | Food loss: Winery waste | CSTR fermentation; Fermentation volume: 50 L; Substrate: Inoculum ratio: 1:1; Inoculum concentration: 5 gVVS/L; Temperature: 35 °C; pH: 5.5 | Propionic acid: 50.7%wt (Propionic acid: 1.0 gCOD/L) | [176] |
Digested sludge inoculum | SSF | Anaerobic | Propionic acid | Food loss: Meat and bone meal | Batch fermentation; Fermentation volume: 500 mL; Substrate concentration: 10 g COD/L; Inoculum concentration: 5 gVVS/L; Temperature: 55 °C; pH: 5.5; Fermentation time: 10 day | Propionic acid: 14.3%wt (Propionic acid: 1.43 gCOD/L) | [176] |
Aspergillus awamori and Aspergillus oryzae. Actinobacillus succinogenes and Escherichia coli | SSF | Anaerobic | Succinic acid | Food loss: Mixed food waste and Bakery waste | Enzymatic hydrolysis: Substrate load: 8.5 g (dry weight); Inoculum concentration: A. awamori, 4.6 × 105 spores/mL; A. oryzae, 6.3 × 105 spores/mL; Temperature: 30 °C; Incubation period: 7 days Bacterial fermentation: Fermentation volume: 2.5 L; Hydrolysate volume: 1.5 L Inoculum size: 10%(v/v); Initial glucose concentration: 58 g/L; Temperature: 37 °C Stirring rate: 150 rpm; Time: 6 h | Succinic acid: 22.4%wt (Succinic acid: 22.4%w/w) | [177] |
Actinobacillus succinogenes | SSF | Anaerobic | Succinic acid | Food Loss Bread loss | Bread was cut into cube: 1 cm3 Substrate load: 10 g; Inoculum concentration: 2.85 × 107 spores/mL; Temperature: 30 °C pH: 6.6–6.8; CO2 flow rate: 0.5 vvm; Stirring rate: 300 rpm; Time: 3 h | Succinic acid: 55.0%wt (Succinic acid: 0.55 g/g bread) | [178] |
Rhizopus oryzae | SMF | Aerobic | Fumaric acid | Food loss: Apple pomace | Fermentation volume: 142.1 mL; Substrates concentration: 40 g/L of total solids; pH: 6; Temperature: 30 °C; Stirring rate: 200 rpm; Incubation time: 72 h | Fumaric acid: 3.58%wt (Fumaric acid: 0.35 g/L-h) | [179] |
Rhizopus oryzae | SSF | Aerobic | Fumaric acid | Food loss: Apple pomace | Substrate load: 250 g; Inoculum concentration: 1 × 107 spores/g dry weight; Temperature: 30 °C; Time: 21 days | Fumaric acid: 5.2%wt | [179] |
Rhizopus oryzae | SSF | Aerobic | Fumaric acid | Food waste: Obtained from university canteen | Substrate load: 106.36 g/L. Solid-liquid ratio: 1:10; Inoculum concentration: 20%(v/v); Temperature: 30 °C; Stirring speed: 180 rpm. Pressure: 4 MPa. Time: 150 min | Fumaric acid: 23.94%wt | [180] |
Rhizopus arrhizus | SSF | Anaerobic | Fumaric acid | Food waste: Obtained from the dining hall university | Fermentation volume: 50 mL; Substrate particle size: 2–5 mm; Substrate load: 4.58 g/L; Temperature: 30 °C; Stirring speed: 200 rpm; Time: 168 h. Glucose: 80 g/L; | Fumaric acid: 32.68%wt | [181] |
Bacillus subtilis | SSF | Anaerobic | Indole-3-acetic acid | Food loss: Cassava fibrous residue | Fermentation volume: 27 mL; Substrate load: 20 g; Moisture: 70% achieved with peptone (N 0.15%); Inoculum concentration: 1 × 106 CFU/mL); Temperature: 30 °C; pH: 7.00; Fermentation time: 10 days | Indole-3-acetic acid: 75.96%wt (Indole-3-acetic acid: 22.8 µg/g) | [182] |
Providencia sp. | SSF | Anaerobic | Indole-3-acetic acid | Food waste: Obtained from food-waste compost | Fermentation volume: 200 mL; Inoculum concentration: 2% (v/v); NaCl concentration 4% (w/v); Temperature 25 ℃; Initial pH = 5; L-tryptophan concentration 3.0 g/L; Time: 12 h | Indole-3-acetic acid: 96.65%wt | [183] |
Bacillus pumilus | SMF | Anaerobic | Gallic acid, protocatechuic acid, and p-Coumaric acid | Food loss: Soybean fermented food | Fermentation volume: 90 mL; Temperature: 37 °C; Inoculum concentration: 5%(w/w); Fermentation time: 60 h | Gallic acid: 37.8%wt Protocatechuic acid: 46.3%wt p-Coumaric acid: 1.5 × 10−4%wt (mg/kg) Gallic acid: 1012 Protocatechuic acid: 4.63 p-Coumaric acid: 0.15 | [184] |
Ganoderma lipsiense | SSF | Anaerobic | Caffeic acid | Food waste: Obtained from university canteen | Fermentation volume: 75 mL; Medium moisture: 51%; mycelium suspension volume: 15 mL; Temperature: 28 °C; Time: 49 days; Substrate load: 25 g | Caffeic acid: 68.92%wt | [185] |
Pediococcus Pentosaceus | SSF | Anaerobic | Ellagic acid | Food Loss Cloudberry juice | Fermentation volume: 15 L; Inoculum load: 1 × 106 CFU/g; Temperature: 30 °C; Incubation period: 14 days; Stirring rate: 130 rpm | Ellagic acid: 85%wt | [186] |
3.3.4. Aromatic Compounds
3.3.5. Foods and Feeds
3.3.6. Enzymes
Micro-Organism | Water Activity | Oxygen Requirement | Product | Substrate | Operational Conditions | Yields and Productivity | Ref. |
---|---|---|---|---|---|---|---|
Penicillium simplicissimum, | SSF | Aerobic | Lipase | Food loss: Castor bean waste; Jatropha curcas seed cake; Sugarcane bagasse, sunflower seed, and olive oil | Substrate particle size: 0.42–1.18 mm; Substrate load: 20 g; Temperature: 30 °C; Relative moisture: 95%; Fermentation time: 96 h | Lipase: 35.5%wt (Lipase: 155 U/g) | [225] |
Lysinibacillus sp. | SSF | Aerobic | Laccase | Food waste: Whear bran | Fermentation volume: 250 mL; Inoculum volume: 0.5 mL; Temperature: 37 °C; Fermentation time: 72 h: Stirring rate: 160 rpm | Laccase: 18.9%wt | [226] |
Bacillus halodurans | SSF | Aerobic | Fibrinolytic enzyme | Food waste: Banana peel, black gram husk, cow dung, paddy straw, rice bran, and wheat bran | Fermentation volume: 100 mL; Moisture: 80%; Temperature: 50 °C; pH: 8.32; Substrate load: 5.0 g; Inoculum concentration: 2–12% | Fibrinolytic enzyme: 13.7%wt (Fibrinolytic enzyme: 6851 U/g) | [227] |
Aspergillus brasiliensis | SMF | Aerobic | Pectin lyase | Food waste: Corn steep liquor and orange peel | Agro-industrial medium: 160 g/L orange peel, 150 g/L corn steep liquor, and 300 g/L; Temperature: 30 °C; Initial pH: 5.5; Fermentation time: 100 h; Stirring rate: 180 rpm | Pectin lyase: 15.3%wt (Pectin lyase: 46 U/mL) | [228] |
Fusarium oxysporum | SSF | Anaerobic | Protease | Food loss: Agro-industrial waste rice bran | Fermentation volume: 250 mL; Initial moisture content: 50%(w/w); Substrate load: 10 g; Temperature: 35 °C; pH: 7.0; Incubation period: 7 days; Stirring rate: 2000 rpm | Protease: 32.7%wt (Protease: 70.5 U/g) | [229] |
Aspergillus niger | SSF | Anaerobic | Polygalactouronase | Food loss: Wheat bran, Coffee pulp | Wheat bran load: 1.5 g; Coffee pulp load: 23.1 g; Glucose concentration: 20 g/L; Distilled water volume: 70 mL; Temperature: 30 °C; pH: 4.5; Inoculum: 2 × 106 spores/mL; Time: 72 h; Stirring rate: 300 rpm | Polygalactouronase: 14.6%wt (Polygalactouronase: 515 U/L) | [230] |
Bacillus subtilis | SSF | Aerobic | α-amylase | Food loss: Banana peel | Fermentation volume: 100 mL; Temperature: 35 °C; pH: 7.0; Incubation time: 24 h; Substrate moisture: 80%; | α-amylase: 6.38%wt (α-amylase: 7.26 U/mL/min) | [231] |
Streptomyces sp. | SSF | Anaerobic | Cellulase | Food loss: Fruit waste | Substrate load: 10 g; Temperature: 40 °C pH: 5.0; Incubation period: 4 days | Cellulase: 13.6%wt (Cellulase: 20 U/mL/min) | [232] |
Aspergillus awamori | SSF | Aerobic | Cellulase, xylanase, exo-polygalacturonase, and endo-polygalacturonase | Food loss: Grape pomace | Fermentation volume: 100 mL; Substrate load: 10 g; Medium moisture: 60% Inoculum concentration: 5 × 105 spores/g Temperature: 30 °C Incubation period: 25 h | Cellulase: 10%wt; Xylanase: 40%wt; Exo-polygalacturonase: 25%wt; Endo-polygalacturonase: 0.03%wt (IU/g dry substrate) Cellulase: 10; Xylanase: 40; Exo-polygalacturonase: 25; Endo-polygalacturonase: 0.03 | [233] |
Penicillium viridicatum | SSF | Anaerobic | Polygalacturonase | Food loss: Wheat bran | Fermentation volume: 250 mL; Substrate load: 5 g; Inoculum load: 1 × 107 spores/g dry substrate; Temperature: 55 °C; Time: 14 days | Polygalacturonase: 30%wt (Polygalacturonase: 30 U/g) | [234] |
Penicillium viridicatum | SSF | Anaerobic | Pectin lyase | Food loss: Orange bagasse | Fermentation volume: 250 mL; Substrate load: 5 g; Temperature: 50 °C; Time: 14 days | Pectin lyase: 40.0%wt (Pectin lyase: 2000 U/g) | [234] |
Aspergillus oryzae | SSF | Aerobic | Pectinase | Food loss: Citrus pulp and sugarcane bagasse | Packed-bed bioreactor; Substrate load: 15 kg; Citrus pulp, 51.6%wt; sugarcane bagasse, 48.4%wt; Inoculum concentration: 4 × 107 spores/g dry substrate; Temperature: 30 °C; Aeration rate: 100 mL/min; Incubation time: 48 h | Pectinase: 2.46%wt (Pectinase: 37 U/g) | [235] |
Penicillium chrysogenum and Trichhoderma viride | SSF | Anaerobic | Tannin acyl hydrolase or Tannase | Food waste: Grape peel | Fermentation volume: 250 mL; pH: 5.5; Temperature: 30 °C; Substrate load: 5 g; Incubation period: 96 h | Tannase: 0.96%wt (Tannase: 84 U/g/min) | [236] |
3.3.7. Other Organic Compounds
Micro-Organism | Water Activity | Oxygen Requirement | Product | Substrate | Operational Conditions | Yields and Productivity | Ref. |
---|---|---|---|---|---|---|---|
Saccharomyces cerevisiae | SSF | Anaerobic | Esters, alcohols, carbonyl compounds, and organic acids. | Food loss: Orange pulp, molasses, brewer spent grains | Orange pulp volume: 100 mL; Molasses volume: 50 mL; Brewer spent grains: 70 g pH: 5.5; Temperature: 30 °C; Pressure: 1.5 Atm | Ethanol: 56.8%wt; 2,6-dimethyl-2- heptanol: 1.36%wt; 1-octanol: 0.10%wt; Phenylethyl alcohol: 3.1%wt; 3-heptanone: 0.19%wt; 2-heptanone: 0.021%wt; 2-methyl-4-heptanone: 0.0926%wt; 5-nonanone: 0.0052%wt; Cyclohexane- 1,1,3,5- tetramethyl: 0.0031%wt (mg/kg) Ethanol: 135.6; 2,6-dimethyl-2- heptanol: 35.8; 1-octanol: 10.2 Phenylethyl alcohol: 31.2; 3-heptanone: 19.0 2-heptanone: 20.6; 2-methyl-4-heptanone: 926.8; 5-nonanone: 51.8 Cyclohexane- 1,1,3,5- tetramethyl: 31.0 | [90] |
Kluyveromyces marxianus | SSF | Anaerobic | Esters, alcohols, and carbonyl compounds. | Food loss: Orange pulp, molasses, potato pulp, whey, and brewer’s spent grains | Orange pulp volume: 100 mL; Molasses volume: 10 mL; Potato pulp volume: 10 mL; Whey volume: 30 mL; Brewer spent grains: 80 g; Distillate water: 50 mL pH: 7; Temperature: 30 °C; Pressure: 1.5 Atm | Methyl palmitate: 85.7%wt (Methyl palmitate: 85.7 g/100 g fat) Methyl oleate: 3.6%wt (Methyl oleate: 3.6 g/100 g fat) Methyl linoleate: 9.0%wt (Methyl linoleate: 9.0 g/100 g fat) Ethyl acetate: 0.0012%wt (Ethyl acetate: 12.4 mg/kg) | [90] |
Yarrowia lipolytica | SMF | Aerobic | Isomaltulose and lipids | Food loss: Sugarcane molasses | Fed-batch fermentation; Fermentation volume: 6.0 L; Inoculum concentration: 5.0%(v/v); Fermentation time: 80 h; Aeration time: 50 L/min; Stirring rate: 300 rpm; Temperature: 30 °C; pH: 6.0; Pretreated sugarcane molasses: 350 g/L Corn steep liquor: 1.0 g/L | Isomaltulose: 96.0%wt (Isomaltulose: 96%w/w) Lipids: 20.9%wt (Lipids: 12.2 g/L) | [210] |
Thermomyces Lanuginosus | SSF | Aerobic | Volatile acids | Food waste: Hull-less pumpkin, flax, and hemp oil cakes | Batch fermentation; Fermentation volume in glass jars: 670 mL; Substrate load: 50 g; Substrate moisture: 60%; Temperature: 45 °C; Fermentation time: 9 days; No agitation required.; Inoculum load: 6 mm diameter suspended in 10 mL of water | Hull-less pumpkin oil cake Volatile acids: 58.9%wt (Volatile acids: 22 U/mL) Flax oil cake Volatile acids: 22.8%wt (Volatile acids: 17 U/mL) Hemp pumpkin Volatile acids: 9.38%wt (Volatile acids: 7 U/mL) | [244] |
Cryptococcus albidus sp. Aerius | SMF | Anaerobic | Ergosterol (Biological precursor/provitam of vitamin D2) | Food waste: Dairy waste(whey) | Fermentation volume: 2500 L; Fermentation time: 96 h; Temperature: 25 °C | Ergosterol: 50%wt | [245] |
Amycolatopsis Mediterranean | SSF | Aerobic | Rifamycin (Antiobiotics) | Food loos: Coconut oil cake, groundnut oil cake, ground nut shell and rice husk | Initial moisture content: 60%; Inoculum concentration: 8%(w/w); Substrate particle size: 1.4–1.6 mm; Initial pH: 8.0 Temperature: 32 °C; Incubation period: 10 days | Rifamycin: 0.146%wt (Rifamycin: 1.46 mg/g dry substrate) | [246] |
Streptomyces fradiae | SSF | Aerobic | Neomycin (Antiobiotics) | Food loss: Apple pomace, cotton seed meal, soybean powder and wheat bran | Fermentation volume: 250 mL; Substrate load: 10 g; Substrate particle size: 1.2 mm; Initial moisture: 70%; Temperature: 30 °C pH: 8.0; Time: 5 days | Neomycin: 2.77%wt (Neomycin: 27,658 µg/g substrate) | [247] |
Sporidiobolus salmonicolor | SSF | Anaerobic | Astaxanthin (pigment) | Food waste: Wheat waste | Fermentation volume: 250 mL; Substrate load: 100 g; Fermentation temperature: 23 °C; Moisture content: 90%; pH: 7.0 | Astaxanthin: 0.0061%wt (Astaxanthin: 60.54 µg astaxanthin/g wheat wastes) | [248] |
Phoma sp. | SSF | Aerobic | Bioherbicide | Food loss: Soybean bran, bagasse, and corn steep liquor | Fermentation volume: 500 mL; Substrate load: 10 g; Moisture content: 70%wt.; Soybean bran load: 30%wt.; Corn steep liquor: 20%wt.; Temperature: 28 °C; Time: 5 days | The produced bioherbicide contributed to plants height up to 11.46 cm and root length of 10.94 cm | [249] |
Bacillus subtilis | SSF | Anaerobic | Biosurfactant | Food loss: Orange peels extract, potato peels extract, banana peels extract, and bagasse extract | Nutritive medium (g/L): NO3NH4, 1.0; KH2PO4, 6.0; MgSO4, 0.1; Fermentation temperature: 30 °C; pH: 7.0; Time: 24 h; Stirring rate: 12,000 rpm | Orange peel extract: 8.9%wt Potato peel extract: 22.0%wt Banana peel extract: 49.0%wt Bagasse extract: 12.7%wt (g/L) Orange peel extract: 0.089; Potato peel extract: 0.022; Banana peel extract: 0.049; Bagasse extract: 0.127 | [250] |
3.4. Main Platform Products Generated in Fermentation of Food Residues
4. Systematic Analysis of the Reviewed Information
5. Restrictions of Food-Waste Fermentation Processes
6. Potential of Food-Waste Fermentation Processes
7. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Allam, Z.; Bibri, S.E.; Sharpe, S.A. The Rising Impacts of the COVID-19 Pandemic and the Russia–Ukraine War: Energy Transition, Climate Justice, Global Inequality, and Supply Chain Disruption. Resources 2022, 11, 99. [Google Scholar] [CrossRef]
- FAO. Food Security and Nutrition in the World the State of Repurposing Food and Agricultural Policies to Make Healthy Diets More Affordable; FAO: Rome, Italy, 2022. [CrossRef]
- Pollard, C.M.; Booth, S. Food Insecurity and Hunger in Rich Countries—It Is Time for Action against Inequality. Int. J. Environ. Res. Public Health 2019, 16, 1804. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- The Sustainable Development Goals Report. Available online: https://unstats.un.org/sdgs (accessed on 2 July 2021).
- Kumar, R.; Verma, A.; Shome, A.; Sinha, R.; Sinha, S.; Jha, P.K.; Kumar, R.; Kumar, P.; Shubham; Das, S.; et al. Impacts of Plastic Pollution on Ecosystem Services, Sustainable Development Goals, and Need to Focus on Circular Economy and Policy Interventions. Sustainability 2021, 13, 9963. [Google Scholar] [CrossRef]
- Kabeyi, M.J.B.; Olanrewaju, O.A. Sustainable Energy Transition for Renewable and Low Carbon Grid Electricity Generation and Supply. Front. Energy Res. 2022, 9, 1032. [Google Scholar] [CrossRef]
- Russo, G.L.; Langellotti, A.L.; Martín-García, B.; Verardo, V.; Romano, R.; Sacchi, R.; Masi, P. New Biotechnological Production of EPA by Pythium Irregulare Using Alternative Sustainable Media Obtained from Food Industry By-Products and Waste. Sustainability 2023, 15, 1147. [Google Scholar] [CrossRef]
- FAO. Food Loss and Waste and the Right to Adequate Food: Making the Connection; FAO: Rome, Italy, 2018; p. 48, Licence: CC BY-NC-SA 3.0 IGO.
- Calicioglu, O.; Flammini, A.; Bracco, S.; Bellù, L.; Sims, R. The Future Challenges of Food and Agriculture: An Integrated Analysis of Trends and Solutions. Sustainability 2019, 11, 222. [Google Scholar] [CrossRef] [Green Version]
- Hermanussen, H.; Loy, J.-P.; Egamberdiev, B. Determinants of Food Waste from Household Food Consumption: A Case Study from Field Survey in Germany. Environ. Res. Public Health 2022, 19, 14253. [Google Scholar] [CrossRef]
- Trabold, T.A.; Nair, V. Conventional Food Waste Management Methods. In Sustainable Food Waste-to-Energy Systems; Academic Press: New York, NY, USA, 2018. [Google Scholar]
- Ishangulyyev, R.; Kim, S.; Lee, S.H. Understanding Food Loss and Waste-Why Are We Losing and Wasting Food? Foods 2019, 8, 297. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, K.L.P.; Chuang, Y.H.; Chen, H.W.; Chang, C.C. Impacts of Socioeconomic Changes on Municipal Solid Waste Characteristics in Taiwan. Resour. Conserv. Recycl. 2020, 161, 104931. [Google Scholar] [CrossRef]
- Sarker, A.; Ghosh, M.K.; Islam, T.; Bilal, M.; Nandi, R.; Raihan, M.L.; Hossain, M.N.; Rana, J.; Barman, S.K.; Kim, J.-E. Sustainable Food Waste Recycling for the Circular Economy in Developing Countries, with Special Reference to Bangladesh. Sustainability 2022, 14, 12035. [Google Scholar] [CrossRef]
- FAO. Food Loss and Food Waste. Available online: http://www.fao.org/food-loss-and-food-waste/flw-data (accessed on 2 March 2021).
- Isah, S.; Ozbay, G. Valorization of Food Loss and Wastes: Feedstocks for Biofuels and Valuable Chemicals. Front. Sustain. Food Syst. 2020, 4, 82. [Google Scholar] [CrossRef]
- Russo, G.L.; Langellotti, A.L.; Oliviero, M.; Sacchi, R.; Masi, P. Sustainable Production of Food Grade Omega-3 Oil Using Aquatic Protists: Reliability and Future Horizons. New Biotechnol. 2021, 62, 32–39. [Google Scholar] [CrossRef]
- Kopsahelis, N.; Kachrimanidou, V. Advances in Food and by-Products Processing towards a Sustainable Bioeconomy. Foods 2019, 8, 425. [Google Scholar] [CrossRef] [Green Version]
- Pour, F.H.; Makkawi, Y.T. A Review of Post-Consumption Food Waste Management and Its Potentials for Biofuel Production. Energy Rep. 2021, 7, 7759–7784. [Google Scholar] [CrossRef]
- Wang, Q.; Li, H.; Feng, K.; Liu, J. Oriented Fermentation of Food Waste towards High-Value Products: A Review. Energies 2020, 13, 5638. [Google Scholar] [CrossRef]
- Sabater, C.; Ruiz, L.; Delgado, S.; Ruas-Madiedo, P.; Margolles, A. Valorization of Vegetable Food Waste and by-Products through Fermentation Processes. Front. Microbiol. 2020, 11, 581997. [Google Scholar] [CrossRef]
- Patel, A.; Karageorgou, D.; Rova, E.; Katapodis, P.; Rova, U.; Christakopoulos, P.; Matsakas, L. An Overview of Potential Oleaginous Microorganisms and Their Role in Biodiesel and Omega-3 Fatty Acid-Based Industries. Microorganisms 2020, 8, 434. [Google Scholar] [CrossRef] [Green Version]
- De Oliveira, M.M.; Lago, A.; Dal’ Magro, G.P. Food Loss and Waste in the Context of the Circular Economy: A Systematic Review. J. Clean Prod. 2021, 294, 126284. [Google Scholar] [CrossRef]
- Lucifero, N. Food Loss and Waste in the EU Law between Sustainability of Well-Being and the Implications on Food System and on Environment. Agric. Agric. Sci. Procedia 2016, 8, 282–289. [Google Scholar] [CrossRef] [Green Version]
- Aschemann-Witzel, J.; Asioli, D.; Banovic, M.; Perito, M.A.; Peschel, A.O.; Stancu, V. Defining Upcycled Food: The Dual Role of Upcycling in Reducing Food Loss and Waste. Trends Food Sci. Technol. 2023, 132, 132–137. [Google Scholar] [CrossRef]
- Kazemi Shariat Panahi, H.; Dehhaghi, M.; Guillemin, G.J.; Gupta, V.K.; Lam, S.S.; Aghbashlo, M.; Tabatabaei, M. Bioethanol Production from Food Wastes Rich in Carbohydrates. Curr. Opin. Food Sci. 2022, 43, 71–81. [Google Scholar] [CrossRef]
- Haghdan, S.; Renneckar, S.; Smith, G.D. Sources of Lignin. Lignin Polym. Compos. 2016, 10, 1–11. [Google Scholar]
- Vats, N.; Khan, A.A.; Ahmad, K. Observation of Biogas Production by Sugarcane Bagasse and Food Waste in Different Composition Combinations. Energy 2019, 185, 1100–1105. [Google Scholar] [CrossRef]
- Mariana, O.S.; Camilo, S.T.J.; Ariel, C.A.C. A Comprehensive Approach for Biorefineries Design Based on Experimental Data, Conceptual and Optimization Methodologies: The Orange Peel Waste Case. Bioresour. Technol. 2021, 325, 124682. [Google Scholar] [CrossRef]
- Martín, M.A.; Siles, J.A.; Chica, A.F.; Martín, A. Biomethanization of Orange Peel Waste. Bioresour. Technol. 2010, 101, 8993–8999. [Google Scholar] [CrossRef]
- Wang, Q.; Ma, H.; Xu, W.; Gong, L.; Zhang, W.; Zou, D. Ethanol Production from Kitchen Garbage Using Response Surface Methodology. Biochem. Eng. J. 2008, 39, 604–610. [Google Scholar] [CrossRef]
- Edwiges, T.; Frare, L.; Mayer, B.; Lins, L.; Mi Triolo, J.; Flotats, X.; de Mendonça Costa, M.S.S. Influence of Chemical Composition on Biochemical Methane Potential of Fruit and Vegetable Waste. Waste Manag. 2018, 71, 618–625. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-Valderrama, S.; Escamilla-Alvarado, C.; Rivas-García, P.; Magnin, J.P.; Alcalá-Rodríguez, M.; García-Reyes, R.B. Biorefinery Concept Comprising Acid Hydrolysis, Dark Fermentation, and Anaerobic Digestion for Co-Processing of Fruit and Vegetable Wastes and Corn Stover. Environ. Sci. Pollut. Res. 2020, 27, 28585–28596. [Google Scholar] [CrossRef]
- Zhang, L.; Jahng, D. Long-Term Anaerobic Digestion of Food Waste Stabilized by Trace Elements. Waste Manag. 2012, 32, 1509–1515. [Google Scholar] [CrossRef]
- Dhiman, S.; Mukherjee, G. Present Scenario and Future Scope of Food Waste to Biofuel Production. J. Food Process Eng. 2021, 44, e13594. [Google Scholar] [CrossRef]
- Tang, Y.Q.; Koike, Y.; Liu, K.; An, M.Z.; Morimura, S.; Wu, X.L.; Kida, K. Ethanol Production from Kitchen Waste Using the Flocculating Yeast Saccharomyces Cerevisiae Strain KF-7. Biomass Bioenergy 2008, 32, 1037–1045. [Google Scholar] [CrossRef]
- Lissens, G.; Klinke, H.; Verstraete, W.; Ahring, B.; Thomsen, A.B. Wet Oxidation Treatment of Organic Household Waste Enriched with Wheat Straw for Simultaneous Saccharification and Fermentation into Ethanol. Environ. Technol. 2004, 25, 647–655. [Google Scholar] [CrossRef]
- Aǧdaǧ, O.N.; Sponza, D.T. Effect of Alkalinity on the Performance of a Simulated Landfill Bioreactor Digesting Organic Solid Wastes. Chemosphere 2005, 59, 871–879. [Google Scholar] [CrossRef]
- Carucci, G.; Carrasco, F.; Trifoni, K.; Majone, M.; Beccari, M. Anaerobic Digestion of Food Industry Wastes: Effect of Codigestion on Methane Yield. J. Environ. Eng. 2005, 131, 1037–1045. [Google Scholar] [CrossRef]
- Vijayaraghavan, K.; Ahmad, D.; Soning, C. Bio-Hydrogen Generation from Mixed Fruit Peel Waste Using Anaerobic Contact Filter. Int. J. Hydrog. Energy 2007, 32, 4754–4760. [Google Scholar] [CrossRef]
- Abudi, Z.N.; Hu, Z.; Sun, N.; Xiao, B.; Rajaa, N.; Liu, C.; Guo, D. Batch Anaerobic Co-Digestion of OFMSW (Organic Fraction of Municipal Solid Waste), TWAS (Thickened Waste Activated Sludge) and RS (Rice Straw): Influence of TWAS and RS Pretreatment and Mixing Ratio. Energy 2016, 107, 131–140. [Google Scholar] [CrossRef]
- Browne, J.D.; Allen, E.; Murphy, J.D. Assessing the Variability in Biomethane Production from the Organic Fraction of Municipal Solid Waste in Batch and Continuous Operation. Appl. Energy 2014, 128, 307–314. [Google Scholar] [CrossRef]
- Xiguang Chen, R.T.; Romano, R.Z. Anaerobic Digestion of Food Wastes for Biogas Production. Int. J. Agric. Biol. Eng. 2010, 3, 61–72. [Google Scholar]
- Zhang, L.; Lee, Y.W.; Jahng, D. Anaerobic Co-Digestion of Food Waste and Piggery Wastewater: Focusing on the Role of Trace Elements. Bioresour. Technol. 2011, 102, 5048–5059. [Google Scholar] [CrossRef]
- Zhang, C.; Su, H.; Tan, T. Batch and Semi-Continuous Anaerobic Digestion of Food Waste in a Dual Solid-Liquid System. Bioresour. Technol. 2013, 145, 10–16. [Google Scholar] [CrossRef]
- Zhang, R.; El-Mashad, H.M.; Hartman, K.; Wang, F.; Liu, G.; Choate, C.; Gamble, P. Characterization of Food Waste as Feedstock for Anaerobic Digestion. Bioresour. Technol. 2007, 98, 929–935. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Xiao, G.; Peng, L.; Su, H.; Tan, T. The Anaerobic Co-Digestion of Food Waste and Cattle Manure. Bioresour. Technol. 2013, 129, 170–176. [Google Scholar] [CrossRef] [PubMed]
- Karam, M.C.; Hosri, C.; Hussain, R.; Barbar, R.; Gaiani, C.; Scher, J. Effect of Whey Powder Rehydration and Dry-Denaturation State on Acid Milk Gels Characteristics. J. Food Process Preserv. 2017, 41, e13200. [Google Scholar] [CrossRef]
- Nawirska, A.; Kwaśniewska, M. Dietary Fibre Fractions from Fruit and Vegetable Processing Waste. Food Chem. 2005, 91, 221–225. [Google Scholar] [CrossRef]
- Al-Sayed, H.M.A.; Ahmed, A.R. Utilization of Watermelon Rinds and Sharlyn Melon Peels as a Natural Source of Dietary Fiber and Antioxidants in Cake. Ann. Agric. Sci. 2013, 58, 83–95. [Google Scholar] [CrossRef] [Green Version]
- Mukherjee, A.K.; Adhikari, H.; Rai, S.K. Production of Alkaline Protease by a Thermophilic Bacillus Subtilis under Solid-State Fermentation (SSF) Condition Using Imperata Cylindrica Grass and Potato Peel as Low-Cost Medium: Characterization and Application of Enzyme in Detergent Formulation. Biochem. Eng. J. 2008, 39, 353–361. [Google Scholar] [CrossRef]
- Triana, C.F.; Quintero, J.A.; Agudelo, R.A.; Cardona, C.A.; Higuita, J.C. Analysis of Coffee Cut-Stems (CCS) as Raw Material for Fuel Ethanol Production. Energy 2011, 36, 4182–4190. [Google Scholar] [CrossRef]
- Solarte-Toro, J.C. Oil Palm Rachis Gasification for Synthesis Gas Production Oil Palm Rachis Gasification for Synthesis Gas Production; Universidad Nacional de Colombia: Manizales, Colombia, 2017. [Google Scholar]
- Alonso-Gómez, L.A.; Solarte-Toro, J.C.; Bello-Pérez, L.A.; Cardona-Alzate, C.A. Performance Evaluation and Economic Analysis of the Bioethanol and Flour Production Using Rejected Unripe Plantain Fruits (Musa paradisiaca L.) as Raw Material. Food Bioprod. Process. 2020, 121, 29–42. [Google Scholar] [CrossRef]
- García-Vargas, M.C.; Contreras, M.D.M.; Castro, E. Avocado-Derived Biomass as a Source of Bioenergy and Bioproducts. Appl. Sci. 2020, 10, 8195. [Google Scholar] [CrossRef]
- Del Valle, M.; Cámara, M.; Torija, M.E. Chemical Characterization of Tomato Pomace. J. Sci. Food Agric. 2006, 86, 1232–1236. [Google Scholar] [CrossRef]
- Russo, G.L.; Langellotti, A.L.; Verardo, V.; Martín-García, B.; di Pierro, P.; Sorrentino, A.; Baselice, M.; Oliviero, M.; Sacchi, R.; Masi, P. Formulation of New Media from Dairy and Brewery Wastes for a Sustainable Production of Dha-Rich Oil by Aurantiochytrium Mangrovei. Mar. Drugs 2022, 20, 39. [Google Scholar] [CrossRef]
- Raj, T.; Kapoor, M.; Gaur, R.; Christopher, J.; Lamba, B.; Tuli, D.K.; Kumar, R. Physical and Chemical Characterization of Various Indian Agriculture Residues for Biofuels Production. Energy Fuels 2015, 29, 3111–3118. [Google Scholar] [CrossRef]
- Colombo, B.; Sciarria, T.P.; Reis, M.; Scaglia, B.; Adani, F. Polyhydroxyalkanoates (PHAs) Production from Fermented Cheese Whey by Using a Mixed Microbial Culture. Bioresour. Technol. 2016, 218, 692–699. [Google Scholar] [CrossRef]
- JEWELL, W.J.; CUMMINGS, R.J. Apple Pomace Energy and Solids Recovery. J. Food Sci. 1984, 49, 407–410. [Google Scholar] [CrossRef]
- Ofomatah, A.; Obasi, E. Biogas optimization potentials of cow dung, pig dung and poultry droppings with sugar cane bagasse and water melon peel. FUW Trends Sci. Technol. J. 2017, 2, 267–270. [Google Scholar]
- Mahmood, A.U.; Greenman, J.; Scragg, A.H. Orange and Potato Peel Extracts: Analysis and Use as Bacillus Substrates for the Production of Extracellular Enzymes in Continuous Culture. Enzyme Microb. Technol. 1998, 22, 130–137. [Google Scholar] [CrossRef]
- Neves, L.; Oliveira, R.; Alves, M.M. Anaerobic Co-Digestion of Coffee Waste and Sewage Sludge. Waste Manag. 2006, 26, 176–181. [Google Scholar] [CrossRef] [Green Version]
- Aubrey, M.L.L.; Chin, C.F.S.; Seelan, J.S.S.; Chye, F.Y.; Lee, H.H.; Rakib, M.R.M. Conversion of Oil Palm By-Products into Value-Added Products through Oyster Mushroom (Pleurotus ostreatus) Cultivation. Horticulturae 2022, 8, 1040. [Google Scholar] [CrossRef]
- Bardiya, N.; Somayaji, D.; Khanna, S. Biomethanation of Banana Peel and Pineapple Waste. Bioresour. Technol. 1996, 58, 73–76. [Google Scholar] [CrossRef]
- Solarte-Toro, J.C. Sustainability Assessment of Different Biorefinery Schemes to Enhance the Development of Post-Conflict Areas in the Colombian Context: The Montes de Maria Case; Universidad Nacional de Colombia: Manizales, Colombia, 2022. [Google Scholar]
- Deressa, L.; Libsu, S.; Chavan, R.B.; Manaye, D.; Dabassa, A. Production of Biogas from Fruit and Vegetable Wastes Mixed with Different Wastes. Environ. Ecol. Res. 2015, 3, 65–71. [Google Scholar] [CrossRef]
- Verrier, D.; Roy, F.; Albagnac, G. Two-Phase Methanization of Solid Vegetable Wastes. Biol. Wastes 1987, 22, 163–177. [Google Scholar] [CrossRef]
- Carlini, M.; Castellucci, S.; Moneti, M. Biogas Production from Poultry Manure and Cheese Whey Wastewater under Mesophilic Conditions in Batch Reactor. Energy Procedia 2015, 82, 811–818. [Google Scholar] [CrossRef] [Green Version]
- Jabeen, M.; Zeshan; Yousaf, S.; Haider, M.R.; Malik, R.N. High-Solids Anaerobic Co-Digestion of Food Waste and Rice Husk at Different Organic Loading Rates. Int. Biodeterior. Biodegrad. 2015, 102, 149–153. [Google Scholar] [CrossRef]
- Kennedy, M.; List, D.; Lu, Y.; Foo, L.Y.; Newman, R.H.; Sims, I.M.; Bain, P.J.S.; Hamilton, B.; Fenton, G. Apple Pomace and Products Derived from Apple Pomace: Uses, Composition and Analysis. In Analysis of Plant Waste Materials. Modern Methods of Plant Analysis; Springer: Berlin/Heidelberg, Germany, 1999. [Google Scholar]
- Hassan, D.U.; Abdulsalam, S. Assessement of Bio-Fertilizer Quality of Anaerobic Digestion of Watermelon Peels and Cow Dung. Chem. Biomol. Eng. 2017, 2, 135–141. [Google Scholar]
- Liang, S.; McDonald, A.G. Anaerobic Digestion of pre-Fermented Potato Peel Wastes for Methane Production. Waste Manag. 2015, 46, 197–200. [Google Scholar] [CrossRef]
- Colantoni, A.; Paris, E.; Bianchini, L.; Ferri, S.; Marcantonio, V.; Carnevale, M.; Palma, A.; Civitarese, V.; Gallucci, F. Spent Coffee Ground Characterization, Pelletization Test and Emissions Assessment in the Combustion Process. Sci. Rep. 2021, 11, 5119. [Google Scholar] [CrossRef]
- Sánchez, F.; Araus, K.; Domínguez, M.P.; Miguel, G.S. Thermochemical Transformation of Residual Avocado Seeds: Torrefaction and Carbonization. Waste Biomass Valorization 2016, 8, 2495–2510. [Google Scholar] [CrossRef]
- Roussis, I.; Kakabouki, I.; Folina, A.; Konstantas, A.; Travlos, I.; Bilalis, D. Effects of Tomato Pomace Composts on Yield and Quality of Processing Tomato (Lycopersicon esculentum Mill.). Bull. Univ. Agric. Sci. Vet. Med. Cluj-Napoca. Hortic. 2019, 76, 250–257. [Google Scholar] [CrossRef]
- Kaur, P.; Ghoshal, G.; Jain, A. Bio-Utilization of Fruits and Vegetables Waste to Produce β-Carotene in Solid-State Fermentation: Characterization and Antioxidant Activity. Process Biochem. 2019, 76, 155–164. [Google Scholar] [CrossRef]
- Pathak, P.D.; Mandavgane, S.A.; Kulkarni, B.D. Fruit Peel Waste: Characterization and Its Potential Uses. Curr. Sci. 2017, 113, 444–454. [Google Scholar] [CrossRef]
- Rashama, C.; Ijoma, G.N.; Matambo, T.S. Appraising Different Models for Predicting Biomethane Potential: The Case of Avocado Oil Processing by-Products. J. Mater. Cycles Waste Manag. 2021, 23, 409–415. [Google Scholar] [CrossRef]
- Sharma, V.; Tsai, M.-L.; Nargotra, P.; Chen, C.-W.; Kuo, C.-H.; Sun, P.-P.; Dong, C.-D. Agro-Industrial Food Waste as a Low-Cost Substrate for Sustainable Production of Industrial Enzymes: A Critical Review. Catalysts 2022, 12, 1373. [Google Scholar] [CrossRef]
- Caron, D.A.; Worden, A.Z.; Countway, P.D.; Demir, E.; Heidelberg, K.B. Protists Are Microbes Too: A Perspective. ISME J. 2009, 3, 4–12. [Google Scholar] [CrossRef]
- Ratledge, C. Fatty Acid Biosynthesis in Microorganisms Being Used for Single Cell Oil Production. Biochimie 2004, 86, 807–815. [Google Scholar] [CrossRef]
- Papanikolaou, S.; Aggelis, G. Lipids of Oleaginous Yeasts. Part I: Biochemistry of Single Cell Oil Production. Eur. J. Lipid Sci. Technol. 2011, 113, 807–815. [Google Scholar] [CrossRef]
- Minh, P.N.N.; Trung Le, T.; van Camp, J.; Raes, K. Valorization of Waste and by-Products from the Agrofood Industry Using Fermentation Processes and Enzyme Treatments. In Utilisation of Bioactive Compounds from Agricultural and Food Production Waste; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Doriya, K.; Jose, N.; Gowda, M.; Kumar, D.S. Solid-State Fermentation vs Submerged Fermentation for the Production of L-Asparaginase. Adv. Food Nutr. Res. 2016, 78, 115–135. [Google Scholar]
- Sharma, R.; Oberoi, H.S.; Dhillon, G.S. Fruit and Vegetable Processing Waste: Renewable Feed Stocks for Enzyme Production. In Agro-Industrial Wastes as Feedstock for Enzyme Production: Apply and Exploit the Emerging and Valuable Use Options of Waste Biomass; Academic Press: New York, NY, USA, 2016. [Google Scholar]
- Troiano, D.; Orsat, V.; Dumont, M.J. Solid-State Co-Culture Fermentation of Simulated Food Waste with Filamentous Fungi for Production of Bio-Pigments. Appl. Microbiol. Biotechnol. 2022, 106, 4029–4039. [Google Scholar] [CrossRef]
- Aggelopoulos, T.; Katsieris, K.; Bekatorou, A.; Pandey, A.; Banat, I.M.; Koutinas, A.A. Solid State Fermentation of Food Waste Mixtures for Single Cell Protein, Aroma Volatiles and Fat Production. Food Chem. 2014, 145, 710–716. [Google Scholar] [CrossRef]
- Yazid, N.A.; Barrena, R.; Komilis, D.; Sánchez, A. Solid-State Fermentation as a Novel Paradigm for Organic Waste Valorization: A Review. Sustainability 2017, 9, 224. [Google Scholar] [CrossRef] [Green Version]
- Chandrasekaran, M. Valorization of Food Processing by-Products; CRC Press: Boca Raton, FL, USA, 2012. [Google Scholar]
- Pavlostathis, S.G. Kinetics and Modeling of Anaerobic Treatment and Biotransformation Processes. In Comprehensive Biotechnology, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2011; Volume 6. [Google Scholar]
- Laëtitia, G.; Pascal, D.; Yann, D. The Citrate Metabolism in Homo- and Heterofermentative LAB: A Selective Means of Becoming Dominant over Other Microorganisms in Complex Ecosystems. Food Nutr. Sci. 2014, 05, 953–969. [Google Scholar] [CrossRef] [Green Version]
- Rajpurohit, H.; Eiteman, M.A. Nutrient-Limited Operational Strategies for the Microbial Production of Biochemicals. Microorganisms 2022, 10, 2226. [Google Scholar] [CrossRef] [PubMed]
- Dharma Patria, R.; Rehman, S.; Vuppaladadiyam, A.K.; Wang, H.; Lin, C.S.K.; Antunes, E.; Leu, S.Y. Bioconversion of Food and Lignocellulosic Wastes Employing Sugar Platform: A Review of Enzymatic Hydrolysis and Kinetics. Bioresour. Technol. 2022, 352, 127083. [Google Scholar] [CrossRef] [PubMed]
- Gallego-García, M.; Moreno, A.D.; Manzanares, P.; Negro, M.J.; Duque, A. Recent Advances on Physical Technologies for the Pretreatment of Food Waste and Lignocellulosic Residues. Bioresour. Technol. 2023, 369, 128397. [Google Scholar] [CrossRef] [PubMed]
- Parthiba Karthikeyan, O.; Trably, E.; Mehariya, S.; Bernet, N.; Wong, J.W.C.; Carrere, H. Pretreatment of Food Waste for Methane and Hydrogen Recovery: A Review. Bioresour. Technol. 2018, 249, 1025–1039. [Google Scholar] [CrossRef] [Green Version]
- Fisgativa, M.; Saoudi, M.; Tremier, A. Impact of an aerobic pre-treatment on the anaerobic biodegradability of food waste. In Proceedings of the 6th International Conference on Engineering for Waste and Biomass Valorisation, Albi, Frace, 23 May 2016. [Google Scholar]
- Carrere, H.; Antonopoulou, G.; Affes, R.; Passos, F.; Battimelli, A.; Lyberatos, G.; Ferrer, I. Review of Feedstock Pretreatment Strategies for Improved Anaerobic Digestion: From Lab-Scale Research to Full-Scale Application. Bioresour. Technol. 2016, 199, 386–397. [Google Scholar] [CrossRef]
- Karthikeyan, O.P.; Balasubramanian, R.; Wong, J.W.C. Pretreatment of Organic Solid Substrates for Bioenergy and Biofuel Recovery. In Current Developments in Biotechnology and Bioengineering: Solid Waste Management; Elsevier: Amsterdam, The Netherlands, 2017. [Google Scholar]
- Alino, J.H.L.; Bastos, J.A.; Remor, P.V.; Frare, L.M.; Orssatto, F.; Damaceno, F.M.; Edwiges, T. Alkaline Pretreatment and Pre-Hydrolysis Using Acidic Biowastes to Increase Methane Production from Sugarcane Bagasse. Methane 2022, 1, 189–200. [Google Scholar] [CrossRef]
- Gundupalli, M.P.; Bhattacharyya, D. Recovery of Reducing Sugar from Food Waste: Optimization of Pretreatment Parameters Using Response Surface Methodology. In Biofuels and Bioenergy (BICE2016) International Conference, Bhopal, India, 23–25 February 2016; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Torres-León, C.; Chávez-González, M.L.; Hernández-Almanza, A.; Martínez-Medina, G.A.; Ramírez-Guzmán, N.; Londoño-Hernández, L.; Aguilar, C.N. Recent Advances on the Microbiological and Enzymatic Processing for Conversion of Food Wastes to Valuable Bioproducts. Curr. Opin. Food Sci. 2020, 38, 40–45. [Google Scholar] [CrossRef]
- Radenkovs, V.; Juhnevica-Radenkova, K.; Górnaś, P.; Seglina, D. Non-Waste Technology through the Enzymatic Hydrolysis of Agro-Industrial by-Products. Trends Food Sci. Technol. 2018, 77, 64–76. [Google Scholar] [CrossRef]
- Bilal, M.; Iqbal, H.M.N. Sustainable Bioconversion of Food Waste into High-Value Products by Immobilized Enzymes to Meet Bio-Economy Challenges and Opportunities—A Review. Food Res. Int. 2019, 123, 226–240. [Google Scholar] [CrossRef]
- Mazlan, N.A.; Samad, K.A.; Wan Yussof, H.; Saufi, S.M.; Jahim, J. Xylooligosaccharides from Potential Agricultural Waste: Characterization and Screening on the Enzymatic Hydrolysis Factors. Ind. Crops Prod. 2018, 129, 575–584. [Google Scholar] [CrossRef]
- Balaguer Moya, E.; Cunha, M.L.S.; Prado, C.A.; Turella, S.; da Silva, S.S.; Abou-Hachem, M.; Dragone, G.; dos Santos, J.C.; Mussatto, S.I. Evaluation of Enzymatic Hydrolysis of Sugarcane Bagasse Using Combination of Enzymes or Co-Substrate to Boost Lytic Polysaccharide Monooxygenases Action. Catalysts 2022, 12, 1158. [Google Scholar] [CrossRef]
- Talebnia, F.; Pourbafrani, M.; Lundin, M.; Taherzadeh, M.J. Optimization Study of Citrus Wastes Saccharification by Dilute-Acid Hydrolysis. Bioresources 2008, 3, 108–122. [Google Scholar]
- Souto, L.R.F.; Caliari, M.; Soares Júnior, M.S.; Fiorda, F.A.; Garcia, M.C. Utilization of Residue from Cassava Starch Processing for Production of Fermentable Sugar by Enzymatic Hydrolysis. Food Sci. Technol. 2017, 37, 19–24. [Google Scholar] [CrossRef] [Green Version]
- Hafid, H.S.; Rahman, N.A.; Md Shah, U.K.; Baharudin, A.S. Enhanced Fermentable Sugar Production from Kitchen Waste Using Various Pretreatments. J. Environ. Manag. 2015, 156, 290–298. [Google Scholar] [CrossRef]
- Chew, K.R.; Leong, H.Y.; Khoo, K.S.; Vo, D.V.N.; Anjum, H.; Chang, C.K.; Show, P.L. Effects of Anaerobic Digestion of Food Waste on Biogas Production and Environmental Impacts: A Review. Environ. Chem. Lett. 2021, 19, 2921–2939. [Google Scholar] [CrossRef]
- Pham, T.P.T.; Kaushik, R.; Parshetti, G.K.; Mahmood, R.; Balasubramanian, R. Food Waste-to-Energy Conversion Technologies: Current Status and Future Directions. Waste Manag. 2015, 38, 399–408. [Google Scholar] [CrossRef]
- Hunter, S.M.; Blanco, E.; Borrion, A. Expanding the Anaerobic Digestion Map: A Review of Intermediates in the Digestion of Food Waste. Sci. Total Environ. 2021, 767, 144265. [Google Scholar] [CrossRef]
- Salangsang, M.C.D.; Sekine, M.; Akizuki, S.; Sakai, H.D.; Kurosawa, N.; Toda, T. Effect of Carbon to Nitrogen Ratio of Food Waste and Short Resting Period on Microbial Accumulation during Anaerobic Digestion. Biomass Bioenergy 2022, 162, 106481. [Google Scholar] [CrossRef]
- Xu, F.; Li, Y.; Ge, X.; Yang, L.; Li, Y. Anaerobic Digestion of Food Waste—Challenges and Opportunities. Bioresour. Technol. 2018, 247, 1047–1058. [Google Scholar] [CrossRef]
- Bouallagui, H.; Rachdi, B.; Gannoun, H.; Hamdi, M. Mesophilic and Thermophilic Anaerobic Co-Digestion of Abattoir Wastewater and Fruit and Vegetable Waste in Anaerobic Sequencing Batch Reactors. Biodegradation 2009, 20, 401–409. [Google Scholar] [CrossRef]
- Parawira, W.; Murto, M.; Zvauya, R.; Mattiasson, B. Anaerobic Batch Digestion of Solid Potato Waste Alone and in Combination with Sugar Beet Leaves. Renew. Energy 2004, 29, 1811–1823. [Google Scholar] [CrossRef]
- Srisowmeya, G.; Chakravarthy, M.; Nandhini Devi, G. Critical Considerations in Two-Stage Anaerobic Digestion of Food Waste—A Review. Renew. Sustain. Energy Rev. 2019, 119, 109587. [Google Scholar] [CrossRef]
- Lytras, G.; Lytras, C.; Mathioudakis, D.; Papadopoulou, K.; Lyberatos, G. Food Waste Valorization Based on Anaerobic Digestion. Waste Biomass Valorization 2021, 12, 1677–1697. [Google Scholar] [CrossRef]
- Dalke, R.; Demro, D.; Khalid, Y.; Wu, H.; Urgun-Demirtas, M. Current Status of Anaerobic Digestion of Food Waste in the United States. Renew. Sustain. Energy Rev. 2021, 151, 111554. [Google Scholar] [CrossRef]
- Reddy, M.V.; Chandrasekhar, K.; Mohan, S.V. Influence of Carbohydrates and Proteins Concentration on Fermentative Hydrogen Production Using Canteen Based Waste under Acidophilic Microenvironment. J. Biotechnol. 2011, 155, 387–395. [Google Scholar] [CrossRef]
- Kothari, R.; Singh, D.P.; Tyagi, V.V.; Tyagi, S.K. Fermentative Hydrogen Production—An Alternative Clean Energy Source. Renew. Sustain. Energy Rev. 2012, 16, 2337–2346. [Google Scholar] [CrossRef]
- Zhang, L.; Li, J.; Ban, Q.; He, J.; Jha, A.K. Metabolic Pathways of Hydrogen Production in Fermentative Acidogenic Microflora. J. Microbiol. Biotechnol. 2012, 22, 668–673. [Google Scholar] [CrossRef]
- Chu, C.F.; Xu, K.Q.; Li, Y.Y.; Inamori, Y. Hydrogen and Methane Potential Based on the Nature of Food Waste Materials in a Two-Stage Thermophilic Fermentation Process. Int. J. Hydrog. Energy 2012, 37, 10611–10618. [Google Scholar] [CrossRef]
- Mohan, S.V.; Mohanakrishna, G.; Goud, R.K.; Sarma, P.N. Acidogenic Fermentation of Vegetable Based Market Waste to Harness Biohydrogen with Simultaneous Stabilization. Bioresour. Technol. 2009, 100, 3061–3068. [Google Scholar] [CrossRef]
- Kim, M.S.; Lee, D.Y. Fermentative Hydrogen Production from Tofu-Processing Waste and Anaerobic Digester Sludge Using Microbial Consortium. Proc. Bioresour. Technol. 2010, 101, S48–S52. [Google Scholar] [CrossRef]
- Yasin, N.H.M.; Mumtaz, T.; Hassan, M.A.; Abd Rahman, N. Food Waste and Food Processing Waste for Biohydrogen Production: A Review. J. Environ. Manag. 2013, 130, 375–385. [Google Scholar] [CrossRef]
- Elbeshbishy, E.; Hafez, H.; Dhar, B.R.; Nakhla, G. Single and Combined Effect of Various Pretreatment Methods for Biohydrogen Production from Food Waste. Int. J. Hydrog. Energy 2011, 36, 11379–11387. [Google Scholar] [CrossRef]
- Rena; Zacharia, K.M.B.; Yadav, S.; Machhirake, N.P.; Kim, S.H.; Lee, B.D.; Jeong, H.; Singh, L.; Kumar, S.; Kumar, R. Bio-Hydrogen and Bio-Methane Potential Analysis for Production of Bio-Hythane Using Various Agricultural Residues. Bioresour. Technol. 2020, 309, 123297. [Google Scholar] [CrossRef]
- Meena, R.A.A.; Rajesh Banu, J.; Yukesh Kannah, R.; Yogalakshmi, K.N.; Kumar, G. Biohythane Production from Food Processing Wastes—Challenges and Perspectives. Bioresour. Technol. 2020, 298, 122449. [Google Scholar] [CrossRef]
- Shanmugam, S.; Mathimani, T.; Rene, E.R.; Edwin Geo, V.; Arun, A.; Brindhadevi, K.; Pugazhendhi, A. Biohythane Production from Organic Waste: Recent Advancements, Technical Bottlenecks and Prospects. Int. J. Hydrog. Energy 2021, 46, 11201–11216. [Google Scholar] [CrossRef]
- Anwar Saeed, M.; Ma, H.; Yue, S.; Wang, Q.; Tu, M. Concise Review on Ethanol Production from Food Waste: Development and Sustainability. Environ. Sci. Pollut. Res. 2018, 25, 28851–28863. [Google Scholar] [CrossRef]
- Bibra, M.; Samanta, D.; Sharma, N.K.; Singh, G.; Johnson, G.R.; Sani, R.K. Food Waste to Bioethanol: Opportunities and Challenges. Fermentation 2022, 9, 8. [Google Scholar] [CrossRef]
- Abo, B.O.; Gao, M.; Wu, C.; Zhu, W.; Wang, Q. A Review on Characteristics of Food Waste and Their Use in Butanol Production. Rev. Environ. Health 2019, 34, 447–457. [Google Scholar] [CrossRef]
- Cavaleiro, A.J.; Ferreira, T.; Pereira, F.; Tommaso, G.; Alves, M.M. Biochemical Methane Potential of Raw and pre-Treated Meat-Processing Wastes. Bioresour. Technol. 2012, 129, 519–525. [Google Scholar] [CrossRef] [Green Version]
- Ros, M.; de Souza Oliveira Filho, J.; Perez Murcia, M.D.; Bustamante, M.A.; Moral, R.; Coll, M.D.; Lopez Santisima-Trinidad, A.B.; Pascual, J.A. Mesophilic Anaerobic Digestion of Pig Slurry and Fruit and Vegetable Waste: Dissection of the Microbial Community Structure. J. Clean. Prod. 2017, 156, 757–765. [Google Scholar] [CrossRef]
- Azman, N.F.; Abdeshahian, P.; Kadier, A.; Nasser Al-Shorgani, N.K.; Salih, N.K.M.; Lananan, I.; Hamid, A.A.; Kalil, M.S. Biohydrogen Production from De-Oiled Rice Bran as Sustainable Feedstock in Fermentative Process. Int. J. Hydrog. Energy 2016, 41, 145–156. [Google Scholar] [CrossRef]
- Marone, A.; Massini, G.; Patriarca, C.; Signorini, A.; Varrone, C.; Izzo, G. Hydrogen Production from Vegetable Waste by Bioaugmentation of Indigenous Fermentative Communities. Int. J. Hydrog. Energy 2012, 37, 5612–5622. [Google Scholar] [CrossRef]
- Wang, Y.H.; Li, S.L.; Chen, I.C.; Cheng, S.S. Starch Hydrolysis Characteristics of Hydrogen Producing Sludge in Thermophilic Hydrogen Fermentor Fed with Kitchen Waste. Int. J. Hydrog. Energy 2009, 34, 7435–7440. [Google Scholar] [CrossRef]
- Pinto, M.P.M.; Mudhoo, A.; de Alencar Neves, T.; Berni, M.D.; Forster-Carneiro, T. Co–Digestion of Coffee Residues and Sugarcane Vinasse for Biohythane Generation. J. Environ. Chem. Eng. 2018, 6, 146–155. [Google Scholar] [CrossRef]
- Seengenyoung, J.; Mamimin, C.; Prasertsan, P.; O-Thong, S. Pilot-Scale of Biohythane Production from Palm Oil Mill Effluent by Two-Stage Thermophilic Anaerobic Fermentation. Int. J. Hydrog. Energy 2019, 44, 3347–3355. [Google Scholar] [CrossRef]
- Hossain, A.B.M.S.; Fazliny, A.R. Creation of Alternative Energy by Bio-Ethanol Production from Pineapple Waste and the Usage of Its Properties for Engine. Afr. J. Microbiol. Res. 2010, 4, 813–819. [Google Scholar]
- Chandel, A.K.; Narasu, M.L.; Rudravaram, R.; Pogaku, R.; Rao, L.V. Bioconversion of De-Oiled Rice Bran (DORB) Hemicellulosic Hydrolysate into Ethanol by Pichia Stipitis NCM3499 under Optimized Conditions. Int. J. Food Eng. 2009, 5, 1. [Google Scholar] [CrossRef]
- Ma, K.; Ruan, Z.; Shui, Z.; Wang, Y.; Hu, G.; He, M. Open Fermentative Production of Fuel Ethanol from Food Waste by an Acid-Tolerant Mutant Strain of Zymomonas Mobilis. Bioresour. Technol. 2016, 203, 295–302. [Google Scholar] [CrossRef]
- Al-Shorgani, N.K.N.; Kalil, M.S.; Yusoff, W.M.W. Biobutanol Production from Rice Bran and De-Oiled Rice Bran by Clostridium Saccharoperbutylacetonicum N1-4. Bioprocess Biosyst. Eng. 2012, 35, 817–826. [Google Scholar] [CrossRef]
- Yu, J.; Huang, Z.; Wu, P.; Zhao, M.; Miao, H.; Liu, C.; Ruan, W. Performance and Microbial Characterization of Two-Stage Caproate Fermentation from Fruit and Vegetable Waste via Anaerobic Microbial Consortia. Bioresour. Technol. 2019, 284, 398–405. [Google Scholar] [CrossRef]
- Poe, N.E.; Yu, D.; Jin, Q.; Ponder, M.A.; Stewart, A.C.; Ogejo, J.A.; Wang, H.; Huang, H. Compositional Variability of Food Wastes and Its Effects on Acetone-Butanol-Ethanol Fermentation. Waste Manag. 2020, 107, 150–158. [Google Scholar] [CrossRef]
- Zhang, C.; Li, T.; Su, G.; He, J. Enhanced Direct Fermentation from Food Waste to Butanol and Hydrogen by an Amylolytic Clostridium. Renew. Energy 2020, 153, 522–529. [Google Scholar] [CrossRef]
- Jin, Q.; An, Z.; Damle, A.; Poe, N.; Wu, J.; Wang, H.; Wang, Z.; Huang, H. High Acetone-Butanol-Ethanol Production from Food Waste by Recombinant Clostridium Saccharoperbutylacetonicum in Batch and Continuous Immobilized-Cell Fermentation. ACS Sustain. Chem. Eng. 2020, 8, 9822–9832. [Google Scholar] [CrossRef]
- Magyar, M.; da Costa Sousa, L.; Jayanthi, S.; Balan, V. Pie Waste—A Component of Food Waste and a Renewable Substrate for Producing Ethanol. Waste Manag. 2017, 62, 247–254. [Google Scholar] [CrossRef]
- He, M.X.; Wu, B.; Qin, H.; Ruan, Z.Y.; Tan, F.R.; Wang, J.L.; Shui, Z.X.; Dai, L.C.; Zhu, Q.L.; Pan, K.; et al. Zymomonas Mobilis: A Novel Platform for Future Biorefineries. Biotechnol. Biofuels 2014, 7, 101. [Google Scholar] [CrossRef] [Green Version]
- Ntaikou, I.; Menis, N.; Alexandropoulou, M.; Antonopoulou, G.; Lyberatos, G. Valorization of Kitchen Biowaste for Ethanol Production via Simultaneous Saccharification and Fermentation Using Co-Cultures of the Yeasts Saccharomyces Cerevisiae and Pichia Stipitis. Bioresour. Technol. 2018, 263, 75–83. [Google Scholar] [CrossRef]
- Ranganathan, S.; Dutta, S.; Moses, J.A.; Anandharamakrishnan, C. Utilization of Food Waste Streams for the Production of Biopolymers. Heliyon 2020, 6, e04891. [Google Scholar] [CrossRef]
- Mohanty, S.S.; Koul, Y.; Varjani, S.; Pandey, A.; Ngo, H.H.; Chang, J.S.; Wong, J.W.C.; Bui, X.T. A Critical Review on Various Feedstocks as Sustainable Substrates for Biosurfactants Production: A Way towards Cleaner Production. Microb. Cell Fact. 2021, 20, 120. [Google Scholar] [CrossRef]
- Sarubbo, L.A.; da Silva, M.G.C.; Durval, I.J.B.; Bezerra, K.G.O.; Ribeiro, B.G.; Silva, I.A.; Twigg, M.S.; Banat, I.M. Biosurfactants: Production, Properties, Applications, Trends, and General Perspectives. Biochem. Eng. J. 2022, 181, 108377. [Google Scholar] [CrossRef]
- Chakrapani, G.; Zare, M.; Ramakrishna, S. Biomaterials from the Value-Added Food Wastes. Bioresour. Technol. Rep. 2022, 19, 101181. [Google Scholar] [CrossRef]
- McAdam, B.; Fournet, M.B.; McDonald, P.; Mojicevic, M. Production of Polyhydroxybutyrate (PHB) and Factors Impacting Its Chemical and Mechanical Characteristics. Polymers 2020, 12, 2908. [Google Scholar] [CrossRef] [PubMed]
- Postemsky, P.D.; Bidegain, M.A.; Lluberas, G.; Lopretti, M.I.; Bonifacino, S.; Inés Landache, M.; Zygadlo, J.A.; Fernández-Lahore, M.; Omarini, A.B. Biorefining via Solid-State Fermentation of Rice and Sunflower by-Products Employing Novel Monosporic Strains from Pleurotus Sapidus. Bioresour. Technol. 2019, 289, 121692. [Google Scholar] [CrossRef] [PubMed]
- Amorim, C.; Silvério, S.C.; Rodrigues, L.R. One-Step Process for Producing Prebiotic Arabino-Xylooligosaccharides from Brewer’s Spent Grain Employing Trichoderma Species. Food Chem. 2019, 270, 86–94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, K.; Tang, B.; Wang, Q.; Xu, Z.; Sun, L.; Ma, J.; Li, S.; Xu, H.; Lei, P. The Bio-Processing of Soybean Dregs by Solid State Fermentation Using a Poly Γ-Glutamic Acid Producing Strain and Its Effect as Feed Additive. Bioresour. Technol. 2019, 291, 121841. [Google Scholar] [CrossRef] [PubMed]
- Vidhyalakshmi, R.; Vallinachiyar, C.; Radhika, R. Production of Xanthan from Agro-Industrial Waste. J. Adv. Sci. Res. 2012, 3, 56–59. [Google Scholar]
- Pais, J.; Serafim, L.S.; Freitas, F.; Reis, M.A.M. Conversion of Cheese Whey into Poly(3-Hydroxybutyrate-Co-3-Hydroxyvalerate) by Haloferax Mediterranei. New Biotechnol. 2016, 33, 224–230. [Google Scholar] [CrossRef]
- Nikel, P.I.; Pettinari, M.J.; Méndez, B.S.; Galvagno, M.A. Statistical Optimization of a Culture Medium for Biomass and Poly(3-Hydroxybutyrate) Production by a Recombinant Escherichia Coli Strain Using Agroindustrial Byproducts. Int. Microbiol. 2005, 8, 243–250. [Google Scholar]
- Drioli, E.; Giorno, L. Membrane Contactors and Integrated Membrane Operations. In Comprehensive Membrane Science and Engineering; Academic Press: New York, NY, USA, 2010; Volume 4. [Google Scholar]
- Merrylin, J.; Kannah, R.Y.; Banu, J.R.; Yeom, I.T. Production of Organic Acids and Enzymes/Biocatalysts from Food Waste. In Food Waste to Valuable Resources: Applications and Management; Elsevier: Amsterdam, The Netherlands, 2020. [Google Scholar]
- Wang, S.; Xu, C.; Song, L.; Zhang, J. Anaerobic Digestion of Food Waste and Its Microbial Consortia: A Historical Review and Future Perspectives. Int. J. Environ. Res. Public Health 2022, 19, 9519. [Google Scholar] [CrossRef]
- Ghaffar, T.; Irshad, M.; Anwar, Z.; Aqil, T.; Zulifqar, Z.; Tariq, A.; Kamran, M.; Ehsan, N.; Mehmood, S. Recent Trends in Lactic Acid Biotechnology: A Brief Review on Production to Purification. J. Radiat. Res. Appl. Sci. 2014, 7, 222–229. [Google Scholar] [CrossRef]
- Montipó, S.; Ballesteros, I.; Fontana, R.C.; Liu, S.; Ballesteros, M.; Martins, A.F.; Camassola, M. Bioprocessing of Rice Husk into Monosaccharides and the Fermentative Production of Bioethanol and Lactate. Cellulose 2019, 26, 7309–7322. [Google Scholar] [CrossRef]
- Pejin, J.; Radosavljević, M.; Kocić-Tanackov, S.; Marković, R.; Djukić-Vuković, A.; Mojović, L. Use of Spent Brewer’s Yeast in L-(+) Lactic Acid Fermentation. J. Inst. Brew. 2019, 125, 357–363. [Google Scholar] [CrossRef]
- Mladenović, D.; Pejin, J.; Kocić-Tanackov, S.; Djukić-Vuković, A.; Mojović, L. Enhanced Lactic Acid Production by Adaptive Evolution of Lactobacillus Paracasei on Agro-Industrial Substrate. Appl. Biochem. Biotechnol. 2019, 187, 753–769. [Google Scholar] [CrossRef]
- Alexandri, M.; Neu, A.K.; Schneider, R.; López-Gómez, J.P.; Venus, J. Evaluation of Various Bacillus Coagulans Isolates for the Production of High Purity L-Lactic Acid Using Defatted Rice Bran Hydrolysates. Int. J. Food Sci. Technol. 2019, 54, 1321–1329. [Google Scholar] [CrossRef]
- Wang, X.Q.; Wang, Q.H.; Ma, H.Z.; Yin, W. Lactic Acid Fermentation of Food Waste Using Integrated Glucoamylase Production. J. Chem. Technol. Biotechnol. 2009, 84, 139–143. [Google Scholar] [CrossRef]
- Sarris, D.; Rapti, A.; Papafotis, N.; Koutinas, A.A.; Papanikolaou, S. Production of Added-Value Chemical Compounds through Bioconversions of Olive-Mill Wastewaters Blended with Crude Glycerol by a Yarrowia Lipolytica Strain. Molecules 2019, 24, 222. [Google Scholar] [CrossRef] [Green Version]
- Ali, S.R.; Anwar, Z.; Irshad, M.; Mukhtar, S.; Warraich, N.T. Bio-Synthesis of Citric Acid from Single and Co-Culture-Based Fermentation Technology Using Agro-Wastes. J. Radiat. Res. Appl. Sci. 2016, 9, 57–62. [Google Scholar] [CrossRef] [Green Version]
- Esteban-Gutiérrez, M.; Garcia-Aguirre, J.; Irizar, I.; Aymerich, E. From Sewage Sludge and Agri-Food Waste to VFA: Individual Acid Production Potential and up-Scaling. Waste Manag. 2018, 77, 203–212. [Google Scholar] [CrossRef]
- Sun, Z.; Li, M.; Qi, Q.; Gao, C.; Lin, C.S.K. Mixed Food Waste as Renewable Feedstock in Succinic Acid Fermentation. Appl. Biochem. Biotechnol. 2014, 174, 1822–1833. [Google Scholar] [CrossRef]
- Leung, C.C.J.; Cheung, A.S.Y.; Zhang, A.Y.Z.; Lam, K.F.; Lin, C.S.K. Utilisation of Waste Bread for Fermentative Succinic Acid Production. Biochem. Eng. J. 2012, 65, 10–15. [Google Scholar] [CrossRef]
- Das, R.K.; Brar, S.K.; Verma, M. A Fermentative Approach towards Optimizing Directed Biosynthesis of Fumaric Acid by Rhizopus Oryzae 1526 Utilizing Apple Industry Waste Biomass. Fungal. Biol. 2015, 119, 1279–1290. [Google Scholar] [CrossRef]
- Fan, T.; Liu, X.; Zhao, R.; Zhang, Y.; Liu, H.; Wang, Z.; Wang, F.; Nie, K.; Deng, L. Hydrolysis of Food Waste by Hot Water Extraction and Subsequent Rhizopus Fermentation to Fumaric Acid. J. Environ. Manag. 2020, 270, 110954. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Ma, J.; Wang, M.; Wang, W.; Deng, L.; Nie, K.; Yue, X.; Wang, F.; Tan, T. Food Waste Fermentation to Fumaric Acid by Rhizopus Arrhizus RH7-13. Appl. Biochem. Biotechnol. 2016, 180, 1524–1533. [Google Scholar] [CrossRef] [PubMed]
- Swain, M.R.; Ray, R.C. Optimization of Cultural Conditions and Their Statistical Interpretation for Production of Indole-3-Acetic Acid by Bacillus Subtilis CM5 Using Cassava Fibrous Residue. J. Sci. Ind. Res. 2008, 97, 622–628. [Google Scholar]
- Fan, Y.; Yu, K.; Zheng, H.; Chen, Y.; Zhao, R.; Li, Y.; Zheng, Z. A High-Yielding Strain of Indole-3-Acetic Acid Isolated from Food Waste Compost: Metabolic Pathways, Optimization of Fermentation Conditions, and Application. Environ. Technol. 2022, 1, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Cho, K.M.; Hong, S.Y.; Math, R.K.; Lee, J.H.; Kambiranda, D.M.; Kim, J.M.; Islam, S.M.A.; Yun, M.G.; Cho, J.J.; Lim, W.J.; et al. Biotransformation of Phenolics (Isoflavones, Flavanols and Phenolic Acids) during the Fermentation of Cheonggukjang by Bacillus Pumilus HY1. Food Chem. 2009, 114, 413–419. [Google Scholar] [CrossRef]
- Costa, T.M.; Kaufmann, V.; Paganelli, C.J.; Siebert, D.A.; Micke, G.A.; Alberton, M.D.; Tavares, L.B.B.; de Oliveira, D. Kinetic Identification of Phenolic Compounds and Potential Production of Caffeic Acid by Ganoderma Lipsiense in Solid-State Fermentation. Bioprocess Biosyst. Eng. 2019, 42, 1325–1332. [Google Scholar] [CrossRef]
- Puupponen-Pimiä, R.; Nohynek, L.; Juvonen, R.; Kössö, T.; Truchado, P.; Westerlund-Wikström, B.; Leppänen, T.; Moilanen, E.; Oksman-Caldentey, K.M. Fermentation and Dry Fractionation Increase Bioactivity of Cloudberry (Rubus chamaemorus). Food Chem. 2016, 197, 950–958. [Google Scholar] [CrossRef]
- Kim, J.; Kim, Y.-M.; Lebaka, V.R.; Wee, Y.-J. Lactic Acid for Green Chemical Industry: Recent Advances in and Future Prospects for Production Technology, Recovery, and Applications. Fermentation 2022, 8, 609. [Google Scholar] [CrossRef]
- Matsakas, L.; Hrůzová, K.; Rova, U.; Christakopoulos, P. Biological Production of 3-Hydroxypropionic Acid: An Update on the Current Status. Fermentation 2018, 4, 13. [Google Scholar] [CrossRef] [Green Version]
- Jers, C.; Kalantari, A.; Garg, A.; Mijakovic, I. Production of 3-Hydroxypropanoic Acid from Glycerol by Metabolically Engineered Bacteria. Front. Bioeng. Biotechnol. 2019, 7, 124. [Google Scholar] [CrossRef] [Green Version]
- Longo, M.A.; Sanromán, M.A. Production of Food Aroma Compounds: Microbial and Enzymatic Methodologies. Food Technol. Biotechnol. 2006, 44, 335–353. [Google Scholar] [CrossRef]
- Boccia, F.; Covino, D.; Sarnacchiaro, P. Genetically Modified Food versus Knowledge and Fear: A Noumenic Approach for Consumer Behaviour. Food Res. Int. 2018, 111, 682–688. [Google Scholar] [CrossRef]
- De Felipe, L.O.; de Oliveira, A.M.; Bicas, J.L. Bioaromas—Perspectives for Sustainable Development. Trends Food Sci. Technol. 2017, 62, 141–153. [Google Scholar] [CrossRef]
- Sales, A.; Paulino, B.N.; Pastore, G.M.; Bicas, J.L. Biogeneration of Aroma Compounds. Curr. Opin. Food Sci. 2018, 19, 77–84. [Google Scholar] [CrossRef]
- Ben Akacha, N.; Gargouri, M. Microbial and Enzymatic Technologies Used for the Production of Natural Aroma Compounds: Synthesis, Recovery Modeling, and Bioprocesses. Food Bioprod. Process. 2015, 94, 675–706. [Google Scholar] [CrossRef]
- Carroll, A.L.; Desai, S.H.; Atsumi, S. Microbial Production of Scent and Flavor Compounds. Curr. Opin. Biotechnol. 2016, 37, 8–15. [Google Scholar] [CrossRef]
- Zelena, K.; Krings, U.; Berger, R.G. Functional Expression of a Valencene Dioxygenase from Pleurotus Sapidus in E. Coli. Bioresour. Technol. 2012, 108, 231–239. [Google Scholar] [CrossRef]
- Christen, P.; Bramorski, A.; Revah, S.; Soccol, C.R. Characterization of Volatile Compounds Produced by Rhizopus Strains Grown on Agro-Industrial Solid Wastes. Bioresour. Technol. 2000, 71, 211–215. [Google Scholar] [CrossRef]
- Rossi, S.C.; Vandenberghe, L.P.S.; Pereira, B.M.P.; Gago, F.D.; Rizzolo, J.A.; Pandey, A.; Soccol, C.R.; Medeiros, A.B.P. Improving Fruity Aroma Production by Fungi in SSF Using Citric Pulp. Food Res. Int. 2009, 42, 484–486. [Google Scholar] [CrossRef]
- Zheng, L.; Zheng, P.; Sun, Z.; Bai, Y.; Wang, J.; Guo, X. Production of Vanillin from Waste Residue of Rice Bran Oil by Aspergillus Niger and Pycnoporus Cinnabarinus. Bioresour. Technol. 2007, 98, 1115–1119. [Google Scholar] [CrossRef]
- Martínez-Avila, O.; Sánchez, A.; Font, X.; Barrena, R. 2-Phenylethanol (Rose Aroma) Production Potential of an Isolated Pichia Kudriavzevii through Solid-State Fermentation. Process. Biochem. 2020, 93, 94–103. [Google Scholar] [CrossRef]
- Christen, P.; Meza, J.C.; Revah, S. Fruity Aroma Production in Solid State Fermentation by Ceratocystis Fimbriata: Influence of the Substrate Type and the Presence of Precursors. Mycol. Res. 1997, 101, 911–919. [Google Scholar] [CrossRef]
- Medeiros, A.B.P.; Pandey, A.; Vandenberghe, L.P.S.; Pastore, G.M.; Soccol, C.R. Production and Recovery of Aroma Compounds Produced by Solid-State Fermentation Using Different Adsorbents. Food Technol. Biotechnol. 2006, 44, 47–51. [Google Scholar]
- Mantzouridou, F.T.; Paraskevopoulou, A.; Lalou, S. Yeast Flavour Production by Solid State Fermentation of Orange Peel Waste. Biochem. Eng. J. 2015, 101, 1–8. [Google Scholar] [CrossRef]
- Fadel, H.H.M.; Mahmoud, M.G.; Asker, M.M.S.; Lotfy, S.N. Characterization and Evaluation of Coconut Aroma Produced by Trichoderma Viride EMCC-107 in Solid State Fermentation on Sugarcane Bagasse. Electron. J. Biotechnol. 2015, 18, 5–9. [Google Scholar] [CrossRef] [Green Version]
- Hadj Saadoun, J.; Bertani, G.; Levante, A.; Vezzosi, F.; Ricci, A.; Bernini, V.; Lazzi, C. Fermentation of Agri-Food Waste: A Promising Route for the Production of Aroma Compounds. Foods 2021, 10, 707. [Google Scholar] [CrossRef]
- Soares, M.; Christen, P.; Pandey, A.; Soccol, C.R. Fruity Flavour Production by Ceratocystis Fimbriata Grown on Coffee Husk in Solid-State Fermentation. Process. Biochem. 2000, 35, 857–861. [Google Scholar] [CrossRef]
- John, W.A.; Böttcher, N.L.; Behrends, B.; Corno, M.; D’souza, R.N.; Kuhnert, N.; Ullrich, M.S. Experimentally Modelling Cocoa Bean Fermentation Reveals Key Factors and Their Influences. Food Chem. 2020, 302, 125335. [Google Scholar] [CrossRef]
- Lavefve, L.; Marasini, D.; Carbonero, F. Microbial Ecology of Fermented Vegetables and Non-Alcoholic Drinks and Current Knowledge on Their Impact on Human Health. Adv. Food Nutr. Res. 2019, 87, 147–185. [Google Scholar] [CrossRef]
- Glibowski, P.; Skrzypczak, K. Microbial Production of Food Ingredients and Additives. Sciencedirect 2017, 5. [Google Scholar]
- Wang, Z.P.; Wang, Q.Q.; Liu, S.; Liu, X.F.; Yu, X.J.; Jiang, Y.L. Efficient Conversion of Cane Molasses Towards High-Purity Isomaltulose and Cellular Lipid Using an Engineered Yarrowia Lipolytica Strain in Fed-Batch Fermentation. Molecules 2019, 24, 1228. [Google Scholar] [CrossRef] [Green Version]
- Park, Y.C.; Oh, E.J.; Jo, J.H.; Jin, Y.S.; Seo, J.H. Recent Advances in Biological Production of Sugar Alcohols. Curr. Opin. Biotechnol. 2016, 37, 105–113. [Google Scholar] [CrossRef]
- Acosta-Estrada, B.A.; Villela-Castrejón, J.; Perez-Carrillo, E.; Gómez-Sánchez, C.E.; Gutiérrez-Uribe, J.A. Effects of Solid-State Fungi Fermentation on Phenolic Content, Antioxidant Properties and Fiber Composition of Lime Cooked Maize by-Product (Nejayote). J. Cereal. Sci. 2019, 90, 102837. [Google Scholar] [CrossRef]
- Muñiz-Márquez, D.B.; Teixeira, J.A.; Mussatto, S.I.; Contreras-Esquivel, J.C.; Rodríguez-Herrera, R.; Aguilar, C.N. Fructo-Oligosaccharides (FOS) Production by Fungal Submerged Culture Using Aguamiel as a Low-Cost by-Product. LWT 2019, 102, 75–79. [Google Scholar] [CrossRef] [Green Version]
- Ng, C.W.C.; Ismail, A.F.; Makhtar, M.M.Z.; Jamaluddin, M.N.F.; Tajarudin, H.A. Conversion of Food Waste via Two-Stage Fermentation to Controllable Chicken Feed Nutrients by Local Isolated Microorganism. Int. J. Recycl. Org. Waste Agric. 2020, 9, 33–47. [Google Scholar] [CrossRef]
- Tropea, A.; Ferracane, A.; Albergamo, A.; Potortì, A.G.; Turco, V.L.; di Bella, G. Single Cell Protein Production through Multi Food-Waste Substrate Fermentation. Fermentation 2022, 8, 91. [Google Scholar] [CrossRef]
- Kosakai, T.; Kato, H.; Sho, C.; Kawano, K.; Iwai, K.I.; Takase, Y.; Ogawa, K.; Nishiyama, K.; Yamasaki, M. Dietary Fermented Products Using Koji Mold and Sweet Potato-Shochu Distillery by-Product Promotes Hepatic and Serum Cholesterol Levels and Modulates Gut Microbiota in Mice Fed a High-Cholesterol Diet. PeerJ 2019, 7, e7671. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.K.; Wang, X.; Tian, Y.T.; Cui, Y.H. Nutrient Recovery from Tofu Whey Wastewater for the Economical Production of Docosahexaenoic Acid by Schizochytrium Sp. S31. Sci. Total Environ. 2020, 710, 136448. [Google Scholar] [CrossRef]
- Watanabe, K.; Arafiles, K.H.V.; Higashi, R.; Okamura, Y.; Tajima, T.; Matsumura, Y.; Nakashimada, Y.; Matsuyama, K.; Aki, T. Isolation of High Carotenoid-Producing Aurantiochytrium Sp. Mutants and Improvement of Astaxanthin Productivity Using Metabolic Information. J. Oleo Sci. 2018, 67, 571–578. [Google Scholar] [CrossRef] [Green Version]
- Van Beilen, J.B.; Li, Z. Enzyme Technology: An Overview. Curr. Opin. Biotechnol. 2002, 13, 338–344. [Google Scholar] [CrossRef]
- El-Gendi, H.; Saleh, A.K.; Badierah, R.; Redwan, E.M.; El-Maradny, Y.A.; El-Fakharany, E.M. A Comprehensive Insight into Fungal Enzymes: Structure, Classification, and Their Role in Mankind’s Challenges. J. Fungi 2022, 8, 23. [Google Scholar] [CrossRef] [PubMed]
- Arnau, J.; Yaver, D.; Hjort, C.M. Strategies and Challenges for the Development of Industrial Enzymes Using Fungal Cell Factories. In Grand Challenges in Biology and Biotechnology; Springer: Cham, Switzerland, 2020. [Google Scholar]
- Steudler, S.; Werner, A.; Walther, T. It Is the Mix That Matters: Substrate-Specific Enzyme Production from Filamentous Fungi and Bacteria Through Solid-State Fermentation. Adv. Biochem. Eng./Biotechnol. 2019, 169, 51–81. [Google Scholar] [CrossRef] [PubMed]
- Solarte-Toro, J.C.; Romero-García, J.M.; Susmozas, A.; Ruiz, E.; Castro, E.; Cardona-Alzate, C.A. Techno-Economic Feasibility of Bioethanol Production via Biorefinery of Olive Tree Prunings (OTP): Optimization of the Pretreatment Stage. Holzforschung 2019, 73, 3–13. [Google Scholar] [CrossRef]
- Grønfeldt, M.Z. Process for Production of an Enzyme Product. 13/140279. 2009. [Google Scholar]
- Godoy, M.G.; Gutarra, M.L.E.; Castro, A.M.; MacHado, O.L.T.; Freire, D.M.G. Adding Value to a Toxic Residue from the Biodiesel Industry: Production of Two Distinct Pool of Lipases from Penicillium Simplicissimum in Castor Bean Waste. J. Ind. Microbiol. Biotechnol. 2011, 38, 945–953. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Gupta, V.; Khan, M.; Balda, S.; Gupta, N.; Capalash, N.; Sharma, P. Flavonoid-Rich Agro-Industrial Residues for Enhanced Bacterial Laccase Production by Submerged and Solid-State Fermentation. 3 Biotech. 2017, 7, 1–8. [Google Scholar] [CrossRef]
- Vijayaraghavan, P.; Vincent, S.G.P.; Arasu, M.V.; Al-Dhabi, N.A. Bioconversion of Agro-Industrial Wastes for the Production of Fibrinolytic Enzyme from Bacillus Halodurans IND18: Purification and Biochemical Characterization. Electron. J. Biotechnol. 2016, 20, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Pili, J.; Danielli, A.; Nyari, N.L.D.; Zeni, J.; Cansian, R.L.; Backes, G.T.; Valduga, E. Biotechnological Potential of Agro-Industrial Waste in the Synthesis of Pectin Lyase from Aspergillus Brasiliensis. Food Sci. Technol. Int. 2017, 24, 97–109. [Google Scholar] [CrossRef]
- Ali, S.S.; Vidhale, N.N. Protease Production by Fusarium Oxysporum in SolidState Fermentation Using Rice Bran. Am. J. Microbiol. Res. 2013, 3, 45–47. [Google Scholar]
- Maldonado, M.C.; Strasser De Saad, A.M. Production of Pectinesterase and Polygalacturonase by Aspergillus Niger in Submerged and Solid State Systems. J. Ind. Microbiol. Biotechnol. 1998, 20, 34–38. [Google Scholar] [CrossRef]
- Unakal, C.; Kallur, R.I.; Kaliwal, B.B. Production of $alpha$-Amylase Using Banana Waste by Bacillus Subtilis under Solid State Fermentation Production of α-Amylase Using Banana Waste by Bacillus Subtilis under Solid State Fermentation. Eur. J. Exp. Biol. 2012, 2, 1044–1052. [Google Scholar]
- Rathnan, R.K.; Ambili, M. Cellulase Enzyme Production by Streptomyces Sp Using Fruit Waste as Substrate. Aust. J. Basic Appl. Sci. 2011, 5, 1114–1118. [Google Scholar]
- Botella, C.; de Ory, I.; Webb, C.; Cantero, D.; Blandino, A. Hydrolytic Enzyme Production by Aspergillus Awamori on Grape Pomace. Biochem. Eng. J. 2005, 26, 100–106. [Google Scholar] [CrossRef]
- Silva, D.; da Silva Martins, E.; da Silva, R.; Gomes, E. Pectinase Production by Penicillium Viridicatum Rfc3 by Solid State Fermentation Using Agricultural Wastes and Agro-Industrial by-Products. Braz. J. Microbiol. 2002, 33, 318–324. [Google Scholar] [CrossRef] [Green Version]
- Biz, A.; Finkler, A.T.J.; Pitol, L.O.; Medina, B.S.; Krieger, N.; Mitchell, D.A. Production of Pectinases by Solid-State Fermentation of a Mixture of Citrus Waste and Sugarcane Bagasse in a Pilot-Scale Packed-Bed Bioreactor. Biochem. Eng. J. 2016, 111, 54–62. [Google Scholar] [CrossRef]
- Paranthaman, R.; Vidyalakshmi, R. Effects of Fungal Co-Culture for the Biosynthesis of Tannase and Gallic Acid from Grape Wastes under Solid State Fermentation. Glob. J. Biotechnol. 2009, 4, 29–36. [Google Scholar]
- Nagarajan, S.; Jones, R.J.; Oram, L.; Massanet-Nicolau, J.; Guwy, A. Intensification of Acidogenic Fermentation for the Production of Biohydrogen and Volatile Fatty Acids—A Perspective. Fermentation 2022, 8, 325. [Google Scholar] [CrossRef]
- Chalima, A.; Oliver, L.; de Castro, L.F.; Karnaouri, A.; Dietrich, T.; Topakas, E. Utilization of Volatile Fatty Acids from Microalgae for the Production of High Added Value Compounds. Fermentation 2017, 3, 54. [Google Scholar] [CrossRef] [Green Version]
- Vázquez-Fernández, A.; Suárez-Ojeda, M.E.; Carrera, J. Review about Bioproduction of Volatile Fatty Acids from Wastes and Wastewaters: Influence of Operating Conditions and Organic Composition of the Substrate. J. Environ. Chem. Eng. 2022, 10, 107917. [Google Scholar] [CrossRef]
- Jiang, J.; Zhang, Y.; Li, K.; Wang, Q.; Gong, C.; Li, M. Volatile Fatty Acids Production from Food Waste: Effects of PH, Temperature, and Organic Loading Rate. Bioresour. Technol. 2013, 143, 525–530. [Google Scholar] [CrossRef]
- Couto, S.R.; Sanromán, M.Á. Application of Solid-State Fermentation to Food Industry—A Review. J. Food Eng. 2006, 76, 291–302. [Google Scholar] [CrossRef]
- Abd Razak, D.L.; Abd Rashid, N.Y.; Jamaluddin, A.; Sharifudin, S.A.; Abd Kahar, A.; Long, K. Cosmeceutical Potentials and Bioactive Compounds of Rice Bran Fermented with Single and Mix Culture of Aspergillus Oryzae and Rhizopus Oryzae. J. Saudi Soc. Agric. Sci. 2017, 16, 127–134. [Google Scholar] [CrossRef] [Green Version]
- Liu, N.; Wang, Y.; An, X.; Qi, J. Study on the Enhancement of Antioxidant Properties of Rice Bran Using Mixed-Bacteria Solid-State Fermentation. Fermentation 2022, 8, 212. [Google Scholar] [CrossRef]
- Tišma, M.; Tadić, T.; Budžaki, S.; Ostojčić, M.; Šalić, A.; Zelić, B.; Tran, N.N.; Ngothai, Y.; Hessel, V. Lipase Production by Solid-State Cultivation of Thermomyces Lanuginosus on by-Products from Cold-Pressing Oil Production. Processes 2019, 7, 465. [Google Scholar] [CrossRef] [Green Version]
- Németh, Á.; Kaleta, Z. Complex Utilization of Dairy Waste (Whey) in Biorefinery. WSEAS Trans. Environ. Dev. 2015, 11, 80–88. [Google Scholar]
- Vastrad, B.M.; Neelagund, S.E. Optimization of Process Parameters for Rifamycin B Production Under Solid State Fermentation from Amycolatopsis Mediterranean Mtcc 14. Int. J. Curr. Pharm Res. 2012, 4, 101–108. [Google Scholar]
- Vastrad, B.M.; Neelagund, S.E. Optimization and Production of Neomycin from Different Agro Industrial Wastes in Solid State Fermentation. Int. J. Pharm. Sci. Drug Res. 2011, 3, 104–111. [Google Scholar]
- Dursun, D.; Dalgiç, A.C. Optimization of Astaxanthin Pigment Bioprocessing by Four Different Yeast Species Using Wheat Wastes. Biocatal. Agric. Biotechnol. 2016, 7, 1–6. [Google Scholar] [CrossRef]
- Klaic, R.; Sallet, D.; Foletto, E.L.; Jacques, R.J.S.; Guedes, J.V.C.; Kuhn, R.C.; Mazutti, M.A. Optimization of Solid-State Fermentation for Bioherbicide Production by Phoma sp. Braz. J. Chem. Eng. 2017, 34, 377–384. [Google Scholar] [CrossRef] [Green Version]
- Rane, A.N.; Baikar, V.V.; Ravi Kumar, D.V.; Deopurkar, R.L. Agro-Industrial Wastes for Production of Biosurfactant by Bacillus Subtilis ANR 88 and Its Application in Synthesis of Silver and Gold Nanoparticles. Front. Microbiol. 2017, 8, 492. [Google Scholar] [CrossRef] [Green Version]
- Banat, I.M.; Carboué, Q.; Saucedo-Castañeda, G.; de Jesús Cázares-Marinero, J. Biosurfactants: The Green Generation of Speciality Chemicals and Potential Production Using Solid-State Fermentation (SSF) Technology. Bioresour. Technol. 2021, 320, 124222. [Google Scholar] [CrossRef]
- Lang, S.; Wullbrandt, D. Rhamnose Lipids—Biosynthesis, Microbial Production and Application Potential. Appl. Microbiol. Biotechnol. 1999, 51, 22–32. [Google Scholar] [CrossRef]
- Santos, D.K.F.; Rufino, R.D.; Luna, J.M.; Santos, V.A.; Sarubbo, L.A. Biosurfactants: Multifunctional Biomolecules of the 21st Century. Int. J. Mol. Sci. 2016, 17, 401. [Google Scholar] [CrossRef] [Green Version]
- Henkel, M.; Müller, M.M.; Kügler, J.H.; Lovaglio, R.B.; Contiero, J.; Syldatk, C.; Hausmann, R. Rhamnolipids as Biosurfactants from Renewable Resources: Concepts for next-Generation Rhamnolipid Production. Process Biochem. 2012, 47, 1207–1219. [Google Scholar] [CrossRef]
- Lee, J.; Chen, W.-H.; Park, Y.-K. Recent Achievements in Platform Chemical Production from Food Waste. Bioresour. Technol. 2022, 366, 128204. [Google Scholar] [CrossRef]
- Trivedi, J.; Bhonsle, A.K.; Atray, N. Processing food waste for the production of platform chemicals. In Refining Biomass Residues for Sustainable Energy and Bioproducts: Technology, Advances, Life Cycle Assessment, and Economics; Academic Press: Cambridge, MA, USA, 2019. [Google Scholar] [CrossRef]
- Kover, A.; Kraljić, D.; Marinaro, R.; Rene, E.R. Processes for the Valorization of Food and Agricultural Wastes to Value-Added Products: Recent Practices and Perspectives. Syst. Microbiol. Biomanufacturing 2022, 2, 50–66. [Google Scholar] [CrossRef]
- Peinemann, J.C.; Demichelis, F.; Fiore, S.; Pleissner, D. Techno-Economic Assessment of Non-Sterile Batch and Continuous Production of Lactic Acid from Food Waste. Bioresour. Technol. 2019, 289, 121631. [Google Scholar] [CrossRef]
- Mitrea, L.; Călinoiu, L.-F.; Teleky, B.-E.; Szabo, K.; Martău, A.-G.; Ştefănescu, B.E.; Dulf, F.-V.; Vodnar, D.-C. Waste Cooking Oil and Crude Glycerol as Efficient Renewable Biomass for the Production of Platform Organic Chemicals through Oleophilic Yeast Strain of Yarrowia Lipolytica. Environ. Technol. Innov. 2022, 28, 102943. [Google Scholar] [CrossRef]
- Juy, M.I.; Orejas, J.A.; Lucca, M.E. Study of Itaconic Acid Production by Aspergillus Terrus MJL05 Strain with Different Variable. Rev. Colom. Biotechnol. 2010, 12, 187–193. [Google Scholar]
- Saha, B.C. Emerging Biotechnologies for Production of Itaconic Acid and Its Applications as a Platform Chemical. J. Ind. Microbiol. Biotechnol. 2017, 44, 303–315. [Google Scholar] [CrossRef]
- Harder, B.J.; Bettenbrock, K.; Klamt, S. Model-Based Metabolic Engineering Enables High Yield Itaconic Acid Production by Escherichia Coli. Metab. Eng. 2016, 38, 29–37. [Google Scholar] [CrossRef]
- Kim, N.J.; Lim, S.J.; Chang, H.N. Volatile Fatty Acid Platform: Concept and Application. In Emerging Areas in Bioengineering; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2017. [Google Scholar]
- Vu, D.H.; Mahboubi, A.; Rood, A.; Heinmaa, I.; Taherzadeh, M.J.; Akesson, D. Thorough Investigation of the Effects of Cultivation Factors on Polyhydroalkanoates (PHAs) Production by Cupriavidus necator from Food Waste-Derived Volatile Fatty Acids. Fermentation 2022, 8, 605. [Google Scholar] [CrossRef]
- Ramos-Suarez, M.; Zhang, Y.; Outram, V. Current Perspectives on Acidogenic Fermentation to Produce Volatile Fatty Acids from Waste. Rev. Environ. Sci. Biotechnol. 2021, 20, 439–478. [Google Scholar] [CrossRef]
- Tsegaye, B.; Jaiswal, S.; Jaiswal, A.K. Food Waste Biorefinery: Pathway towards Circular Bioeconomy. Foods 2021, 10, 1174. [Google Scholar] [CrossRef] [PubMed]
- Bharathiraja, B.; Jayamuthunagai, J.; Sreejith, R.; Iyyappan, J.; Praveenkumar, R. Techno Economic Analysis of Malic Acid Production Using Crude Glycerol Derived from Waste Cooking Oil. Bioresour. Technol. 2022, 351, 126956. [Google Scholar] [CrossRef]
- Rajendran, N.; Han, J. Integrated Polylactic Acid and Biodiesel Production from Food Waste: Process Synthesis and Economics. Bioresour. Technol. 2022, 343, 126119. [Google Scholar] [CrossRef]
- Rajendran, N.; Han, J. Techno-Economic Analysis and Life Cycle Assessment of Poly (Butylene Succinate) Production Using Food Waste. Waste Manag. 2023, 156, 168–176. [Google Scholar] [CrossRef]
- Teigiserova, D.A.; Hamelin, L.; Thomsen, M. Review of High-Value Food Waste and Food Residues Biorefineries with Focus on Unavoidable Wastes from Processing. Resour. Conserv. Recycl. 2019, 149, 413–426. [Google Scholar] [CrossRef]
- Zou, L.; Wan, Y.; Zhang, S.; Luo, J.; Li, Y.Y.; Liu, J. Valorization of Food Waste to Multiple Bio-Energies Based on Enzymatic Pretreatment: A Critical Review and Blueprint for the Future. J. Clean. Prod. 2020, 277, 124091. [Google Scholar] [CrossRef]
- Zhu, X.; Xu, Y.; Zhen, G.; Lu, X.; Xu, S.; Zhang, J.; Gu, L.; Wen, H.; Liu, H.; Zhang, X.; et al. Effective Multipurpose Sewage Sludge and Food Waste Reduction Strategies: A Focus on Recent Advances and Future Perspectives. Chemosphere 2023, 311, 136670. [Google Scholar] [CrossRef]
- Chong, J.W.R.; Khoo, K.S.; Yew, G.Y.; Leong, W.H.; Lim, J.W.; Lam, M.K.; Ho, Y.C.; Ng, H.S.; Munawaroh, H.S.H.; Show, P.L. Advances in Production of Bioplastics by Microalgae Using Food Waste Hydrolysate and Wastewater: A Review. Bioresour. Technol. 2021, 342, 125947. [Google Scholar] [CrossRef]
- Deckers, M.; Deforce, D.; Fraiture, M.A.; Roosens, N.H.C. Genetically Modified Micro-Organisms for Industrial Food Enzyme Production: An Overview. Foods 2020, 9, 326. [Google Scholar] [CrossRef] [Green Version]
- Russo, G.L.; Langellotti, A.L.; Sacchi, R.; Masi, P. Techno-Economic Assessment of DHA-Rich Aurantiochytrium Sp. Production Using Food Industry by-Products and Waste Streams as Alternative Growth Media. Bioresour. Technol. Rep. 2022, 18, 100997. [Google Scholar] [CrossRef]
Micro-Organism | Water Activity | Oxygen Requirement | Product | Substrate | Operational Conditions | Yields and Productivity | Ref. |
---|---|---|---|---|---|---|---|
Rhizopus oryzae | SSF | Aerobic | Volatile compounds: (Acetaldehyde, Ethanol, 1-Propanol, Ethyl acetate, and 3-Methyl butanol) | Food loss: Cassava bagasse, apple pomace, soybean, amaranth, soybean oil | Fermentation volume: 250 mL; Substrate load: 15 g of dry matter; Fermentation time: 40 h; Inoculum size: 1 × 107 spores/g dry matter; Initial temperature: 30 °C Initial pH: 6.00; Passive diffusion aeration | Total volatile compounds: 0.021%wt (Total volatile compounds: 280µmol eq. Ethanol/L) | [197] |
Ceratocystis fimbriata | SSF | Anaerobic | Volatile compounds: (Acetaldehyde, ethanol, propyl acetate, ethyl isobutyrate). Isoamyl acetate. Ethyl acetate | Food loss: Citrus pulp and sugarcane molasses | Substrate load: 15 g; Initial temperature: 30 °C; Initial pH: 6.00; Inoculum size: 1 × 107 spores/g dry matter; Initial water content: 75%w/w; Carbon source: Sugarcane molasses (25%wt) and Soya bran (50%wt) | Total volatile compounds: 99.60%wt (Total volatile compounds: 99.60) Isoamyl acetate: 1.66%wt (Isoamyl acetate: 1.66) Ethyl acetate: 65.00%wt (Ethyl acetate: 65.00) | [198] |
Aspergillus niger | SMF | Aerobic | Vanillic acid. Vanillin | Food loss: Rice bran oil | Fermentation: Fermentation volume: 250 mL; Basal medium volume: 120 mL; Inoculum load: 10 mL; Temperature: 30 °C; Pressure: 0.1 MPa; Stirring rate: 150 rpm; Fermentation time: 48 h. Bioconversion to vanillic acid: Ferulic acid: 50 g of waste residue of rice bran oil + ethanol. pH adjusted to 7. After 48 h, | Vanillic acid: 63.5%wt (Vanillic acid: 63.5%mol) Vanillin: 60.7%wt (Vanillin: 60.7%mol) | [199] |
Pichia kudriavzevii | SSF | Aerobic | 2-phenylethanol (rose aroma) | Food loss: Sugarcane bagasse | Reaction volume: 0.5 L; Substrate load: 92 g; Fermentation time: 40 h; Temperature: 30 °C; Initial pH: 5.3; Specific air flowrate: 0.10 L/h-g; Stirring rate: 180 rpm | 2-phenylethanol: 2.65%wt (2-phenylethanol: 26.5 mg/g) | [200] |
Ceratocystis fimbriata | SSF | Aerobic | Banana aroma. Fruity aroma | Food loss: Wheat bran, cassava bagasse, and sugar cane bagasse | Fermentation volume: 250 mL; Substrate load (initial dry matter): 7.50 g for wheat bran, and 5.25 g for cassava and sugarcane bagasse; Initial temperature: 30 °C; Initial pH: 6.00; Inoculum size: 1 × 107 spores/g dry matter | Total volatile from: Wheat bran: 16.1%wt; Cassava bagasse (banana aroma): 46.5%wt; Sugarcane bagasse (fruity aroma): 44.9%wt (µmol eq. Ethanol/L) Wheat bran: 16.1; Cassava bagasse (banana aroma): 46.5; Sugarcane bagasse (fruity aroma): 44.9 | [201] |
Ceratocystis fimbriata | SSF | Aerobic | Volatile compounds: (Acetaldehyde, ethanol, ethyl acetate, ethyl propionate, ethyl isobutyrate, isobutyl acetate, ethyl butyrate, isoamyl acetate) | Food loss: Coffee husk | Bioreactor configurations: (i) Columns. (ii) Horizontal drums.; Medium pH: 6.00 Medium moisture: 65%; Inoculum size: 1 × 107 spores/g dry matter; Substrate load: 20 g for (i) and 1.5 kg for (ii); Temperature: 30 °C; Glucose solution concentration: 20%(w/w); Aeration rate: 0.6 L/h/column Fermentation time: 192 h | Acetaldehyde: 5.39%wt Ethanol: 28.79%wt; Ethyl acetate: 4.16%wt; Ethyl propionate: 6.63%wt; Ethyl isobutyrate: 3.48%wt; Isobutyl acetate: 6.09%: Ethyl butyrate: 3.19%wt; Isoamyl acetate: 1.95%wt (µmol/L) Acetaldehyde: 12.25; Ethanol: 62.50; Ethyl acetate: 472.50; Ethyl propionate: 6.50; Ethyl isobutyrate: 3.00; Isobutyl acetate: 5.25; Ethyl butyrate: 2.75; Isoamyl acetate: 1.50 | [202] |
Saccharomyces cerevisiae | SSF | Aerobic | Volatile esters, ethyl hexanoate, volatile aroma esters, pectin, polyphenols, carotenoids, L-ascorbic acid | Food loss: Orange peel waste | Inoculum size: 1 × 107 CFU/g; Fermentation volume: 250 mL; Substrate load: 55 g; Enrichment nutrients (g/kg substrate): yeast extract: 0.4, (NH4)2 SO4: 1.0, KH2 PO4: 1.0, MgSO4: 5; Fermentation temperature: 25 °C; Fermentation pH: 6; Fermentation time: 5 days; Final water content: 75%(w/w) | 0.0253%wt; Carotenoids: 0.0376%wt; L-ascorbic acid: 0.0153%wt; Pectin: 1.9%wt (mg/kg) Volatile aroma esters: 253; Carotenoids: 376; L-ascorbic acid: 153; Pectin: 19 g/kg fermented orange peel | [203] |
Trichoderma viride | SSF | Anaerobic | Coconut aroma δ-Octalactone. γ-Nonlactone. 6-Pentyl-α-pyrone. | Food loss: Sugarcane bagasse | Fermentation volume: 500 mL; Fermentation time: 7 days; Substrate load: 4.5 g; Sterile medium (25 mL): glucose (30.00 g/L); Temperature: 28 °C Mycelia cell suspension volume: 1 mL | δ-Octalactone: 0.13%wt γ-Nonlactone: 0.0323%wt 6-Pentyl-α-pyrone: 0.3165%wt (mg/g dray matter) δ-Octalactone: 0.013. γ-Nonlactone: 0.323. 6-Pentyl-α-pyrone: 3.165. | [204] |
Micro-Organism | Water Activity | Oxygen Requirement | Product | Substrate | Operational Conditions | Yields and Productivity | Ref. |
---|---|---|---|---|---|---|---|
Aspergillus oryzae | SSF | Aerobic | Soluble dietary fiber | Food waste: Lime cooked maize | Fermentation volume: 500 mL; Moisture: 90%; Temperature: 25 °C; Stirring rate: 150 rpm; Fermentation time: 10 days | Soluble dietary fiber: 4.50%wt | [212] |
Aspergillus oryzae | SMF | Anaerobic | Fructo-oligosaccharides (FOS) | Food waste: Mead from Agave salmiana | Fermentation volume: 10 mL; Inoculum load: 1 × 107 spores/mL; Temperature: 30 °C; Stirring rate: 180 rpm; Fermentation time: 120 h | FOS: 20.30%wt (FOS: 20.30 g/L) | [213] |
Fungi from Degraded onion and Yeast from Fermented fruit | SSF | Aerobic | Crude protein for chicken feed | Food waste: Rice, noodles, meats, bones, vegetables, and fruit peels | Substrate load: 70 kg; Fungi volume: 1000 mL; Yeast concentration: 0.01%(w/v) Fermentation time: 120 h; Aeration rate: 50 L/min for 15 min/h; Stirring rate: 2 rpm Temperature: 37 °C; pH: 4.0–6.0; Chicken feed moisture: Less than 13%wt; Chicken feed particle size: 2 mm | Crude protein content: 18%wt | [214] |
Saccharomyces cerevisiae | SMF | Aerobic | Protein | Food waste: Fish wastes, pineapple, banana, apple, and citrus peels | Batch fermenter volume: 3.5 L; Proportion for each substrate: 20%(w/w) Dry mater content: 15%; Temperature: 30 °C; Airflow rate: 0.5 L/min; pH: 4.5 Stirring rate: 300 rpm | Protein: 40.19%wt | [215] |
Aspergillus oryzae | SSF | Facultative | Dietary fiber (β-glucan and chitin-chitosan) | Food loss: Sweet potato as a distillery by-product | Fermentation volume: 10 L; Substrate volume: 4 L; Temperature: 30 °C; Stirring rate: 250 rpm; Non-aeration; Time: 48 h; Post conditions: Temperature: 30 °C; Stirring rate: 200 rpm; Aeration rate: 0.5 vvm; Time: 48 h | β-glucan: 16.7%wt Chitin-chitosan: 12.4%wt | [216] |
Schizochytrium sp. | SMF | Anaerobic | Docosahexaenoic acid (DHA) | Food waste: Tofu waste from a workshop | Fermentation volume: 50 mL; Stirring rate: 150 rpm; Temperature: 25 °C; Cultivation medium (%): 0.5 of glucose. Fermentation time: 2 days | DHA: 12.84%wt (DHA: 12.84 w/w % biomass) | [217] |
Aurantiochytrium sp. | SMF | Anaerobic | Docosahexaenoic acid (DHA) | Brown macroalgae Food waste: canned syrup | Cultivation medium: 3% glucose, 0.6% hipolypepton, 0.2% yeast extract, and 2% sea salts; Temperature: 28 °C; Stirring rate: 160 rpm. Fermentation time: 2 days | DHA: 40.2%wt (DHA): 105 mg/L/day | [218] |
Platform | Product | Substrate | Operational Conditions | Yield | Ref. |
---|---|---|---|---|---|
Glycerol | Malic acid | Waste frying oil | 25 °C, 1 bar, pH 6.48, So = 161.96 g/L, A. niger PJR1 | 56.00%wt (0.56 kg malic acid/kg crude glycerol) | [268] |
Lactic acid | Polylactic acid (PLA) | Food waste from China, India, Brazil, and USA. | 90 °C, 1 bar, 2% w/w Candida rugosa. | 0.11%wt, 0.15%wt, 0.18%wt, 0.17%wt (0.11, 0.15, 0.18, 0.17 ton PLA/ton FW, respectively) | [269] |
Succinic acid | Polybutylene succinate (PBS) | Food waste | 243 °C, 1 h, 1 bar. | 0.65%wt, 1.58%wt, 1.41%wt (0.65 ton PBS/ton raw materials (FW and 1,4 butanediol), 1.58 ton FW/ton 1,4 butanediol, 1.41 ton PBS/ton Succinic acid) | [270] |
Volatile fatty acids (VFA) | Polyhydroxybutirate (PHB) | Food Waste | 32 °C, 72 h, 120 rpm | 8.6%wt | [61] |
Aspects | Restrictions | Comment |
---|---|---|
Raw material | Inhibitors generation in upstream | Inhibitors presence might contribute to decrease yields of high value-added products in fermentation. |
Scales of FL generation | Economic viability of implementation fermentation processes in the selected context. | |
Accessibility | FL constant flow for the raw material acquisition. | |
Value chain link | Technological development in the selected context | Low technological index level in the link where the residue is produced. |
Collection and transport issues | Easiness of acquisition and transportation of raw material. | |
Micro-organism | Technological readiness level of fermentation processes | Selecting the most suitable option to upgrade biomass using fermentation. |
Applicability | Easiness of implementation in the analyzed context. | |
Product | Platform production | Several products obtained can be destined as platforms molecules for other processes. |
Marketing | Product offer and demand. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ortiz-Sanchez, M.; Inocencio-García, P.-J.; Alzate-Ramírez, A.F.; Alzate, C.A.C. Potential and Restrictions of Food-Waste Valorization through Fermentation Processes. Fermentation 2023, 9, 274. https://doi.org/10.3390/fermentation9030274
Ortiz-Sanchez M, Inocencio-García P-J, Alzate-Ramírez AF, Alzate CAC. Potential and Restrictions of Food-Waste Valorization through Fermentation Processes. Fermentation. 2023; 9(3):274. https://doi.org/10.3390/fermentation9030274
Chicago/Turabian StyleOrtiz-Sanchez, Mariana, Pablo-José Inocencio-García, Andrés Felipe Alzate-Ramírez, and Carlos Ariel Cardona Alzate. 2023. "Potential and Restrictions of Food-Waste Valorization through Fermentation Processes" Fermentation 9, no. 3: 274. https://doi.org/10.3390/fermentation9030274
APA StyleOrtiz-Sanchez, M., Inocencio-García, P. -J., Alzate-Ramírez, A. F., & Alzate, C. A. C. (2023). Potential and Restrictions of Food-Waste Valorization through Fermentation Processes. Fermentation, 9(3), 274. https://doi.org/10.3390/fermentation9030274