Effect of Salt Concentration on Flavor Characteristics and Physicochemical Quality of Pickled Brassica napus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Pickled BLS
2.2. Determination of Physicochemical Parameters
2.2.1. Determination of TA
2.2.2. Determination of Soluble Sugar
2.2.3. Determination of Protein
2.2.4. Determination of Fat
2.2.5. Determination of Amino Acid Nitrogen
2.2.6. Determination of Salinity
2.2.7. Determination of Glucosinolate
2.2.8. Determination of Nitrite
2.3. Determination of Health-Promoting Compounds
2.3.1. Determination of Total Phenol
2.3.2. Determination of Flavonoids
2.4. Determination of FAAs
2.5. Determination of VFCs
2.6. Statistical Analysis
3. Results and Discussion
3.1. Changes of Physicochemical Indexes of Pickled BLS under Different Salt Concentrations
3.2. Changes in Health-Promoting Compounds of Pickled BLS under Different Salt Concentrations
3.3. Changes in FAAs of Pickled BLS under Different Salt Concentrations
3.4. Changes in VFCs in Pickled BLS under Different Salt Concentrations
3.5. Cluster Analysis of VFCs
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Azam, M.; Mohsin, M.; Ijaz, H.; Tulain, R.; Ashraf, M.; Fayyaz, A.; Ul Abadeen, Z.; Kamran, Q. Lactic acid bacteria in traditional fermented Asian foods. Pak. J. Pharm. Sci. 2017, 30, 1803–1814. [Google Scholar]
- Thierry, A.; Pogačić, T.; Weber, M.; Lortal, S. Production of Flavor Compounds by Lactic Acid Bacteria in Fermented Foods. In Biotechnology of Lactic Acid Bacteria; Wiley: Hoboken, NJ, USA, 2015; pp. 314–340. [Google Scholar]
- Behera, S.S.; Ray, R.C.; Zdolec, N. Lactobacillus plantarum with Functional Properties: An Approach to Increase Safety and Shelf-Life of Fermented Foods. BioMed Res. Int. 2018, 2018, 9361614. [Google Scholar] [CrossRef] [Green Version]
- Woo, M.; Kim, M.J.; Song, Y.O. Bioactive Compounds in Kimchi Improve the Cognitive and Memory Functions Impaired by Amyloid Beta. Nutrients 2018, 10, 1554. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qin, P.; Wang, T.; Luo, Y. A review on plant-based proteins from soybean: Health benefits and soy product development. J. Agric. Food Res. 2022, 7, 100265. [Google Scholar] [CrossRef]
- Zheng, L.; Regenstein, J.M.; Teng, F.; Li, Y. Tofu products: A review of their raw materials, processing conditions, and packaging. Compr. Rev. Food Sci. Food Saf. 2020, 19, 3683–3714. [Google Scholar] [CrossRef] [PubMed]
- Sá, A.G.A.; Moreno, Y.M.F.; Carciofi, B.A.M. Food processing for the improvement of plant proteins digestibility. Crit. Rev. Food Sci. Nutr. 2020, 60, 3367–3386. [Google Scholar] [CrossRef]
- Choi, I.H.; Noh, J.S.; Han, J.-S.; Kim, H.J.; Han, E.-S.; Song, Y.O. Kimchi, a Fermented Vegetable, Improves Serum Lipid Profiles in Healthy Young Adults: Randomized Clinical Trial. J. Med. Food 2013, 16, 223–229. [Google Scholar] [CrossRef] [Green Version]
- Gupta, S.; Mohanty, U.; Majumdar, R.K. Isolation and characterization of lactic acid bacteria from traditional fermented fish product Shidal of India with reference to their probiotic potential. LWT 2021, 146, 111641. [Google Scholar] [CrossRef]
- Wang, Z.; Wu, J.; Tian, Z.; Si, Y.; Chen, H.; Gan, J. The Mechanisms of the Potential Probiotic Lactiplantibacillus plantarum against Cardiovascular Disease and the Recent Developments in its Fermented Foods. Foods 2022, 11, 2549. [Google Scholar] [CrossRef]
- Sigala-Robles, R.; Santiago-López, L.; Hernández-Mendoza, A.; Vallejo-Cordoba, B.; Mata-Haro, V.; Wall-Medrano, A.; González-Córdova, A.F. Peptides, Exopolysaccharides, and Short-Chain Fatty Acids from Fermented Milk and Perspectives on Inflammatory Bowel Diseases. Dig. Dis. Sci. 2022, 67, 4654–4665. [Google Scholar] [CrossRef]
- Yang, J.; Gao, T.; Ge, F.; Sun, H.; Cui, Z.; Wei, Z.; Wang, S.; Show, P.L.; Tao, Y.; Wang, W. Porphyra yezoensis Sauces Fermented with Lactic Acid Bacteria: Fermentation Properties, Flavor Profile, and Evaluation of Antioxidant Capacity in vitro. Front. Nutr. 2022, 8, 810460. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Qi, J.; Jin, Y.; Li, F.; Wang, J.; Xu, H. Influence of fruit maturity and lactic fermentation on physicochemical properties, phenolics, volatiles, and sensory of mulberry juice. Food Biosci. 2022, 48, 101782. [Google Scholar] [CrossRef]
- Sun, H.; Chen, X.; Xiang, Y.; Hu, Q.; Zhao, L. Fermentation characteristics and flavor properties of Hericium erinaceus and Tremella fuciformis fermented beverage. Food Biosci. 2022, 50, 102017. [Google Scholar] [CrossRef]
- Park, K.-Y.; Jeong, J.-K.; Lee, Y.-E.; Daily, J.W. Health Benefits of Kimchi (Korean Fermented Vegetables) as a Probiotic Food. J. Med. Food 2014, 17, 6–20. [Google Scholar] [CrossRef]
- Lee, K.W.; Shim, J.M.; Kim, D.W.; Yao, Z.; Kim, J.A.; Kim, H.-J.; Kim, J.H. Effects of different types of salts on the growth of lactic acid bacteria and yeasts during kimchi fermentation. Food Sci. Biotechnol. 2018, 27, 489–498. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.W.; Kim, B.-M.; Lee, H.-J.; Jang, G.-J.; Song, S.H.; Lee, J.-I.; Lee, S.B.; Shim, J.M.; Lee, K.W.; Kim, J.H.; et al. Effects of Different Salt Treatments on the Fermentation Metabolites and Bacterial Profiles of Kimchi. J. Food Sci. 2017, 82, 1124–1131. [Google Scholar] [CrossRef]
- Lenny, S.F.A.; Sung-Gi, M.; Seon-Kyeong, H.; Yeun, H. Effect of Low Salt Concentrations on Microbial Changes During Kimchi Fermentation Monitored by PCR-DGGE and Their Sensory Acceptance. J. Microbiol. Biotechnol. 2015, 25, 2049–2057. [Google Scholar] [CrossRef]
- Seo, S.-H.; Park, S.-E.; Kim, E.-J.; Lee, K.-I.; Na, C.-S.; Son, H.-S. A GC-MS based metabolomics approach to determine the effect of salinity on Kimchi. Food Res. Int. 2018, 105, 492–498. [Google Scholar] [CrossRef]
- He, J.; Li, F.; Wang, Y.; Wu, H.; Yang, H. Fermentation characteristics and bacterial dynamics during Chinese sauerkraut fermentation by Lactobacillus curvatus LC-20 under varied salt concentrations reveal its potential in low-salt suan cai production. J. Biosci. Bioeng. 2021, 132, 33–40. [Google Scholar] [CrossRef]
- Li, W.T.; Che, Z.M.; Xing, Y.G.; Li, M.Y.; Xiang, W.L.; Tang, J.; Zhu, S.H. Effect of Different Fermentation Conditions on the Nitrite Concentration of Carrot-Pickles Fermented by Lactobacillus Preparation. Adv. Mater. Res. 2011, 338, 782–785. [Google Scholar] [CrossRef]
- Liang, H.; He, Z.; Wang, X.; Song, G.; Chen, H.; Lin, X.; Ji, C.; Li, S. Effects of salt concentration on microbial diversity and volatile compounds during suancai fermentation. Food Microbiol. 2020, 91, 103537. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.; Tang, Y.; Hu, Y.; Lu, Y.; Sun, Q.; Lv, Y.; Zhang, Q.; Wu, C.; Zhu, M.; He, Q.; et al. Sodium Reduction in Traditional Fermented Foods: Challenges, Strategies, and Perspectives. J. Agric. Food Chem. 2021, 69, 8065–8080. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.W.; Zong, Y.J.; Fang, C.Y.; Huang, S.H.; Li, J.; Xu, J.H.; Wang, Y.F.; Liu, C.H. Optimization of Anthrone Colorimetric Method for Rapid Determination of Soluble in Barley Leaves. Food Res. Dev. 2020, 41, 196–200. [Google Scholar]
- Luque-Garcıía, J.L.; Luque de Castro, M.D. Ultrasound-assisted Soxhlet extraction: An expeditive approach for solid sample treatment: Application to the extraction of total fat from oleaginous seeds. J. Chromatogr. A 2004, 1034, 237–242. [Google Scholar] [CrossRef]
- Ouyang, Q.; Chen, Q.; Zhao, J.; Lin, H. Determination of Amino Acid Nitrogen in Soy Sauce Using Near Infrared Spectroscopy Combined with Characteristic Variables Selection and Extreme Learning Machine. Food Bioprocess Technol. 2013, 6, 2486–2493. [Google Scholar] [CrossRef]
- Tian, M.; Xu, X.; Liu, Y.; Xie, L.; Pan, S. Effect of Se treatment on glucosinolate metabolism and health-promoting compounds in the broccoli sprouts of three cultivars. Food Chem. 2016, 190, 374–380. [Google Scholar] [CrossRef]
- Huang, Y.-y.; Jia, X.-z.; Yu, J.-j.; Chen, Y.-h.; Liu, D.-m.; Liang, M.-h. Effect of different lactic acid bacteria on nitrite degradation, volatile profiles, and sensory quality in Chinese traditional paocai. LWT 2021, 147, 111597. [Google Scholar] [CrossRef]
- Rahman, M.M.; Abdullah, A.T.M.; Sharif, M.; Jahan, S.; Kabir, M.A.; Motalab, M.; Khan, T.A. Relative evaluation of in-vitro antioxidant potential and phenolic constituents by HPLC-DAD of Brassica vegetables extracted in different solvents. Heliyon 2022, 8, e10838. [Google Scholar] [CrossRef]
- Yao, D.; Ma, L.; Wu, M.; Wang, X.; Xu, L.; Yu, Q.; Wang, C. Effect of microbial communities on the quality characteristics of northeast soybean paste: Correlation between microorganisms and metabolites. LWT 2022, 164, 113648. [Google Scholar] [CrossRef]
- Jing, D.; Pingping, L. Changes in Volatiles during Pickling of Root Brassica juncea Coss. var. megarrhiza Tsen et Lee). Food Sci. 2013, 34, 225–229. [Google Scholar]
- Xinping, S.; Qingzhen, Z.; Ning, Z.; Haitao, C.; Yangen, S.; Yali, Z.; Yan, Z.; Haibin, L. Analysis of Aroma Active Compounds of Ejiao. J. Food Sci. Technol. 2021, 39, 89–100. [Google Scholar]
- Qin, Z.; Ling, Y.; Han, X.; Zhanzhan, L.; Guogang, F.; Cheng, Y. Comparative Analysis of Volatile Flavor Compounds in Virgin Rapeseed Oil from Different Producing Areas. Sci. Technol. Food Ind. 2021, 42, 70–78. [Google Scholar] [CrossRef]
- Fei, S.; Ruiming, L.; Dan, D.; He, B.; Shuang, B.; Yongrui, W. Analysis of Main Volatile Flavor Compounds in Xinjiang Market Chicken Based on Relative Odor Activity Value. Meat Res. 2020, 34, 46–50. [Google Scholar]
- Paramithiotis, S.; Sofou, A.; Tsakalidou, E.; Kalantzopoulos, G. Flour carbohydrate catabolism and metabolite production by sourdough lactic acid bacteria. World J. Microbiol. Biotechnol. 2007, 23, 1417–1423. [Google Scholar] [CrossRef]
- Holland, R.; Liu, S.Q.; Crow, V.L.; Delabre, M.L.; Lubbers, M.; Bennett, M.; Norris, G. Esterases of lactic acid bacteria and cheese flavour: Milk fat hydrolysis, alcoholysis and esterification. Int. Dairy J. 2005, 15, 711–718. [Google Scholar] [CrossRef]
- Luo, W.; Zhang, Y.; Xu, Y.; Jiang, B.; Yu, Y.; Fu, M.; Li, L. Effects of Different Mustard Varieties on the Quality of Fermented Pickle. Mod. Food Sci. Technol. 2022, 38, 43–55. [Google Scholar] [CrossRef]
- Sun, X.; Zhang, Y.; Li, F.; Jiao, X.; Ma, D.; Zhang, L.; Yang, B.; Zhao, J.; Han, J.; Li, Q. Effects of lactic acid bacteria fermentation on chemical compounds, antioxidant capacities and hypoglycemic properties of pumpkin juice. Food Biosci. 2022, 50, 102126. [Google Scholar] [CrossRef]
- Wang, Y.; Tao, Y.; Zhang, X.; Shao, S.; Han, Y.; Chu, D.-T.; Xie, G.; Ye, X. Metabolic profile of ginkgo kernel juice fermented with lactic aicd bacteria: A potential way to degrade ginkgolic acids and enrich terpene lactones and phenolics. Process Biochem. 2019, 76, 25–33. [Google Scholar] [CrossRef]
- Yan, P.; Jia, J.; Zhao, H.; Wu, C. Changes and Driving Mechanism of Microbial Community Structure during Paocai Fermentation. Fermentation 2022, 8, 281. [Google Scholar] [CrossRef]
- Kim, S.S.; Heo, J.; Kwak, H.S. Effects of ageing and salt concentrations on metabolite profiles and their correlation with consumer acceptance in Korean traditional doenjang (fermented soybean paste). Int. J. Food Sci. Technol. 2022, 57, 7307–7319. [Google Scholar] [CrossRef]
- Peñas, E.; Pihlava, J.M.; Vidal-Valverde, C.; Frias, J. Influence of fermentation conditions of Brassica oleracea L. var. capitata on the volatile glucosinolate hydrolysis compounds of sauerkrauts. LWT Food Sci. Technol. 2012, 48, 16–23. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Niu, C.; Shan, W.; Zheng, F.; Liu, C.; Wang, J.; Li, Q. Physicochemical, flavor and microbial dynamic changes during low-salt doubanjiang (broad bean paste) fermentation. Food Chem. 2021, 351, 128454. [Google Scholar] [CrossRef] [PubMed]
- He, Z.; Zhang, H.; Wang, T.; Wang, R.; Luo, X. Effects of Five Different Lactic Acid Bacteria on Bioactive Components and Volatile Compounds of Oat. Foods 2022, 11, 3230. [Google Scholar] [CrossRef]
- Chun, B.H.; Kim, K.H.; Jeong, S.E.; Jeon, C.O. The effect of salt concentrations on the fermentation of doenjang, a traditional Korean fermented soybean paste. Food Microbiol. 2020, 86, 103329. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Zhou, Y.; Kriisa, M.; Anderson, M.; Laaksonen, O.; Kütt, M.-L.; Föste, M.; Korzeniowska, M.; Yang, B. Effects of fermentation and enzymatic treatment on phenolic compounds and soluble proteins in oil press cakes of canola (Brassica napus). Food Chem. 2023, 409, 135339. [Google Scholar] [CrossRef]
- Niu, C.; Xing, X.; Zheng, F.; Liu, C.; Wang, J.; Li, Q. Effect of salt reduction on nutritional, functional and sensory aspects of Anhui-style doubanjiang, a traditional Chinese broad bean paste. Syst. Microbiol. Biomanuf. 2022. [Google Scholar] [CrossRef]
- Kwaw, E.; Ma, Y.; Tchabo, W.; Apaliya, M.T.; Wu, M.; Sackey, A.S.; Xiao, L.; Tahir, H.E. Effect of lactobacillus strains on phenolic profile, color attributes and antioxidant activities of lactic-acid-fermented mulberry juice. Food Chem. 2018, 250, 148–154. [Google Scholar] [CrossRef]
- Li, Z.; Teng, J.; Lyu, Y.; Hu, X.; Zhao, Y.; Wang, M. Enhanced Antioxidant Activity for Apple Juice Fermented with Lactobacillus plantarum ATCC14917. Molecules 2019, 24, 51. [Google Scholar] [CrossRef] [Green Version]
- Taylor, J.R.N.; Duodu, K.G. Effects of processing sorghum and millets on their phenolic phytochemicals and the implications of this to the health-enhancing properties of sorghum and millet food and beverage products. J. Sci. Food Agric. 2015, 95, 225–237. [Google Scholar] [CrossRef] [Green Version]
- Wei, L.; Qun, Z.; Zhijian, L.; Jianming, B.; Luhong, H.; Xiangrong, Z.; Yang, S. Principal Component Analysis and Cluster Analysis for Evaluating Free Amino Acids of Different Cultivars of Daylily Buds. Food Sci. 2019, 40, 243–250. [Google Scholar]
- Maykish, A.; Sikalidis, A.K. Utilization of Hydroxyl-Methyl Butyrate, Leucine, Glutamine and Arginine Supplementation in Nutritional Management of Sarcopenia—Implications and Clinical Considerations for Type 2 Diabetes Mellitus Risk Modulation. J. Pers. Med. 2020, 10, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cui, R.-Y.; Zheng, J.; Wu, C.-D.; Zhou, R.-Q. Effect of different halophilic microbial fermentation patterns on the volatile compound profiles and sensory properties of soy sauce moromi. Eur. Food Res. Technol. 2014, 239, 321–331. [Google Scholar] [CrossRef]
- Wang, Q.; Li, X.; Xue, B.; Wu, Y.; Song, H.; Luo, Z.; Shang, P.; Liu, Z.; Huang, Q. Low-salt fermentation improves flavor and quality of sour meat: Microbiology and metabolomics. LWT 2022, 171, 114157. [Google Scholar] [CrossRef]
- Zhang, L.; Zhou, R.; Cui, R.; Huang, J.; Wu, C. Characterizing Soy Sauce Moromi Manufactured by High-Salt Dilute-State and Low-Salt Solid-State Fermentation Using Multiphase Analyzing Methods. J. Food Sci. 2016, 81, C2639–C2646. [Google Scholar] [CrossRef] [PubMed]
- Jung, J.Y.; Lee, S.H.; Jeon, C.O. Kimchi microflora: History, current status, and perspectives for industrial kimchi production. Appl. Microbiol. Biotechnol. 2014, 98, 2385–2393. [Google Scholar] [CrossRef]
TA | Soluble Sugar | Protein | Fat | Amino Acid Nitrogen | Salinity | Glucosinolate | Nitrite | |
---|---|---|---|---|---|---|---|---|
(g/100 g) | (g/100 g) | (g/100 g) | (g/100 g) | (g/100 g) | (g/100 g) | (mg/g) | (g/100 g) | |
G1 | 0.40 ± 0.01 c | 3.29 ± 0.16 d | 26.32 ± 0.02 a | 3.95 ± 0.01 a | 1.57 ± 0.01 c | 2.88 ± 0.14 e | 3.82 ± 0.10 a | 0.85 ± 0.04 c |
G2 | 0.40 ± 0.03 c | 3.44 ± 0.08 c,d | 23.87 ± 0.24 c | 3.35 ± 0.05 b | 1.46 ± 0.02 c | 4.94 ± 0.09 d | 3.89 ± 0.07 a | 0.76 ± 0.04 c |
G3 | 1.59 ± 0.24 b | 3.76 ± 0.07 b | 25.53 ± 0.31 b | 3.43 ± 0.15 b | 2.01 ± 0.06 a | 6.18 ± 0.04 b | 2.94 ± 0.03 b | 1.60 ± 0.07 b |
G4 | 0.35 ± 0.01 c | 3.61 ± 0.13 b,c | 22.98 ± 0.08 d | 3.37 ± 0.07 b | 1.32 ± 0.05 d | 7.04 ± 0.08 a | 3.01 ± 0.03 b | 1.81 ± 0.08 a |
G5 | 2.01 ± 0.01 a | 4.17 ± 0.06 a | 23.91 ± 0.12 c | 3.06 ± 0.13 c | 1.74 ± 0.05 b | 5.40 ± 0.08 c | 2.66 ± 0.06 c | 1.85 ± 0.04 a |
Composition | Taste Threshold/(mg/g) | G1 | G2 | G3 | G4 | G5 | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
TAV | Content/(mg/g) | TAV | Content/(mg/g) | TAV | Content/(mg/g) | TAV | Content/(mg/g) | TAV | Content/(mg/g) | ||
Nonessential amino acids | 30.316 | 29.019 | 45.048 | 24.278 | 34.28 | ||||||
Asp | 1 | 0.78 | 0.785 | 0.69 | 0.695 | 1.61 | 1.615 | 0.57 | 0.568 | 1.62 | 1.615 |
Glu | 0.3 | 1.08 | 0.323 | 1.63 | 0.489 | 6.45 | 1.935 | 1.19 | 0.358 | 5.84 | 1.751 |
Asn | - | - | 1.670 | - | 1.554 | - | 2.863 | - | 1.316 | - | 3.218 |
Ser | 1.5 | 0.74 | 1.106 | 0.67 | 1.01 | 1.31 | 1.961 | 0.56 | 0.841 | 1.02 | 1.525 |
Gln | - | - | 10.633 | - | 10.686 | - | 19.784 | - | 9.419 | - | 14.079 |
Gly | 1.3 | 0.46 | 0.6 | 0.37 | 0.484 | 0.69 | 0.891 | 0.29 | 0.38 | 0.59 | 0.766 |
Ala | 0.6 | 6.55 | 3.932 | 6.05 | 3.63 | 3.91 | 2.347 | 5.25 | 3.149 | 4.22 | 2.532 |
Tyr | 2.6 | 0.46 | 1.184 | 0.4 | 1.046 | 0.59 | 1.529 | 0.29 | 0.746 | 0.59 | 1.539 |
Cys | 0.02 | 4.99 | 0.1 | 4.88 | 0.098 | 5.87 | 0.117 | 3.43 | 0.069 | 5.48 | 0.11 |
Nva | - | - | 1.204 | - | 1.207 | - | 0.334 | - | 1.026 | - | 0.537 |
Hyp | - | - | 0.531 | - | 0.546 | - | 1.012 | - | 0.464 | - | 1 |
Sar | - | - | 0.112 | - | 0.112 | - | 0.193 | - | 0.101 | - | 0.178 |
Pro | 3 | 2.71 | 8.136 | 2.49 | 7.462 | 3.49 | 10.467 | 1.95 | 5.841 | 1.81 | 5.43 |
Essential amino acids | 5.442 | 4.788 | 8.16 | 3.794 | 7.897 | ||||||
His | 0.2 | 3.42 | 0.684 | 2.93 | 0.587 | 4.46 | 0.892 | 2.46 | 0.492 | 5.2 | 1.04 |
Val | 0.4 | 4.45 | 1.779 | 3.95 | 1.579 | 6.52 | 2.608 | 3.2 | 1.28 | 6.17 | 2.467 |
Met | 0.3 | 1.2 | 0.361 | 1.03 | 0.31 | 0.77 | 0.232 | 0.8 | 0.239 | 1.01 | 0.302 |
Trp | - | - | 0.386 | - | 0.342 | - | 0.743 | - | 0.262 | - | 0.766 |
Phe | 0.9 | 1.34 | 1.205 | 1.2 | 1.082 | 1.98 | 1.78 | 0.92 | 0.828 | 2.15 | 1.931 |
Ile | 0.9 | 1.14 | 1.027 | 0.99 | 0.888 | 2.12 | 1.905 | 0.77 | 0.693 | 1.88 | 1.693 |
Semi essential amino acids | 6.801 | 6.174 | 6.806 | 4.77 | 8.567 | ||||||
Thr | 2.6 | 0.53 | 1.478 | 0.46 | 1.194 | 0.66 | 1.704 | 0.37 | 0.97 | 0.73 | 1.9 |
Arg | 0.5 | 4.14 | 2.21 | 3.51 | 1.755 | 3.51 | 1.755 | 2.93 | 1.464 | 6.68 | 3.34 |
Leu | 1.9 | 0.92 | 1.872 | 0.79 | 1.501 | 1.17 | 2.221 | 0.61 | 1.161 | 1.12 | 2.131 |
Lys | 0.5 | 2.81 | 1.241 | 3.45 | 1.724 | 2.25 | 1.126 | 2.35 | 1.175 | 2.39 | 1.196 |
Total free amino acids | 42.559 | 39.981 | 60.014 | 32.842 | 50.744 |
Number | Category | Compound | G1 | G2 | G3 | G4 | G5 | Odor Description | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Relative Content/% | ROAV | Relative Content/% | ROAV | Relative Content/% | ROAV | Relative Content/% | ROAV | Relative Content/% | ROAV | ||||
1 | Alcohols | 1-Octen-3-ol | - | - | 8.25 | 3.56 | 0.26 | 0.35 | - | - | 0.10 | 1.93 | Mushroom, green, vegetable |
2 | Benzyl alcohol | 0.96 | <0.1 | 0.87 | <0.1 | 0.57 | <0.1 | 1.17 | <0.1 | 1.50 | <0.1 | Aromatic taste | |
3 | Hexanol | 6.68 | <0.1 | 2.67 | <0.1 | 9.1 | <0.1 | 3.96 | <0.1 | 4.97 | <0.1 | Green, fruity, mellow, sweet, ethereal | |
4 | Phenylethyl alcohol | 6.88 | <0.1 | 3.03 | <0.1 | 3.41 | <0.1 | 7.16 | <0.1 | 7.92 | <0.1 | Hyacinth, gardenia aroma | |
5 | Butanol | - | - | - | - | - | - | 0.09 | <0.1 | - | - | Mild fusel oil scent with wine aroma | |
6 | Amyl alcohol | 0.35 | <0.1 | 0.31 | <0.1 | - | - | 0.22 | <0.1 | - | - | Bread, wine, fruity | |
7 | Heptanol | - | - | - | - | 0.14 | <0.1 | - | - | - | - | Fruity, mellow | |
8 | Glycerin | 0.44 | <0.1 | 0.35 | <0.1 | - | - | 0.44 | <0.1 | - | - | Sweetness | |
9 | Aldehydes | 3-Methylbutyraldehyde | - | - | - | - | - | - | - | - | 0.08 | 7.84 | |
10 | Myristaldehyde | 0.74 | <0.1 | 0.85 | <0.1 | 0.18 | <0.1 | 1.12 | <0.1 | 0.15 | 0.21 | ||
11 | Nonanal | 1.15 | 0.11 | 1.03 | 0.11 | 0.48 | 0.16 | 2.93 | 0.24 | 0.42 | 2.06 | Fat, grassy | |
12 | Benzaldehyde | 1.00 | <0.1 | 1.02 | <0.1 | 1.98 | <0.1 | 1.93 | <0.1 | 1.17 | <0.1 | Greasy sweetness, almond aroma, fruity aroma | |
13 | Benzeneacetaldehyde | 11.25 | 1.12 | 4.46 | 0.48 | 5.27 | 1.78 | 9.70 | 0.78 | 4.13 | 20.26 | Hyacinth flavor | |
14 | Heptanal | - | - | - | - | - | - | 0.11 | <0.1 | - | - | Sweet apricot, nutty aroma | |
15 | Hexanal | - | - | - | - | 0.17 | <0.1 | 0.17 | <0.1 | - | - | Green, leafy, fruity, woody | |
16 | Furfural | 0.29 | <0.1 | 0.20 | <0.1 | 0.05 | <0.1 | 0.26 | <0.1 | - | - | Bitter almond, caramel flavor | |
17 | Decanal | 0.18 | <0.1 | 0.15 | <0.1 | 0.09 | <0.1 | 0.38 | <0.1 | - | - | Aldehydic, waxy, fat, citrus aromas | |
18 | Pentadecanal | 0.46 | 0.12 | 0.47 | 0.14 | 0.10 | <0.1 | 0.59 | 0.13 | - | - | ||
19 | (E,E)-2,4-Heptadienal | - | - | - | - | 0.22 | <0.1 | - | - | - | - | Nutty oily taste | |
20 | 2-Hexenal | - | - | - | - | 0.33 | <0.1 | - | - | - | - | Green, apple, fat, aldehyde aroma | |
21 | Acids | Butyric acid | 0.99 | <0.1 | 0.87 | <0.1 | - | - | 0.57 | <0.1 | 0.07 | <0.1 | |
22 | Hexadecanoic acid | - | - | - | - | 0.13 | <0.1 | 0.10 | <0.1 | 0.25 | <0.1 | ||
23 | Caproic acid | 0.45 | <0.1 | 0.46 | <0.1 | 1.63 | <0.1 | 0.40 | <0.1 | 0.25 | <0.1 | Sweat smell | |
24 | Nonanoic acid | 0.27 | <0.1 | 0.16 | <0.1 | - | - | 0.27 | <0.1 | 0.32 | <0.1 | Special smell | |
25 | n-Hexadecanoic acid | 1.62 | <0.1 | 1.23 | <0.1 | 0.27 | <0.1 | 0.62 | <0.1 | 0.74 | <0.1 | ||
26 | Octanoic acid | 0.55 | <0.1 | 0.58 | <0.1 | 0.52 | <0.1 | 0.96 | <0.1 | - | - | Suet fat, boiled peanut flavor | |
27 | n-Decanoic acid | - | - | - | - | 0.10 | <0.1 | 0.12 | <0.1 | - | - | ||
28 | Ketones | Acetic acid | - | - | - | - | 0.29 | <0.1 | 0.42 | <0.1 | - | - | |
29 | 2-Heptanone | - | - | - | - | 0.04 | <0.1 | - | - | 0.10 | <0.1 | Banana, cheese aroma and slight medicinal aroma | |
30 | Hexanone | 0.30 | <0.1 | 0.27 | <0.1 | 0.21 | <0.1 | 0.14 | <0.1 | 0.25 | <0.1 | Sweet, fruity, waxy | |
31 | 2-Butanone | 3.35 | <0.1 | 2.32 | <0.1 | 0.04 | <0.1 | 1.52 | <0.1 | 0.40 | <0.1 | Ethereal, fruity | |
32 | Undecanone | 0.41 | <0.1 | 0.34 | <0.1 | 0.73 | 0.14 | 0.33 | <0.1 | 0.45 | 1.26 | ||
33 | 2-Decanone | - | - | - | - | 1.04 | 0.16 | - | - | 1.26 | 2.75 | ||
34 | Furanone | 0.84 | <0.1 | 0.87 | <0.1 | 3.49 | 0.12 | 0.85 | <0.1 | 2.52 | 1.24 | Sweet fruit, caramel flavor | |
35 | β-Ionone | - | - | - | - | 21.2 | 2.87 | - | - | 10.38 | 20.36 | Sweet, fruity | |
36 | 3,5-Octadien-2-one | 0.09 | <0.1 | 0.08 | <0.1 | 13.68 | 0.12 | 0.47 | <0.1 | - | - | Floral, fruity | |
37 | Esters | Ethyl caprate | 0.71 | 1.42 | 0.79 | 1.71 | 0.33 | 2.21 | 0.89 | 1.44 | 1.02 | 100 | Coconut aroma |
38 | Ethyl laurate | 0.55 | <0.1 | 0.52 | <0.1 | 0.28 | 0.11 | 0.42 | <0.1 | 1.52 | 8.5 | Fruity, floral | |
39 | Methyl palmitate | 4.52 | 0.45 | 2.57 | 0.28 | 0.38 | 0.13 | 3.11 | 0.25 | 1.77 | 8.67 | Mellow | |
40 | Ethyl palmitate | 7.55 | 2.01 | 3.10 | 0.89 | 0.92 | 0.83 | 4.41 | 0.95 | 6.45 | 84.28 | Creamy, estery | |
41 | Others | (2-Isothiocyanatoethyl)-benzene | - | - | 7.37 | <0.1 | 0.33 | <0.1 | 2.43 | <0.1 | - | - | |
42 | 2,6-Dimethoxyphenol | - | - | - | - | - | - | 0.32 | <0.1 | - | - | Spicy | |
43 | Naphthalene | 2.26 | <0.1 | 1.95 | <0.1 | 0.87 | <0.1 | 2.52 | <0.1 | - | - | Tar smell | |
44 | Indole | - | - | - | - | 0.07 | <0.1 | 0.08 | <0.1 | 0.20 | <0.1 | Floral | |
45 | Phenol | - | - | - | - | 1.92 | <0.1 | 1.92 | <0.1 | 2.11 | <0.1 | Medicine aroma | |
46 | 5-Capronitrile | - | - | - | - | 1.61 | <0.1 | 5.55 | <0.1 | 0.51 | <0.1 | ||
47 | Benzopropionitrile | - | - | - | - | 9.81 | <0.1 | 20.79 | <0.1 | 7.40 | 0.29 | ||
48 | Dimethyl trisulfide | 2.15 | 100 | 2.32 | 100 | 0.74 | 100 | 3.10 | 100 | - | - | Betel nut, sulfur | |
49 | Pyrazine | 1.96 | <0.1 | 1.35 | <0.1 | 0.18 | <0.1 | 2.89 | <0.1 | 0.48 | <0.1 | ||
50 | Trimethylpyrazine | - | - | 10.40 | <0.1 | - | - | - | - | - | - | Nutty, potato, cocoa, vegetable smell | |
51 | Furan | 1.20 | <0.1 | 1.12 | <0.1 | 0.78 | 0.18 | 1.20 | <0.1 | 0.96 | 3.14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, S.; Li, C.; Wu, J.; Peng, S.; Mao, H.; Wu, W.; Liao, L. Effect of Salt Concentration on Flavor Characteristics and Physicochemical Quality of Pickled Brassica napus. Fermentation 2023, 9, 275. https://doi.org/10.3390/fermentation9030275
Zhang S, Li C, Wu J, Peng S, Mao H, Wu W, Liao L. Effect of Salt Concentration on Flavor Characteristics and Physicochemical Quality of Pickled Brassica napus. Fermentation. 2023; 9(3):275. https://doi.org/10.3390/fermentation9030275
Chicago/Turabian StyleZhang, Sijie, Congcong Li, Junling Wu, Simin Peng, Haifeng Mao, Weiguo Wu, and Luyan Liao. 2023. "Effect of Salt Concentration on Flavor Characteristics and Physicochemical Quality of Pickled Brassica napus" Fermentation 9, no. 3: 275. https://doi.org/10.3390/fermentation9030275
APA StyleZhang, S., Li, C., Wu, J., Peng, S., Mao, H., Wu, W., & Liao, L. (2023). Effect of Salt Concentration on Flavor Characteristics and Physicochemical Quality of Pickled Brassica napus. Fermentation, 9(3), 275. https://doi.org/10.3390/fermentation9030275