Feasible Utilization of Waste Limestone as a Calcium Source for Microbially Induced Carbonate Precipitation (MICP)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Bacteria Solution
2.2. Preparation of Cementing Fluid
2.3. Preparation of Calcium Acetate
2.3.1. Single-Factor Test
2.3.2. Response Surface Methodology to Optimize the Calcium Acetate Yield
2.3.3. Date Processing
2.4. Preparation of MICP-Treated Sand Columns
2.5. Mechanical Test Procedure of MICP-Treated Sand Column
2.5.1. Dry Density
2.5.2. Permeability
2.5.3. UCS
2.5.4. The Content of Calcium Carbonate
2.5.5. Microstructure Analysis
3. Results and Discussion
3.1. Optimization of Calcium Acetate Yield
3.1.1. Single-Factor Analysis
3.1.2. Optimization Using Response Surface Methodology
3.2. Macroscopic Mechanical Behavior of MICP-Cured Sand Columns
3.3. Microstructure and Mineral Analyses Using ESEM and XRD
3.4. Analysis of the Cost of MICP
4. Future Directions Regarding MICP
5. Conclusions
- According to a response surface analysis, the optimal process conditions for extracting calcium acetate from limestone and acetic acid were as follows: the reaction temperature was 55 °C, the solid-liquid ratio was 1:14, the acetic acid dosage was 163%, and the calcium acetate yield was 96.81%.
- In the MICP sand fixation experiment with limestone as the calcium source, the mechanical indexes of the calcium carbonate content, dry density, and permeability coefficient of the sand column were better than those obtained with the calcium chloride samples, and the UCS also increased by 10.61% compared with the calcium chloride samples. This was due to the different crystal phases of the calcium carbonate produced by the microorganisms in different nutrient environments, resulting in different cementation strengths between the calcium carbonate and sand particles, which was further confirmed using SEM and XRD. However, the microbial-induced cement of both calcium sources was calcium carbonate. In contrast, the calcium carbonate precipitates obtained from calcium chloride were calcite crystals, while the calcium carbonate precipitates obtained from limestone/acetic acid were a cluster mixture of vaterite and calcite.
- Limestone is widely available and cheap, and the cost reduction is 31.87% compared to using calcium chloride as a calcium source. The experimental results also showed that limestone is an ideal calcium source for sand-solidified sand MICP.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- An, H.; Tang, Z.; Keesstra, S.; Shangguan, Z. Impact of desertification on soil and plant nutrient stoichiometry in a desert grassland. Sci. Rep. 2019, 9, 9422. [Google Scholar] [CrossRef] [Green Version]
- Kirkby, M. Desertification and development: Some broader contexts. J. Arid Environ. 2021, 193, 104575. [Google Scholar] [CrossRef]
- Stiles, D. Desertification: The time for action. Environmentalist 1984, 4, 93. [Google Scholar] [CrossRef]
- Liu, J.; Diamond, J. China’s environment in a globalizing world. Nature 2005, 435, 1179. [Google Scholar] [CrossRef]
- Xu, D.; Wang, Y.; Wang, Z. Linking priority areas and land restoration options to support desertification control in northern China. Ecol. Indic. 2022, 137, 108747. [Google Scholar] [CrossRef]
- Al-Taie, A.J.; Al-Shakarchi, Y.J.; Mohammed, A.A. Investigation of Geotechnical Specifications of Sand Dune Soil: A Case Study around Baiji in Iraq. Int. J. Sustain. Built Environ. 2013, 1, 208. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Song, Y.; Huang, J.; Lai, C.; Jiao, H.; Fang, H.; Zhu, J.; Song, X. Critical Review of Solidification of Sandy Soil by Microbially Induced Carbonate Precipitation (MICP). Crystals 2021, 11, 1439. [Google Scholar] [CrossRef]
- Elipe, M.G.M.; López-Querol, S. Aeolian sands: Characterization, options of improvement and possible employment in construction—The state-of-the-art. Constr. Build. Mater. 2014, 73, 728. [Google Scholar] [CrossRef]
- Karnati, V.R.; Munaga, T.; Gonavaram, K.K.; Amitava, B. Study on strength and leaching behavior of biogeochemical cemented sand. Geomicrobiol. J. 2020, 37, 670. [Google Scholar] [CrossRef]
- Punnoi, B.; Arpajirakul, S.; Pungrasmi, W.; Chompoorat, T.; Likitlersuang, S. Use of microbially induced calcite precipitation for soil improvement in compacted clays. Int. J. Geosynth. Ground Eng. 2021, 7, 86. [Google Scholar] [CrossRef]
- Bessaies-Bey, H.; Massoussi, N.; Mulik, S.; Baumann, R.; Schmitz, M.; Radler, M.; Gelardi, G.; Flatt, R.J.; Roussel, N. Polycarboxylate ester adsorption on cement grains: Influence of polydispersity. Cem. Concr. Res. 2021, 143, 106383. [Google Scholar] [CrossRef]
- Drochytka, R.; Hodul, J.; Mészárosová, L.; Jakubík, A. Chemically resistant polymeric jointing grout with environmental impact. Constr. Build. Mater. 2021, 292, 123454. [Google Scholar] [CrossRef]
- Kholghifard, M.; Amini Behbahani, B. Shear strength of clayey sand treated by nanoclay mixed with recycled polyester fiber. J. Cent. South Univ. 2022, 29, 259. [Google Scholar] [CrossRef]
- Pan, T.; Jiang, Y.; Ji, X. Interlayer bonding investigation of 3D printing cementitious materials with fluidity-retaining polycarboxylate superplasticizer and high-dispersion polycarboxylate superplasticizer. Constr. Build. Mater. 2022, 330, 127151. [Google Scholar] [CrossRef]
- Selvakumar, S.; Kulanthaivel, P.; Soundara, B. Influence of nano-silica and sodium silicate on the strength characteristics of clay soil. Nanotechnol. Environ. Eng. 2021, 6, 46. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, Q. Investigation on fundamental properties and chemical characterization of water-soluble epoxy resin modified cement grout. Constr. Build. Mater. 2021, 299, 123877. [Google Scholar] [CrossRef]
- Dejong, J.T.; Mortensen, B.M.; Martinez, B.C.; Nelson, D.C. Bio-mediated soil improvement. Ecol. Eng. 2010, 36, 197. [Google Scholar] [CrossRef]
- Boquet, E.; Boronat, A.; Ramos-Cormenzana, A. Production of calcite (calcium carbonate) crystals by soil bacteria is a general phenomenon. Nature 1973, 246, 527. [Google Scholar] [CrossRef]
- Zhu, T.; Dittrich, M. Carbonate precipitation through microbial activities in natural environment, and their potential in biotechnology: A review. Front. Bioeng. Biotechnol. 2016, 4, 4. [Google Scholar] [CrossRef] [Green Version]
- Mujah, D.; Shahin, M.A.; Cheng, L. State-of-the-art review of biocementation by microbially induced calcite precipitation (MICP) for soil stabilization. Geomicrobiol. J. 2017, 34, 524. [Google Scholar] [CrossRef]
- Li, C.; Yao, D.; Liu, S.; Zhou, T.; Bai, S.; Gao, Y.; Li, L. Improvement of Geomechanical Properties of Bio-remediated Aeolian Sand. Geomicrobiol. J. 2018, 35, 132. [Google Scholar] [CrossRef]
- Seifan, M.; Berenjian, A. Microbially induced calcium carbonate precipitation: A widespread phenomenon in the biological world. Appl. Microbiol. Biotechnol. 2019, 103, 4693. [Google Scholar] [CrossRef]
- Tang, C.; Yin, L.; Jiang, N.; Zhu, C.; Zeng, H.; Li, H.; Shi, B. Factors affecting the performance of microbial-induced carbonate precipitation (MICP) treated soil: A review. Environ. Earth Sci. 2020, 79, 94. [Google Scholar] [CrossRef]
- Ahmed, H.; Tiznobaik, M.; Huda, S.B.; Islam, M.S.; Alam, M.S. Recycled aggregate concrete from large-scale production to sustainable field application. Constr. Build. Mater. 2020, 262, 119979. [Google Scholar] [CrossRef]
- Jonkers, H.M.; Thijssen, A.; Muyzer, G.; Copuroglu, O.; Schlangen, E. Application of bacteria as self-healing agent for the development of sustainable concrete. Ecol. Eng. 2010, 36, 230. [Google Scholar] [CrossRef]
- Su, Z.; Deng, Z.; Wang, Y.; Ji, C.; Li, F.; Yang, G.; Huang, L. Effects of the Sr/Ca ratio on the bioremediation of strontium based on microbially-induced carbonate precipitation. J. Environ. Chem. Eng. 2023, 11, 108990. [Google Scholar] [CrossRef]
- Xue, Z.; Cheng, W.; Wang, L.; Qin, P.; Zhang, B. Revealing degradation and enhancement mechanisms affecting copper (Cu) immobilization using microbial-induced carbonate precipitation (MICP). J. Environ. Chem. Eng. 2022, 10, 108479. [Google Scholar] [CrossRef]
- Xiang, J.; Qiu, J.; Yuan, J.; Fu, H.; Yang, Y.; Gu, X. Study on denitrifying biogrout to immobilize heavy metals in bottom ash in an anaerobic environment and its immobilization mechanism. J. Environ. Chem. Eng. 2022, 10, 108084. [Google Scholar] [CrossRef]
- Song, H.; Wang, C.; Kumar, A.; Ding, Y.; Li, S.; Bai, X.; Liu, T.; Wang, J.; Zhang, Y. Removal of pb2+ and Cd2+ from contaminated water using novel microbial material (scoria@uf1). J. Environ. Chem. Eng. 2021, 9, 106495. [Google Scholar] [CrossRef]
- Chen, B.; Sun, W.; Sun, X.; Cui, C.; Lai, J.; Wang, Y.; Feng, J. Crack sealing evaluation of self-healing mortar with Sporosarcina pasteurii: Influence of bacterial concentration and air-entraining agent. Process Biochem. 2021, 107, 100. [Google Scholar] [CrossRef]
- Xu, J.; Tang, Y.; Wang, X. A correlation study on optimum conditions of microbial precipitation and prerequisites for self-healing concrete. Process Biochem. 2020, 94, 266. [Google Scholar] [CrossRef]
- Chung, J.; Kim, B.; Kim, I. A case study on chloride corrosion for the end zone of concrete deck subjected to de-icing salts added calcium chloride. J. Korean Soc. Saf. 2014, 29, 87. [Google Scholar] [CrossRef] [Green Version]
- Choi, S.; Wu, S.; Chu, J. Biocementation for sand using an eggshell as calcium source. J. Geotech. Geoenviron. Eng. 2016, 142, 6016010. [Google Scholar] [CrossRef]
- Zhang, Y.; Guo, H.X.; Cheng, X.H. Role of calcium sources in the strength and microstructure of microbial mortar. Constr. Build. Mater. 2015, 77, 160. [Google Scholar] [CrossRef]
- Cheng, L.; Shahin, M.A.; Cord-Ruwisch, R. Bio-cementation of sandy soil using microbially induced carbonate precipitation for marine environments. Geotechnique 2014, 64, 1010. [Google Scholar] [CrossRef] [Green Version]
- Choi, S.G.; Chu, J.; Brown, R.C.; Wang, K.; Wen, Z. Sustainable Biocement Production via Microbially Induced Calcium Carbonate Precipitation: Use of limestone and acetic acid derived from pyrolysis of lignocellulosic biomass. ACS Sustain. Chem. Eng. 2017, 5, 7449. [Google Scholar] [CrossRef] [Green Version]
- Gowthaman, S.; Chen, M.; Nakashima, K.; Kawasaki, S. Effect of scallop powder addition on micp treatment of amorphous peat. Front. Environ. Sci. 2021, 9, 690376. [Google Scholar] [CrossRef]
- Gowthaman, S.; Yamamoto, M.; Nakashima, K.; Ivanov, V.; Kawasaki, S. Calcium phosphate biocement using bone meal and acid urease: An eco-friendly approach for soil improvement. J. Clean. Prod. 2021, 319, 128782. [Google Scholar] [CrossRef]
- Jin, P.; Zhang, S.; Liu, Y.; Zhang, W.; Wang, R. Application of Bacillus mucilaginosus in the carbonation of steel slag. Appl. Microbiol. Biotechnol. 2021, 105, 8663. [Google Scholar] [CrossRef]
- Liang, S.; Chen, J.; Niu, J.; Gong, X.; Feng, D. Using recycled calcium sources to solidify sandy soil through microbial induced carbonate precipitation. Mar. Geores. Geotechnol. 2020, 38, 393. [Google Scholar] [CrossRef]
- Peng, D.; Qiao, S.; Luo, Y.; Ma, H.; Zhang, L.; Hou, S.; Wu, B.; Xu, H. Performance of microbial induced carbonate precipitation for immobilizing cd in water and soil. Hazard. Mater. 2020, 400, 123116. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Chaosheng, T.; Bo, L.; Xiaohua, P.; Dianlong, W.; Chao, L.; Hao, L. Experimental study on microbial solidified sand based on calcium source extracted from limestone powder. Geol. J. Chin. Univ. 2021, 27, 746. [Google Scholar] [CrossRef]
- Mansy, A.E.; El-Desouky, E.; El-Gendi, H.; Abu-Saied, M.A.; Taha, T.H.; Amer, R.A. Cellulosic fiber waste feedstock for bioethanol production via bioreactor-dependent fermentation. Fermentation 2023, 9, 176. [Google Scholar] [CrossRef]
- Cutzu, R.; Bardi, L. Production of bioethanol from agricultural wastes using residual thermal energy of a cogeneration plant in the distillation phase. Fermentation 2017, 3, 24. [Google Scholar] [CrossRef] [Green Version]
- Su, F.; Yang, Y.; Qi, Y.; Zhang, H. Combining microbially induced calcite precipitation (MICP) with zeolite: A new technique to reduce ammonia emission and enhance soil treatment ability of MICP technology. J. Environ. Chem. Eng. 2022, 10, 107770. [Google Scholar] [CrossRef]
- Yu, X.; Chu, J.; Yang, Y.; Qian, C. Reduction of ammonia production in the biocementation process for sand using a new biocement. J. Clean. Prod. 2021, 286, 124928. [Google Scholar] [CrossRef]
- Mohsenzadeh, A.; Aflaki, E.; Gowthaman, S.; Nakashima, K.; Kawasaki, S.; Ebadi, T. A two-stage treatment process for the management of produced ammonium by-products in ureolytic bio-cementation process. Int. J. Environ. Sci. Technol. 2022, 19, 449. [Google Scholar] [CrossRef]
- Keykha, H.A.; Mohamadzadeh, H.; Asadi, A.; Kawasaki, S. Ammonium-free carbonate-producing bacteria as an ecofriendly soil biostabilizer. Geotech. Test. J. 2019, 42, 19. [Google Scholar] [CrossRef]
- Xiang, J.; Qiu, J.; Wang, Y.; Gu, X. Calcium acetate as calcium source used to biocement for improving performance and reducing ammonia emission. J. Clean. Prod. 2022, 348, 131286. [Google Scholar] [CrossRef]
- Duo, L.; Kan-Liang, T.; Hui-Li, Z.; Yu-Yao, W.; Kang-Yi, N.; Shi-Can, Z. Experimental investigation of solidifying desert aeolian sand using microbially induced calcite precipitation. Constr. Build. Mater. 2018, 172, 251. [Google Scholar] [CrossRef]
- Zhang, Z.; Tong, K.; Hu, L.; Yu, Q.; Wu, L. Experimental study on solidification of tailings by MICP under the regulation of organic matrix. Constr. Build. Mater. 2020, 265, 120303. [Google Scholar] [CrossRef]
- Chen, L.; Song, Y.; Fang, H.; Feng, Q.; Lai, C.; Song, X. Systematic optimization of a novel, cost-effective fermentation medium of Sporosarcina pasteurii for microbially induced calcite precipitation (MICP). Constr. Build. Mater. 2022, 348, 128632. [Google Scholar] [CrossRef]
- Liberato, V.; Benevenuti, C.; Coelho, F.; Botelho, A.; Ferreira, T. Clostridium sp. As bio-catalyst for fuels and chemicals production in a biorefinery context. Catalysts 2019, 9, 962. [Google Scholar] [CrossRef] [Green Version]
- Amiri, A.; Bundur, Z.B. Use of corn-steep liquor as an alternative carbon source for biomineralization in cement-based materials and its impact on performance. Constr. Build. Mater. 2018, 165, 655. [Google Scholar] [CrossRef]
- Sd, M.K.V.; Babu, C.N.; VijayaKumar, V.T.; Vasumathi, N. Beneficiation of low-grade limestone by flotation. Mater. Today Proc. 2023, 72, 181. [Google Scholar] [CrossRef]
- Xu, X.C.; Guo, H.X.; Cheng, X.H.; Li, M. The promotion of magnesium ions on aragonite precipitation in MICP process. Constr. Build. Mater. 2020, 263, 120057. [Google Scholar] [CrossRef]
- Lv, C.; Tang, C.S.; Zhang, J.Z.; Pan, X.H.; Liu, H. Effects of calcium sources and magnesium ions on the mechanical behavior of MICP-treated calcareous sand: Experimental evidence and precipitated crystal insights. Acta Geotech. 2022, 1–15. [Google Scholar] [CrossRef]
- Sathyanarayanan, S.; Suresh, S.; Saravanan, C.G.; Vikneswaran, M.; Dhamodaran, G.; Sonthalia, A.; Josephin, J.S.F.; Varuvel, E.G. Experimental investigation and performance prediction of gasoline engine operating parameters fueled with diisopropyl ether-gasoline blends: Response surface methodology based optimization. J. Clean. Prod. 2022, 375, 133941. [Google Scholar] [CrossRef]
- Yang, D.; Xu, G.; Duan, Y.; Dong, S. Self-healing cement composites based on bleaching earth immobilized bacteria. J. Clean. Prod. 2022, 358, 132045. [Google Scholar] [CrossRef]
- ASTM D4219; Standard Test Method for Unconfined Compressive Strength Index of Chemical-Grouted Soils. ASTM International: West Conshohocken, PA, USA, 2008.
- ASTM D4373; Standard Test Method for Rapid Determination of Carbonate Content of Soils. ASTM International: West Conshohocken, PA, USA, 2014.
- M-Ridha, M.J.; Hussein, S.I.; Alismaeel, Z.T.; Atiya, M.A.; Aziz, G.M. Biodegradation of reactive dyes by some bacteria using response surface methodology as an optimization technique. Alex. Eng. J. 2020, 59, 3551. [Google Scholar] [CrossRef]
- Pereira, L.M.S.; Milan, T.M.; Tapia-Blácido, D.R. Using response surface methodology (RSM) to optimize 2G bioethanol production: A review. Biomass Bioenergy 2021, 151, 106166. [Google Scholar] [CrossRef]
- Song, W.; Li, Z.; Liu, F.; Ding, Y.; Qi, P.; You, H.; Jin, C. Effective removal of ammonia nitrogen from waste seawater using crystal seed enhanced struvite precipitation technology with response surface methodology for process optimization. Environ. Sci. Pollut. Res. 2018, 25, 628. [Google Scholar] [CrossRef] [PubMed]
- Kahani, M.; Kalantary, F.; Soudi, M.R.; Pakdel, L.; Aghaalizadeh, S. Optimization of cost effective culture medium for Sporosarcina pasteurii as biocementing agent using response surface methodology: Up cycling dairy waste and seawater. J. Clean. Prod. 2020, 253, 120022. [Google Scholar] [CrossRef]
- Alzaeemi, S.A.; Noman, E.A.; Al-Shaibani, M.M.; Al-Gheethi, A.; Mohamed, R.M.; Almoheer, R.; Seif, M.; Tay, K.G.; Zin, N.M.; El Enshasy, H.A. Improvement of L-asparaginase, an Anticancer Agent of Aspergillus arenarioides EAN603 in Submerged Fermentation Using a Radial Basis Function Neural Network with a Specific Genetic Algorithm (RBFNN-GA). Fermentation 2023, 9, 200. [Google Scholar] [CrossRef]
- Yang, L.; Geng, Y.; Cui, D.; Liu, Z.; Xiong, Z.; Pavlostathis, S.G.; Shao, P.; Luo, X. Corrected response surface methodology for microalgae towards optimized ammonia nitrogen removal: A case of rare earth mining tailings wastewater in Southern Jiangxi, China. J. Clean. Prod. 2022, 343, 130998. [Google Scholar] [CrossRef]
- Xu, J.; Wang, X.; Wang, B. Biochemical process of ureolysis-based microbial caco3 precipitation and its application in self-healing concrete. Appl. Microbiol. Biotechnol. 2018, 102, 3121. [Google Scholar] [CrossRef]
- Pan, X.; Achal, V. Influence of calcium sources on Microbially Induced Calcium Carbonate Precipitation by Bacillus sp. CR2. Appl. Biochem. Biotechnol. 2014, 173, 307. [Google Scholar] [CrossRef]
- Mori, D.; Uday, K.V. A review on qualitative interaction among the parameters affecting ureolytic microbial-induced calcite precipitation. Environ. Earth Sci. 2021, 80, 329. [Google Scholar] [CrossRef]
- Sotoudehfar, A.R.; Mirmohammad Sadeghi, M.; Mokhtari, E.; Shafiei, F. Assessment of the Parameters Influencing Microbially Calcite Precipitation in Injection Experiments Using Taguchi Methodology. Geomicrobiol. J. 2016, 33, 163. [Google Scholar] [CrossRef]
- Chu, J.; Ivanov, V.; Naeimi, M.; Stabnikov, V.; Liu, H. Optimization of calcium-based bioclogging and biocementation of sand. Acta Geotech. 2014, 9, 277. [Google Scholar] [CrossRef]
- Stróżyk, J.; Tankiewicz, M. The elastic undrained modulus e for stiff consolidated clays related to the concept of stress history and normalized soil properties. Stud. Geotech. Mech. 2016, 38, 67. [Google Scholar] [CrossRef] [Green Version]
- Pan, L.; Li, Q.; Zhou, Y.; Song, N.; Yu, L.; Wang, X.; Xiong, K.; Yap, L.S.; Huo, J. Effects of different calcium sources on the mineralization and sand curing of CaCO3 by carbonic anhydrase-producing bacteria. RSC Adv. 2019, 9, 40827. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Guo, H.X.; Cheng, X.H. Influences of calcium sources on microbially induced carbonate precipitation in porous media. Mater. Res. Innov. 2014, 18, 79. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, S.; Tong, X.; Kang, X. Crystal transformation and self-assembly theory of microbially induced calcium carbonate precipitation. Appl. Microbiol. Biotechnol. 2022, 106, 3555. [Google Scholar] [CrossRef]
- Portugal, C.R.M.E.; Fonyo, C.; Machado, C.C.; Meganck, R.; Jarvis, T. Microbiologically Induced Calcite Precipitation biocementation, green alternative for roads—Is this the breakthrough? A critical review. J. Clean. Prod. 2020, 262, 121372. [Google Scholar] [CrossRef]
- Shan, Y.; Liang, J.; Tong, H.; Yuan, J.; Zhao, J. Effect of different fibers on small-strain dynamic properties of microbially induced calcite precipitation—Fiber combined reinforced calcareous sand. Constr. Build. Mater. 2022, 322, 126343. [Google Scholar] [CrossRef]
- Imran, M.A.; Nakashima, K.; Evelpidou, N.; Kawasaki, S. Durability Improvement of Biocemented Sand by Fiber-Reinforced MICP for Coastal Erosion Protection. Materials 2022, 15, 2389. [Google Scholar] [CrossRef]
- Dikshit, R.; Dey, A.; Gupta, N.; Varma, S.C.; Venugopal, I.; Viswanathan, K.; Kumar, A. Space bricks: From LSS to machinable structures via MICP. Ceram. Int. 2021, 47, 14892. [Google Scholar] [CrossRef]
- Lambert, S.E.; Randall, D.G. Manufacturing bio-bricks using microbial induced calcium carbonate precipitation and human urine. Water Res. 2019, 160, 158. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Chu, J.; Cheng, L.; Liu, H. Utilization of carbide sludge and urine for sustainable biocement production. Environ. Chem. Eng. 2022, 10, 107443. [Google Scholar] [CrossRef]
- Crane, L.; Ray, H.; Hamdan, N.; Boyer, T.H. Enzyme-induced carbonate precipitation utilizing fresh urine and calcium-rich zeolites. J. Environ. Chem. Eng. 2022, 10, 107238. [Google Scholar] [CrossRef]
- Farajnia, A.; Shafaat, A.; Farajnia, S.; Sartipipour, M.; Khodadadi Tirkolaei, H. The efficiency of ureolytic bacteria isolated from historical adobe structures in the production of bio-bricks. Constr. Build. Mater. 2022, 317, 125868. [Google Scholar] [CrossRef]
Level | Factors | ||
---|---|---|---|
A Reaction Temperature/°C | B Solid-Liquid Ratio | C Acetic Acid Dosage/% | |
−1 | 45 | 1:12 | 140 |
0 | 55 | 1:14 | 160 |
1 | 65 | 1:16 | 180 |
Run. | A (°C) | B | C (%) | Y (%) | |
---|---|---|---|---|---|
Actual Value | Predicted Value | ||||
1 | 55 | 1: 14 | 160 | 96.25 | 95.93 |
2 | 55 | 1: 16 | 180 | 93.51 | 93.42 |
3 | 55 | 1: 14 | 160 | 95.79 | 95.93 |
4 | 45 | 1: 14 | 180 | 91.47 | 91.54 |
5 | 65 | 1: 16 | 160 | 92.19 | 91.34 |
6 | 45 | 1: 16 | 160 | 90.88 | 91.9 |
7 | 65 | 1: 12 | 160 | 90.24 | 90.22 |
8 | 45 | 1: 14 | 140 | 90.52 | 90.58 |
9 | 55 | 1: 14 | 160 | 95.87 | 95.93 |
10 | 55 | 1: 14 | 160 | 96.13 | 95.53 |
11 | 55 | 1: 14 | 160 | 95.61 | 95.53 |
12 | 55 | 1: 12 | 140 | 91.56 | 91.65 |
13 | 65 | 1: 14 | 140 | 90.36 | 90.29 |
14 | 65 | 1: 14 | 180 | 91.73 | 91.67 |
15 | 45 | 1: 12 | 160 | 90.98 | 90.83 |
16 | 55 | 1: 16 | 140 | 91.16 | 91.08 |
17 | 55 | 1: 12 | 180 | 91.56 | 91.64 |
Source | Sum of Squares | df | Mean Square | F-Value | p-Value | |
---|---|---|---|---|---|---|
Model | 84.91 | 9 | 9.43 | 181.19 | <0.0001 | significant |
A | 0.0136 | 1 | 0.0136 | 0.2614 | 0.6249 | |
B | 0.7200 | 1 | 0.7200 | 13.83 | 0.0075 | |
C | 2.73 | 1 | 2.73 | 52.36 | 0.0002 | |
AB | 0.2756 | 1 | 0.2756 | 5.29 | 0.0549 | |
AC | 0.0441 | 1 | 0.0441 | 0.8470 | 0.3880 | |
BC | 1.38 | 1 | 1.38 | 26.52 | 0.0013 | |
A² | 38.34 | 1 | 38.34 | 736.31 | <0.0001 | |
B² | 18.39 | 1 | 18.39 | 353.23 | <0.0001 | |
C² | 15.08 | 1 | 15.08 | 289.63 | <0.0001 | |
Residual | 0.3645 | 7 | 0.0521 | |||
Lack of Fit | 0.0965 | 3 | 0.0322 | 0.4800 | 0.7136 | Not significant |
Pure Error | 0.2680 | 4 | 0.0670 | |||
Cor Total | 83.27 | 16 | ||||
Std. Dev. | 0.2282 | R2 | 0.9957 | |||
Mean | 92.64 | Adjusted R2 | 0.9902 | |||
C.V.% | 0.2463 | Predicted R2 | 0.9770 | |||
Adeq Precision | 32.6340 |
Project | Predicted Value | Actual Value | Error/% |
---|---|---|---|
Calcium acetate yield/% | 95.994 | 96.81 | 0.84 |
95.29 | 0.74 | ||
94.43 | 1.66 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, Q.; Song, Y.; Lu, C.; Fang, H.; Huang, Y.; Chen, L.; Song, X. Feasible Utilization of Waste Limestone as a Calcium Source for Microbially Induced Carbonate Precipitation (MICP). Fermentation 2023, 9, 307. https://doi.org/10.3390/fermentation9030307
Feng Q, Song Y, Lu C, Fang H, Huang Y, Chen L, Song X. Feasible Utilization of Waste Limestone as a Calcium Source for Microbially Induced Carbonate Precipitation (MICP). Fermentation. 2023; 9(3):307. https://doi.org/10.3390/fermentation9030307
Chicago/Turabian StyleFeng, Qian, Yuqi Song, Chuanwei Lu, Hao Fang, Yuxin Huang, Liuxia Chen, and Xiangyang Song. 2023. "Feasible Utilization of Waste Limestone as a Calcium Source for Microbially Induced Carbonate Precipitation (MICP)" Fermentation 9, no. 3: 307. https://doi.org/10.3390/fermentation9030307
APA StyleFeng, Q., Song, Y., Lu, C., Fang, H., Huang, Y., Chen, L., & Song, X. (2023). Feasible Utilization of Waste Limestone as a Calcium Source for Microbially Induced Carbonate Precipitation (MICP). Fermentation, 9(3), 307. https://doi.org/10.3390/fermentation9030307