The Effect of Direct-Fed Microbials on In-Vitro Rumen Fermentation of Grass or Maize Silage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Laboratories and In-Vitro System
2.2. Feeds, Treatments, and Rumen Fluid Donor Animals
2.3. Experimental Procedures
2.4. Calculations and Statistical Analyses
2.4.1. Calculations
baseline OM microbial weight gains)/OM in the sample)
2.4.2. Statistical Analysis
3. Results
3.1. Effect of Laboratory
3.2. Effect of Probiotics
3.2.1. Feed Organic Matter Degradation
3.2.2. Total Gas Production
3.2.3. Fitted Curve Parameters of Total Gas Production
3.2.4. Methane (CH4) Concentration and Yield
4. Discussion
4.1. Effect of Laboratory
4.2. Effect of DFM
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Adesogan, A.T. What are feeds worth? A critical evaluation of selected nutritive value methods. In Proceedings of the 13th Annual Florida Ruminant Nutrition Symposium, Gainesville, FL, USA, 11–12 January 2002; pp. 33–47. [Google Scholar]
- Menke, K.H.; Raab, L.; Salewski, A.; Steingass, H.; Fritz, D.; Schneider, W. The estimation of the digestibility and metabolizable energy content of ruminant feedingstuffs from the gas production when they are incubated with rumen liquor in vitro. J. Agric. Sci. 1979, 93, 217–222. [Google Scholar] [CrossRef] [Green Version]
- Menke, K.H.; Steingass, H. Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Anim. Res. Dev. 1988, 28, 7–55. [Google Scholar]
- Tedeschi, L.O.; Schofield, P.; Pell, A.N. Determining feed quality for ruminants using in vitro gas production technique. 2. Evaluating different models to assess gas production measurements. In The 4th Workshop on Modeling in Ruminant Nutrition: Application of the Gas Production Technique; Embrapa: Juiz de Fora, MG, Brazil, 2008; p. 15. [Google Scholar]
- Cornou, C.; Storm, I.M.D.; Hindrichsen, I.K.; Worgan, H.; Bakewell, E.; Ruiz, D.R.Y.; Hansen, H.H. A ring test of a wireless in vitro gas production system. Anim. Prod. Sci. 2013, 53, 585–592. [Google Scholar] [CrossRef]
- Yáñez-Ruiz, D.R.; Bannink, A.; Dijkstra, J.; Kebreab, E.; Morgavi, D.P.; O’Kiely, P.; Reynolds, C.K.; Schwarm, A.; Shingfield, K.J.; Yu, Z.; et al. Design, implementation and interpretation of in vitro batch culture experiments to assess enteric methane mitigation in ruminants—A review. Anim. Feed. Sci. Technol. 2016, 216, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Van Gelder, A.H.; Hetta, M.; Rodrigues, M.A.M.; De Boever, J.L.; Den Hartigh, H.; Rymer, C.; Cone, J.W. Ranking of in vitro fermentability of 20 feedstuffs with an automated gas production technique: Results of a ring test. Anim. Feed. Sci. Technol. 2005, 123, 243–253. [Google Scholar] [CrossRef]
- Davies, Z.S.; Mason, D.; Brooks, A.E.; Griffith, G.W.; Merry, R.J.; Theodorou, M.K. An automated system for measuring gas production from forages inoculated with rumen fluid and its use in determining the effect of enzymes on grass silage. Anim. Feed. Sci. Technol. 2000, 83, 205–221. [Google Scholar] [CrossRef]
- Rymer, C.; Williams, B.A.; Brooks, A.E.; Davies, D.R.; Givens, D.I. Inter-laboratory variation of in vitro cumulative gas production profiles of feeds using manual and automated methods. Anim. Feed. Sci. Technol. 2005, 123, 225–241. [Google Scholar] [CrossRef]
- Seo, J.K.; Kim, S.W.; Kim, M.H.; Upadhaya, S.D.; Kam, D.K.; Ha, J.K. Direct-fed microbials for ruminant animals. Asian-Australas. J. Anim. Sci. 2010, 23, 1657–1667. [Google Scholar] [CrossRef]
- Chaucheyras-Durand, F.; Durand, H. Probiotics in animal nutrition and health. Benef. Microbes 2009, 1, 3–9. [Google Scholar] [CrossRef]
- Astuti, W.D.; Ridwan, R.; Fidriyanto, R.; Rohmatussolihat, R.; Sari, N.F.; Sarwono, K.A.; Fitri, A.; Widyastuti, Y. Changes in rumen fermentation and bacterial profiles after administering Lactiplantibacillus plantarum as a probiotic. Vet. World 2022, 15, 1969–1974. [Google Scholar] [CrossRef]
- Pan, L.; Harper, K.; Queiroz, O.; Copani, G.; Cappellozza, B.I. Effects of a Bacillus-based direct-fed microbial on in vitro nutrient digestibility of forage and high-starch concentrate substrates. Transl. Anim. Sci. 2022, 6, txac067. [Google Scholar] [CrossRef]
- Dias, B.G.C.; Meschiatti, M.A.; Brixner, B.; Almeida, A.; Cappellozza, B.; Copani, G.; Ferreira, P.; Queiroz, O.; Santos, F. PSVII-3 Effects of Feeding Direct-fed Microbials on Digestibility and Rumen Fermentation Characteristics of Finishing Bos Indicus Cattle. J. Anim. Sci. 2022, 100 (Suppl. S3), 386–387. [Google Scholar] [CrossRef]
- Cull, C.; Singu, V.K.; Cull, B.J.; Lechtenberg, K.F.; Amachawadi, R.G.; Schutz, J.S.; Bryan, K.A. Efficacy of Lactobacillus animalis and Propionibacterium freudenreichii-based feed additives in reducing salmonella-associated health and performance effects in commercial beef calves. Antibiotics 2022, 11, 1328. [Google Scholar] [CrossRef]
- Mazkour, S. Shekarforoush, S.S.; Basiri, S. The effects of supplementation of Bacillus subtilis and Bacillus coagulans spores on the intestinal microflora and growth performance in rat. Iran. J. Microbiol. 2019, 11, 260. [Google Scholar] [PubMed]
- Kan, L.; Guo, F.; Liu, Y.; Pham, V.H.; Guo, Y.; Wang, Z. Probiotics Bacillus licheniformis improves intestinal health of subclinical necrotic enteritis-challenged broilers. Front. Microbiol. 2021, 12, 623739. [Google Scholar] [CrossRef] [PubMed]
- Oyebade, A.O.; Lee, S.; Sultana, H.; Arriola, K.; Duvalsaint, E.; Nino De, G.C.; Fernandez, M.I.; Marroquin, P.L.; Amaro1, F.; Ghedin, G.L.; et al. Effects of direct-fed microbial supplementation on performance and immune response of lactating dairy cows. J. Dairy Sci. 2023. submitted. [Google Scholar]
- Van Soest, P.V.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- ANKOM Technology, Analytical Procedures & Support, Fiber Analyzer A200. Available online: https://www.ankom.com/analytical-methods-support/fiber-analyzer-a200 (accessed on 10 May 2020).
- Available online: https://www.ankom.com/analytical-methods-support/daisy-incubators (accessed on 17 February 2023).
- Pandey, D.; Hansen, H.H.; Dhakal, R.; Aryal, N.; Rai, S.P.; Sapkota, R.; Nielsen, M.O.; Novoa-Garrido, M.; Khanal, P. Interspecies and seasonal variations in macroalgae from the Nordic region: Chemical composition and impacts on rumen fermentation and microbiome assembly. J. Clean. Prod. 2022, 363, 132456. [Google Scholar] [CrossRef]
- Vargas-Bello-Pérez, E.; Pedersen, N.C.; Khushvakov, J.; Ye, Y.; Dhakal, R.; Hansen, H.H.; Ahrné, L.; Khakimov, B. Effect of supplementing dairy goat diets with rapeseed oil or sunflower oil on performance, milk composition, milk fatty acid profile, and in vitro fermentation kinetics. Front. Vet. Sci. 2022, 9, 614. [Google Scholar] [CrossRef]
- Carro, M.D.; López, S.; Valdés, C.; González, J.S. Effect of nitrogen form (casein and urea) on the in vitro degradation of cell walls from six forages. J. Anim. Physiol. Anim. Nutr. 1999, 81, 212–222. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021; Available online: https://www.R-project.org/ (accessed on 20 March 2021).
- Ritz, C.; Baty, F.; Streibig, J.C.; Gerhard, D. Dose-Response Analysis Using R. PLoS ONE 2015, 10, e0146021. [Google Scholar] [CrossRef] [Green Version]
- Dhakal, R.; Manuel, G.R.; Einar, V.B.P.; Hanne, H.H. Effect of autochthonous Nepalese fruits on nutrient degradation, fermentation kinetics, total gas production and methane production in in-vitro rumen fermentation. Animals 2022, 12, 2199. [Google Scholar] [CrossRef] [PubMed]
- Groot, J.C.J.; Cone, J.W.; Williams, B.A.; Debersaques, F.M.A.; Lantinga, E.A. Multiphasic analysis of gas production kinetics for in vitro fermentation of ruminant feeds. Anim. Feed. Sci. Technol. 1996, 64, 77–89. [Google Scholar] [CrossRef]
- Ørskov, E.R.; McDonald, I. The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. J. Anim. Sci. (Camb.) 1979, 92, 499–503. [Google Scholar] [CrossRef] [Green Version]
- Douglas, B.; Martin, M.; Ben, B.; Steve, W. Fitting Linear Mixed-Effects Models Using lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar]
- Blümmel, M.; Makkar, H.P.S.; Becker, K. In vitro gas production: A technique revisited. J. Anim. Physiol. Anim. Nutr. 1997, 77, 24–34. [Google Scholar] [CrossRef]
- Volden, H. NorFor—The Nordic Feed Evaluation System; EAAP Scientific Series; Volden, H., Ed.; Wageningen Academic Publishers: Wageningen, The Netherlands, 2011. [Google Scholar]
- Cattani, M.; Maccarana, L.; Hansen, H.H.; Bailoni, L. Relationships among gas production, end products of rumen fermentation and microbial N produced in vitro at two incubation times. Agric. Conspec. Sci. 2013, 78, 217–220. [Google Scholar]
- Rabelo, C.H.S.; Basso, F.C.; Lara, E.C.; Jorge, L.G.O.; Härter, C.J.; Mesquita, L.G.; Silva, L.F.; Reis, R.A. Effects of Lactobacillus buchneri as a silage inoculant and as a probiotic on feed intake, apparent digestibility and ruminal fermentation and microbiology in wethers fed low-dry-matter whole-crop maize silage. Grass Forage Sci. 2018, 73, 67–77. [Google Scholar] [CrossRef]
- Ellis, J.L.; Bannink, A.; Hindrichsen, I.K.; Kinley, R.D.; Pellikaan, W.F.; Milora, N.; Dijkstra, J. The effect of lactic acid bacteria included as a probiotic or silage inoculant on in vitro rumen digestibility, total gas and methane production. Anim. Feed. Sci. Technol. 2016, 211, 61–74. [Google Scholar] [CrossRef]
- Chen, L.; Ren, A.; Zhou, C.; Tan, Z. Effects of Lactobacillus acidophilus supplementation for improving in vitro rumen fermentation characteristics of cereal straws. Ital. J. Anim. Sci. 2017, 16, 52–60. [Google Scholar] [CrossRef] [Green Version]
- Ridwan, R.; Bungsu, W.A.; Astuti, W.D.; Rohmatussolihat, R.; Sari, N.F.; Fidriyanto, R.; Jayanegara, A.; Wijayanti, I.; Widyastuti, Y. The Use of Lactic Acid Bacteria as Ruminant Probiotic Candidates Based on In Vitro Rumen Fermentation Characteristics. Bul. Peternak. 2018, 42, 31–36. [Google Scholar] [CrossRef] [Green Version]
- Arowolo, M.A.; He, J. Use of probiotics and botanical extracts to improve ruminant production in the tropics: A review. Anim. Nutr. 2018, 4, 241–249. [Google Scholar] [CrossRef] [PubMed]
- Qiao, G.H.; Shan, A.S.; Ma, N.; Ma, Q.Q.; Sun, Z.W. Effect of supplemental Bacillus cultures on rumen fermentation and milk yield in Chinese Holstein cows. J. Anim. Physiol. Anim. Nutr. 2010, 94, 429–436. [Google Scholar] [CrossRef] [PubMed]
- Chiquette, J.; Talbot, G.; Markwell, F.; Nili, N.; Forster, R.J. Repeated ruminal dosing of Ruminococcus Flavefaciens NJ along with a probiotic mixture in forage or concentrate-fed dairy cows: Effect on ruminal fermentation, cellulolytic populations and in sacco digestibility. Can. J. Anim. Sci. 2007, 87, 237–249. [Google Scholar] [CrossRef] [Green Version]
- Jatkauskas, J.; Vrotniakienė, V. Effect of L. Plantarum, Pediococcus Acidilactici, Enterococcus Faecium and L. Lactis microbial supplementation of grass silage on the fermentation characteristics in rumen of dairy cows. Vet. Ir Zootech. 2007, 40, 29–34. [Google Scholar]
- Getachew, G.; Robinson, P.H.; DePeters, E.J.; Taylor, S.J. Relationships between chemical composition, dry matter degradation and in vitro gas production of several ruminant feeds. Anim. Feed. Sci. Technol. 2004, 111, 57–71. [Google Scholar] [CrossRef]
- Mamuad, L.; Kim, S.H.; Jeong, C.D.; Choi, Y.J.; Jeon, C.O.; Lee, S.S. Effect of fumarate reducing bacteria on in vitro rumen fermentation, methane mitigation and microbial diversity. J. Microbiol. 2014, 52, 120–128. [Google Scholar] [CrossRef]
- Lamba, J.S.; Wadhwa, M.; Bakshi, M.P.S. In vitro methane production and in sacco degradability of processed wheat and rice straws. Indian J. Anim. Nutr. 2014, 31, 345–350. [Google Scholar]
- Moe, P.W.; Tyrrell, H.F. Methane production in dairy cows. J. Dairy Sci. 1979, 62, 1583–1586. [Google Scholar] [CrossRef]
- Oyebade, A.; Arriola, K.G.; Sultana, H.; Lee, S.; Duvalsaint, E.; Amaro, F.; Fernandez, M.I.; Nino De, G.C.; Marroquin, P.L.; Ghedin, G.L.; et al. Effects of probiotics on in-vitro digestibility, rumen fermentation, methane and gas production from a corn silage-based TMR. J. Dairy Sci. 2020, 103 (Suppl. S1), 57. [Google Scholar]
- Chang, M.; Ma, F.; Wei, J.; Liu, J.; Nan, X.; Sun, P. 2021. Live Bacillus subtilis natto promotes rumen fermentation by modulating rumen microbiota in vitro. Animals 2021, 11, 1519. [Google Scholar] [CrossRef]
- Ji, J.; Guijie, Z.; Ming, X.; Chenyang, D.; Runze, Z.; Liu, D.; Yongjie, Z.; Manli, W.; Manlin, W.; Baiyila, W. Effects of cellulase and Lactiplantibacillus plantarum on the fermentation quality, microbial diversity, gene function prediction, and in vitro rumen fermentation parameters of Caragana korshinskii silage. Front. Food Sci. Technol. 2023, 13, 926065. [Google Scholar]
- Maderal, A.; Fernandez-Marenchino, I.; Cuervo, W.; Tarnonsky, F.; Podversich, F.; de Martinez, J.J.V.; Moreno, M.R.; Schulmeister, T.M.; Queiroz, O.; Cappellozza, B.; et al. PSI-19 Effect of Increasing Supplementation of Bacillus Spp. on in Vitro Ruminal Fermentation and Nutrient Digestibility. J. Anim. Sci. 2022, 100 (Suppl. S3), 359. [Google Scholar] [CrossRef]
- Blümmel, M.; Ørskov, E.R. Comparison of in vitro gas production and nylon bag degradability of roughages in prediction of feed intake in cattle. Anim. Feed. Sci. Technol. 1993, 40, 109–119. [Google Scholar] [CrossRef]
- Krishnamoorthy, U.; Steingass, H.; Menke, K.H. Preliminary observation on the relationship between gas production and microbial protein synthesis in vitro. Arch. Anim. Nutr. 1991, 5, 521–526. [Google Scholar] [CrossRef] [PubMed]
- Van Lingen, H.J.; Plugge, C.M.; Fadel, J.G.; Kebreab, E.; Bannink, A.; Dijkstra, J. Thermodynamic driving force of hydrogen on rumen microbial metabolism: A theoretical investigation. PLoS ONE 2016, 11, e0161362. [Google Scholar]
- Janssen, P.H. Influence of hydrogen on rumen methane formation and fermentation balances through microbial growth kinetics and fermentation thermodynamics. Anim. Feed. Sci. Technol. 2010, 160, 1–22. [Google Scholar] [CrossRef]
- Makkar, H.P. Recent advances in the in vitro gas method for evaluation of nutritional quality of feed resources. Assessing quality and safety of animal feeds. FAO Anim. Prod. Health Ser. 2004, 160, 55–88. [Google Scholar]
- Hindrichsen, I.K.; Wettstein, H.R.; Machmüller, A.; Knudsen, K.B.; Madsen, J.; Kreuzer, M. Digestive and metabolic utilisation of dairy cows supplemented with concentrates characterised by different carbohydrates. Anim. Feed. Sci. Technol. 2006, 126, 43–61. [Google Scholar] [CrossRef]
- Kim, S.H.; Mamuad, L.L.; Kim, E.J.; Sung, H.G.; Bae, G.S.; Cho, K.K.; Lee, C.; Lee, S.S. Effect of different concentrate diet levels on rumen fluid inoculum used for determination of in vitro rumen fermentation, methane concentration, and methanogen abundance and diversity. Ital. J. Anim. Sci. 2018, 17, 359–367. [Google Scholar] [CrossRef] [Green Version]
Item | Maize Silage | Grass Silage |
---|---|---|
Dry matter % | 92.9 | 89.6 |
Organic matter % | 95.7 | 91.3 |
Crude protein% (DM) | 8.5 | 16.9 |
aNDF % (DM) | 44.2 | 52.1 |
ADF % (DM) | 24.1 | 28.3 |
ADL % (DM) | 2.1 | 1.9 |
Ash % (DM) | 4.3 | 8.7 |
GS | GSP1 | GSP2 | MS | MSP1 | MSP2 | SEM | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Chr. | KU | Chr. | KU | Chr. | KU | Chr. | KU | Chr. | KU | Chr. | KU | ||
pH | 6.8 | 7.0 | 6.9 | 7.0 | 6.9 | 7.0 | 6.8 | 6.9 | 6.8 | 6.9 | 6.8 | 7.0 | 0.047 |
dOM | 88.8 | 89.5 | 88.7 | 88.8 | 91.9 | 88.8 | 81.4 | 82.3 | 81.4 | 81.8 | 80.7 | 82.1 | 0.72 |
TGP (48 h) | 217.6 | 197.5 | 219.6 | 212.6 | 219.0 | 215.6 | 224.6 | 220.6 | 231.8 | 226.3 | 232.8 | 219.0 | 6.46 |
CH4 concentration (%) | 7.2 | 9.9 | 8.8 | 8.8 | 7.7 | 8.0 | 10.6 | 9.9 | 10.7 | 9.1 | 11.3 | 7.7 | 1.78 |
CH4 Yield (mL/g OM) at STP | 15.5 | 19.5 | 19.2 | 18.7 | 16.7 | 17.3 | 23.8 | 22.0 | 25.0 | 20.5 | 26.2 | 17.0 | 0.73 |
Treatment | MS | MSP1 | MSP2 | GS | GSP1 | GSP2 | SEM |
---|---|---|---|---|---|---|---|
N | 12 | 12 | 12 | 11 | 12 | 12 | |
Organic matter degradation (%) | 78.29 a | 78.02 a | 77.87 a | 81.42 b | 81.09 b | 82.51 b | 0.72 |
pH | 6.87 a | 6.88 ab | 6.88 ab | 6.91 ab | 6.91 ab | 6.92 b | 0.047 |
Time/Treatment | MS | MSP1 | MSP2 | GS | GSP1 | GSP2 | SEM |
---|---|---|---|---|---|---|---|
N | 12 | 12 | 12 | 11 | 12 | 12 | |
3 h | 18.67 a | 20.56 ab | 19.85 ab | 22.55 bc | 25.52 cd | 27.89 d | 4.68 |
9 h | 60.3 a | 66.61 a | 64.89 a | 74.95 b | 80.24 b | 81.09 b | 11.17 |
12 h | 102.62 | 109.71 | 107.65 | 105.13 | 110.85 | 110.91 | 9.05 |
48 h | 222.59 bd | 229.03 d | 225.93 cd | 205.68 a | 216.10 b | 217.32 bc | 6.46 |
Feed | MS | MSP1 | MSP2 | GS | GSP1 | GSP2 | SEM |
---|---|---|---|---|---|---|---|
N | 12 | 12 | 12 | 11 | 12 | 12 | |
A1 (mL gas STP/g OM) | 237.75 c | 245.17 c | 241.96 c | 207.81 a | 219.57 b | 222.46 b | 6.78 |
H1 (h) | 13.83 b | 13.51 b | 13.63 b | 10.97 a | 10.97 a | 10.99 a | 0.98 |
Vmax (mL gas STP/g OM) | 2.03 b | 2.11 b | 2.08 b | 1.81 a | 1.89 a | 1.89 a | 0.15 |
Tmax (h) | 8.92 b | 8.56 b | 8.63 b | 7.25 a | 6.83 a | 6.87 a | 1.64 |
MS | MSP1 | MSP2 | GS | GSP1 | GSP2 | SEM | |
---|---|---|---|---|---|---|---|
N | 12 | 12 | 12 | 11 | 12 | 12 | |
CH4 Yield (mL STP/g OM) | 22.90 b | 22.74 b | 21.58 ab | 17.67 ab | 18.94 ab | 16.97 a | 1.78 |
CH4 Concentration (%) | 10.28 b | 9.90 ab | 9.49 ab | 8.63 ab | 8.77 ab | 7.84 a | 0.73 |
MS | MSP1 | MSP2 | GS | GSP1 | GSP2 | SEM | |
---|---|---|---|---|---|---|---|
Total (mmol/L) | 33.07 | 34.38 | 32.92 | 33.39 | 32.92 | 34.71 | 1.41 |
Acetic (% of Total) | 54.31 abc | 53.27 a | 53.63 ab | 59.84 cd | 60.55 d | 59.0 cd | 2.44 |
Propionic (% of Total) | 21.95 a | 22.29 a | 22.05 a | 25.65 b | 25.63 b | 26.30 b | 0.79 |
Isobutyric (% of Total) | 0.97 | 1.02 | 0.98 | 1.02 | 1.02 | 0.95 | 0.13 |
Butyric (% of Total) | 18.94 b | 19.28 b | 19.48 b | 9.26 a | 8.87 a | 9.58 a | 1.23 |
Isovaleric (% of Total) | 1.77 | 1.85 | 1.80 | 1.50 | 1.40 | 1.54 | 0.12 |
Valeric (% of Total) | 1.41 a | 1.48 a | 1.39 a | 2.14 b | 2.06 b | 2.18 b | 0.18 |
Caproic (% of Total) | 0.54 | 0.67 | 0.58 | 0.39 | 0.40 | 0.38 | 0.23 |
Acetic: Propionic | 2.47 | 2.39 | 2.43 | 2.33 | 2.36 | 2.24 | 0.16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dhakal, R.; Copani, G.; Cappellozza, B.I.; Milora, N.; Hansen, H.H. The Effect of Direct-Fed Microbials on In-Vitro Rumen Fermentation of Grass or Maize Silage. Fermentation 2023, 9, 347. https://doi.org/10.3390/fermentation9040347
Dhakal R, Copani G, Cappellozza BI, Milora N, Hansen HH. The Effect of Direct-Fed Microbials on In-Vitro Rumen Fermentation of Grass or Maize Silage. Fermentation. 2023; 9(4):347. https://doi.org/10.3390/fermentation9040347
Chicago/Turabian StyleDhakal, Rajan, Giuseppe Copani, Bruno Ieda Cappellozza, Nina Milora, and Hanne Helene Hansen. 2023. "The Effect of Direct-Fed Microbials on In-Vitro Rumen Fermentation of Grass or Maize Silage" Fermentation 9, no. 4: 347. https://doi.org/10.3390/fermentation9040347
APA StyleDhakal, R., Copani, G., Cappellozza, B. I., Milora, N., & Hansen, H. H. (2023). The Effect of Direct-Fed Microbials on In-Vitro Rumen Fermentation of Grass or Maize Silage. Fermentation, 9(4), 347. https://doi.org/10.3390/fermentation9040347