Bioactive Compounds from and against Yeasts in the One Health Context: A Comprehensive Review
Abstract
:1. Introduction
2. Bioactive Compounds Naturally Produced by Non-Engineered Yeasts
2.1. Pharmacological Outlooks
2.2. Microbial Competition and Ecological Food Production
3. Other Microorganisms’ Bioactive Compounds Acting against Yeast
Candida auris and Cryptococcus neoformans: Two Emerging Pathogenic Yeasts to Be Tackled with Bioactive Compounds
4. Using Yeasts as “Microbial Cell Factories” of Bioactive Compounds
5. Final Considerations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization (WHO). One Health. Available online: https://www.who.int/news-room/questions-and-answers/item/one-health (accessed on 22 January 2023).
- Elnaiem, A.; Mohamed-Ahmed, O.; Zumla, A.; Mecaskey, J.; Charron, N.; Abakar, M.F.; Raji, T.; Bahalim, A.; Manikam, L.; Risk, O.; et al. Global and Regional Governance of One Health and Implications for Global Health Security. Lancet 2023, 401, 688–704. [Google Scholar] [CrossRef]
- Vargas, A.C.G.; Dresch, A.P.; Schmidt, A.R.; Tadioto, V.; Giehl, A.; Fogolari, O.; Mibielli, G.M.; Alves, S.L.; Bender, J.P. Batch Fermentation of Lignocellulosic Elephant Grass Biomass for 2G Ethanol and Xylitol Production. Bioenergy Res. 2023. [Google Scholar] [CrossRef]
- Scapini, T.; Bonatto, C.; Dalastra, C.; Bazoti, S.F.; Camargo, A.F.; Alves, S.L., Jr.; Venturin, B.; Steinmetz, R.L.R.; Kunz, A.; Fongaro, G.; et al. Bioethanol and Biomethane Production from Watermelon Waste: A Circular Economy Strategy. Biomass Bioenergy 2023, 170, 106719. [Google Scholar] [CrossRef]
- Fenner, E.D.; Scapini, T.; da Costa Diniz, M.; Giehl, A.; Treichel, H.; Álvarez-Pérez, S.; Alves, S.L. Nature’s Most Fruitful Threesome: The Relationship between Yeasts, Insects, and Angiosperms. J. Fungi 2022, 8, 984. [Google Scholar] [CrossRef]
- Dalastra, C.; Scapini, T.; Kubeneck, S.; Camargo, A.F.; Klanovicz, N.; Alves, S.L., Jr.; Shah, M.P.; Treichel, H. Wastewater as a Feasible Feedstock for Biorefineries. In Biorefinery for Water and Wastewater Treatment; Shah, M.P., Ed.; Springer International Publishing: Cham, Switzerland, 2023; pp. 1–25. [Google Scholar] [CrossRef]
- Colet, R.; Hassemer, G.; Alves, S.L., Jr.; Paroul, N.; Zeni, J.; Backes, G.T.; Valduga, E.; Cansian, R.L. Pichia: From Supporting Actors to the Leading Roles. In Yeasts: From Nature to Bioprocesses; Alves, S.L., Jr., Treichel, H., Basso, T.O., Stambuk, B.U., Eds.; Bentham Science: Singapore, 2022; pp. 148–191. [Google Scholar] [CrossRef]
- Achilles, K.A.; Camargo, A.F.; Reichert Júnior, F.W.; Lerin, L.; Scapini, T.; Stefanski, F.S.; Dalastra, C.; Treichel, H.; Mossi, A.J. Improvement of Organic Agriculture with Growth-Promoting and Biocontrol Yeasts. In Yeasts: From Nature to Bioprocesses; Alves, S.L., Jr., Treichel, H., Basso, T.O., Stambul, B.U., Eds.; Bentham Science: Singapore, 2022; pp. 378–395. [Google Scholar] [CrossRef]
- Louhasakul, Y.; Cheirsilp, B. Biotechnological Applications of Oleaginous Yeasts. In Yeasts: From Nature to Bioprocesses; Alves, S.L., Jr., Treichel, H., Basso, T., Stambuk, B.U., Eds.; Bentham Science: Singapore, 2022; pp. 357–377. [Google Scholar] [CrossRef]
- Giehl, A.; Scapini, T.; Treichel, H.; Alves, S.L., Jr. Production of volatile organic compounds by yeasts in biorefineries: Ecological, environmental, and biotechnological outlooks. In Ciências Ambientais e da Saúde na Atualidade: Insights Para Alcançar os Objetivos para o Desenvolvimento Sustentável; Michelon, W., Viancelli, A., Eds.; Instituto de Inteligência em Pesquisa e Consultoria Cientifica Ltda: Concórdia/SC, Brazil, 2022; pp. 64–78. [Google Scholar] [CrossRef]
- Alves, S.L., Jr.; Treichel, H.; Basso, T.O.; Stambuk, B.U. Are Yeasts “Humanity’s Best Friends”? In Yeasts: From Nature to Bioprocesses; Alves, S.L., Jr., Treichel, H., Basso, T., Stambuk, B.U., Eds.; Bentham Science: Singapore, 2022; pp. 431–458. [Google Scholar] [CrossRef]
- Alves, S.L., Jr.; Scapini, T.; Warken, A.; Klanovicz, N.; Procópio, D.P.; Tadioto, V.; Stambuk, B.U.; Basso, T.O.; Treichel, H. Engineered Saccharomyces or Prospected Non-Saccharomyces: Is There Only One Good Choice for Biorefineries? In Yeasts: From Nature to Bioprocesses; Alves, S.L., Jr., Treichel, H., Basso, T., Stambuk, B.U., Eds.; Bentham Science: Singapore, 2022; pp. 243–283. [Google Scholar] [CrossRef]
- Pais, C.; Franco-Duarte, R.; Sampaio, P.; Wildner, J.; Carolas, A.; Figueira, D.; Ferreira, B.S. Production of Dicarboxylic Acid Platform Chemicals Using Yeasts. In Biotransformation of Agricultural Waste and By-Products; Poltronieri, P., D’Urso, O.F., Eds.; Elsevier: Amsterdam, The Netherlands, 2016; pp. 237–269. [Google Scholar] [CrossRef]
- Veeresham, C. Natural Products Derived from Plants as a Source of Drugs. J. Adv. Pharm Technol. Res. 2012, 3, 200–201. [Google Scholar] [CrossRef]
- Cragg, G.M.; Newman, D.J. Natural Products: A Continuing Source of Novel Drug Leads. Biochim. Biophys. Acta Gen. Subj. 2013, 1830, 3670–3695. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hubbard, B.K.; Walsh, C.T. Vancomycin Assembly: Nature’s Way. Angew. Chem. Int. Ed. 2003, 42, 730–765. [Google Scholar] [CrossRef] [PubMed]
- Hong, J.-Y.; Son, S.-H.; Hong, S.-P.; Yi, S.-H.; Kang, S.H.; Lee, N.-K.; Paik, H.-D. Production of β-Glucan, Glutathione, and Glutathione Derivatives by Probiotic Saccharomyces cerevisiae Isolated from Cucumber jangajji. LWT 2019, 100, 114–118. [Google Scholar] [CrossRef]
- Santos, L.O.; Silva, P.G.P.; Lemos Junior, W.J.F.; de Oliveira, V.S.; Anschau, A. Glutathione Production by Saccharomyces cerevisiae: Current State and Perspectives. Appl. Microbiol. Biotechnol. 2022, 106, 1879–1894. [Google Scholar] [CrossRef] [PubMed]
- Rollini, M.; Pagani, H.; Riboldi, S.; Manzoni, M. Influence of Carbon Source on Glutathione Accumulation in Methylotrophic Yeasts. Ann. Microbiol. 2005, 55, 199–203. [Google Scholar]
- Ubiyvovk, V.M.; Ananin, V.M.; Malyshev, A.Y.; Kang, H.A.; Sibirny, A.A. Optimization of Glutathione Production in Batch and Fed-Batch Cultures by the Wild-Type and Recombinant Strains of the Methylotrophic Yeast Hansenula polymorpha DL-1. BMC Biotechnol. 2011, 11, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kong, M.; Wang, F.; Tian, L.; Tang, H.; Zhang, L. Functional Identification of Glutamate Cysteine Ligase and Glutathione Synthetase in the Marine Yeast Rhodosporidium diobovatum. Sci. Nat. 2018, 105, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Chi, Z.; Liu, G.L.; Lu, Y.; Jiang, H.; Chi, Z.M. Bio-Products Produced by Marine Yeasts and Their Potential Applications. Bioresour. Technol. 2016, 202, 244–252. [Google Scholar] [CrossRef] [PubMed]
- Calvente, V.; De Orellano, M.E.; Sansone, G.; Benuzzi, D.; Sanz de Tosetti, M.I. A Simple Agar Plate Assay for Screening Siderophore Producer Yeasts. J. Microbiol. Methods 2001, 47, 273–279. [Google Scholar] [CrossRef] [PubMed]
- Sineli, P.E.; Maza, D.D.; Aybar, M.J.; Figueroa, L.I.C.; Viñarta, S.C. Bioconversion of Sugarcane Molasses and Waste Glycerol on Single Cell Oils for Biodiesel by the Red Yeast Rhodotorula glutinis R4 from Antarctica. Energy Convers. Manag. X 2022, 16, 100331. [Google Scholar] [CrossRef]
- Arevalo-Villena, M.; Bartowsky, E.J.; Capone, D.; Sefton, M.A. Production of Indole by Wine-Associated Microorganisms under Oenological Conditions. Food Microbiol. 2010, 27, 685–690. [Google Scholar] [CrossRef]
- Rodriguez-Naranjo, M.I.; Torija, M.J.; Mas, A.; Cantos-Villar, E.; Garcia-Parrilla, M.D.C. Production of Melatonin by Saccharomyces Strains under Growth and Fermentation Conditions. J. Pineal Res. 2012, 53, 219–224. [Google Scholar] [CrossRef]
- Ganeva, V.; Angelova, B.; Galutzov, B.; Goltsev, V.; Zhiponova, M. Extraction of Proteins and Other Intracellular Bioactive Compounds From Baker’s Yeasts by Pulsed Electric Field Treatment. Front. Bioeng. Biotechnol. 2020, 8, 1433. [Google Scholar] [CrossRef]
- Gómez-Mejía, E.; Rosales-Conrado, N.; León-González, M.E.; Madrid, Y. Determination of Phenolic Compounds in Residual Brewing Yeast Using Matrix Solid-Phase Dispersion Extraction Assisted by Titanium Dioxide Nanoparticles. J. Chromatogr. A 2019, 1601, 255–265. [Google Scholar] [CrossRef]
- Melatonin Market |Size, Trends, Forecast| 2022–2027. Available online: https://www.marketdataforecast.com/market-reports/melatonin-market (accessed on 7 February 2023).
- Wang, L.; Chi, Z.; Wang, X.; Ju, L.; Chi, Z.; Guo, N. Isolation and Characterization of Candida Membranifaciens subsp. flavinogenie W14-3, a Novel Riboflavin-Producing Marine Yeast. Microbiol. Res. 2008, 163, 255–266. [Google Scholar] [CrossRef]
- Riboflavin Market Analysis—Industry Report—Trends, Size & Share. Available online: https://www.mordorintelligence.com/industry-reports/riboflavin-market (accessed on 7 February 2023).
- Schmitt, M.J.; Breinig, F. Yeast Viral Killer Toxins: Lethality and Self-Protection. Nat. Rev. Microbiol. 2006, 4, 212–221. [Google Scholar] [CrossRef]
- Becker, B.; Schmitt, M.J. Yeast Killer Toxin K28: Biology and Unique Strategy of Host Cell Intoxication and Killing. Toxins 2017, 9, 333. [Google Scholar] [CrossRef] [Green Version]
- Orentaite, I.; Poranen, M.M.; Oksanen, H.M.; Daugelavicius, R.; Bamford, D.H. K2 Killer Toxin-Induced Physiological Changes in the Yeast Saccharomyces cerevisiae. FEMS Yeast Res. 2016, 16, fow003. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ciociola, T.; Pertinhez, T.A.; De Simone, T.; Magliani, W.; Ferrari, E.; Belletti, S.; D’Adda, T.; Conti, S.; Giovati, L. In Vitro and In Vivo Anti-Candida Activity and Structural Analysis of Killer Peptide (KP)-Derivatives. J. Fungi 2021, 7, 129. [Google Scholar] [CrossRef] [PubMed]
- Yun, C.W.; Tiedeman, J.S.; Moore, R.E.; Philpott, C.C. Siderophore-Iron Uptake in Saccharomyces cerevisiae: Identification of ferrichrome and fusarinine transporters. J. Biol. Chem. 2000, 275, 16354–16359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chiu, P.C.; Nakamura, Y.; Nishimura, S.; Tabuchi, T.; Yashiroda, Y.; Hirai, G.; Matsuyama, A.; Yoshida, M. Ferrichrome, a Fungal-Type Siderophore, Confers High Ammonium Tolerance to Fission Yeast. Sci. Rep. 2022, 12, 1–10. [Google Scholar] [CrossRef]
- Offei, B.; Vandecruys, P.; De Graeve, S.; Foulquié-Moreno, M.R.; Thevelein, J.M. Unique Genetic Basis of the Distinct Antibiotic Potency of High Acetic Acid Production in the Probiotic Yeast Saccharomyces cerevisiae var. boulardii. Genome Res. 2019, 29, 1478–1494. [Google Scholar] [CrossRef] [Green Version]
- Acetic Acid Market Size, Share & Trends Report, 2022–2030. Available online: https://www.grandviewresearch.com/industry-analysis/acetic-acid-market (accessed on 7 February 2023).
- Arrarte, E.; Garmendia, G.; Rossini, C.; Wisniewski, M.; Vero, S. Volatile Organic Compounds Produced by Antarctic Strains of Candida sake Play a Role in the Control of Postharvest Pathogens of Apples. Biol. Control 2017, 109, 14–20. [Google Scholar] [CrossRef]
- Citronellol Market | Global Industry Report, 2030. Available online: https://www.transparencymarketresearch.com/citronellol-market.html (accessed on 7 February 2023).
- 2-Phenylethanol Market Share Statistics 2022–2028. Available online: https://www.gminsights.com/industry-analysis/2-phenylethanol-market (accessed on 7 February 2023).
- Indole Market Size, Share, Trends, Growth Analysis. Available online: https://precisionbusinessinsights.com/market-reports/indole-market/ (accessed on 7 February 2023).
- de Lourdes Chaves Macêdo, E.; Colombo Pimentel, T.; de Sousa Melo, D.; Cristina de Souza, A.; Santos de Morais, J.; dos Santos Lima, M.; Ribeiro Dias, D.; Freitas Schwan, R.; Magnani, M. Yeasts from Fermented Brazilian Fruits as Biotechnological Tools for Increasing Phenolics Bioaccessibility and Improving the Volatile Profile in Derived Pulps. Food Chem. 2023, 401, 134200. [Google Scholar] [CrossRef]
- Ho, C.H.; Piotrowski, J.; Dixon, S.J.; Baryshnikova, A.; Costanzo, M.; Boone, C. Combining Functional Genomics and Chemical Biology to Identify Targets of Bioactive Compounds. Curr. Opin. Chem. Biol. 2011, 15, 66–78. [Google Scholar] [CrossRef]
- Moglia, A.; Goitre, L.; Gianoglio, S.; Baldini, E.; Trapani, E.; Genre, A.; Scattina, A.; Dondo, G.; Trabalzini, L.; Beekwilder, J.; et al. Evaluation of the Bioactive Properties of Avenanthramide Analogs Produced in Recombinant Yeast. Biofactors 2015, 41, 15–27. [Google Scholar] [CrossRef] [PubMed]
- Dienes-Nagy, Á.; Vuichard, F.; Belcher, S.; Blackford, M.; Rösti, J.; Lorenzini, F. Simultaneous Quantification of Glutathione, Glutathione Disulfide and Glutathione-S-Sulfonate in Grape and Wine Using LC-MS/MS. Food Chem. 2022, 386, 132756. [Google Scholar] [CrossRef] [PubMed]
- Meister, A.; Anderson, M.E. Glutathione. Annu. Rev. Biochem. 1983, 52, 711–760. [Google Scholar] [CrossRef] [PubMed]
- Thompson, J.A.; Franklin, C.C. Enhanced Glutathione Biosynthetic Capacity Promotes Resistance to As3+-Induced Apoptosis. Toxicol. Lett. 2010, 193, 33–40. [Google Scholar] [CrossRef] [Green Version]
- Penninckx, M. A Short Review on the Role of Glutathione in the Response of Yeasts to Nutritional, Environmental, and Oxidative Stresses. Enzym. Microb. Technol. 2000, 26, 737–742. [Google Scholar] [CrossRef]
- Bonnefoy, M.; Drai, J.; Kostka, T. Antioxidants to Slow Aging, Facts and Perspectives. Presse Med. 2002, 31, 1174–1184. [Google Scholar]
- Huber, P.C.; Almeida, W.P.; Fátima, Â. de Glutationa e Enzimas Relacionadas: Papel Biológico e Importância Em Processos Patológicos. Quim. Nova 2008, 31, 1170–1179. [Google Scholar] [CrossRef] [Green Version]
- Perricone, C.; De Carolis, C.; Perricone, R. Glutathione: A Key Player in Autoimmunity. Autoimmun Rev. 2009, 8, 697–701. [Google Scholar] [CrossRef]
- You, B.R.; Park, W.H. Gallic Acid-Induced Lung Cancer Cell Death Is Related to Glutathione Depletion as Well as Reactive Oxygen Species Increase. Toxicol. Vitr. 2010, 24, 1356–1362. [Google Scholar] [CrossRef]
- Slominski, A.; Fischer, T.W.; Zmijewski, M.A.; Wortsman, J.; Semak, I.; Zbytek, B.; Slominski, R.M.; Tobin, D.J. On the Role of Melatonin in Skin Physiology and Pathology. Endocrine 2005, 27, 137–148. [Google Scholar] [CrossRef] [Green Version]
- Arnao, M.B.; Hernández-Ruiz, J. The Physiological Function of Melatonin in Plants. Plant Signal Behav. 2006, 1, 89. [Google Scholar] [CrossRef] [Green Version]
- Sharafati-Chaleshtori, R.; Shirzad, H.; Rafieian-Kopaei, M.; Soltani, A. Melatonin and Human Mitochondrial Diseases. J. Res. Med. Sci. 2017, 22, 2. [Google Scholar] [CrossRef] [PubMed]
- Jockers, R.; Delagrange, P.; Dubocovich, M.L.; Markus, R.P.; Renault, N.; Tosini, G.; Cecon, E.; Zlotos, D.P. Update on Melatonin Receptors: IUPHAR Review 20. Br. J. Pharm. 2016, 173, 2702–2725. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reiter, R.J.; Rosales-Corral, S.; Tan, D.X.; Jou, M.J.; Galano, A.; Xu, B. Melatonin as a Mitochondria-Targeted Antioxidant: One of Evolution’s Best Ideas. Cell. Mol. Life Sci. 2017, 74, 3863–3881. [Google Scholar] [CrossRef]
- Emet, M.; Ozcan, H.; Ozel, L.; Yayla, M.; Halici, Z.; Hacimuftuoglu, A. A Review of Melatonin, Its Receptors and Drugs. Eurasian J. Med. 2016, 48, 135. [Google Scholar] [CrossRef]
- Hagenauer, M.H.; Perryman, J.I.; Lee, T.M.; Carskadon, M.A. Adolescent Changes in the Homeostatic and Circadian Regulation of Sleep. Dev. Neurosci. 2009, 31, 276. [Google Scholar] [CrossRef] [Green Version]
- Cardinali, D.P. Melatonin: Clinical Perspectives in Neurodegeneration. Front. Endocrinol. 2019, 10, 480. [Google Scholar] [CrossRef] [PubMed]
- Reiter, R.J.; Tan, D.; Leon, J.; Kilic, Ü.; Kilic, E. When Melatonin Gets on Your Nerves: Its Beneficial Actions in Experimental Models of Stroke. Exp. Biol. Med. 2005, 230, 104–117. [Google Scholar] [CrossRef]
- Amorim, M.; Marques, C.; Pereira, J.O.; Guardão, L.; Martins, M.J.; Osório, H.; Moura, D.; Calhau, C.; Pinheiro, H.; Pintado, M. Antihypertensive Effect of Spent Brewer Yeast Peptide. Process Biochem. 2019, 76, 213–218. [Google Scholar] [CrossRef]
- Mirzaei, M.; Shavandi, A.; Mirdamadi, S.; Soleymanzadeh, N.; Motahari, P.; Mirdamadi, N.; Moser, M.; Subra, G.; Alimoradi, H.; Goriely, S. Bioactive Peptides from Yeast: A Comparative Review on Production Methods, Bioactivity, Structure-Function Relationship, and Stability. Trends Food Sci. Technol. 2021, 118, 297–315. [Google Scholar] [CrossRef]
- Conti, G.; Magliani, W.; Conti, S.; Nencioni, L.; Sgarbanti, R.; Palamara, A.T.; Polonelli, L. Therapeutic Activity of an Anti-Idiotypic Antibody-Derived Killer Peptide against Influenza a Virus Experimental Infection. Antimicrob. Agents Chemother. 2008, 52, 4331–4337. [Google Scholar] [CrossRef] [Green Version]
- Magliani, W.; Conti, S.; Ciociola, T.; Giovati, L.; Zanello, P.P.; Pertinhez, T.; Spisni, A.; Polonelli, L. Killer Peptide: A Novel Paradigm of Antimicrobial, Antiviral and Immunomodulatory Auto-Delivering Drugs. Future Med. Chem. 2011, 3, 1209–1231. [Google Scholar] [CrossRef]
- Paulone, S.; Ardizzoni, A.; Tavanti, A.; Piccinelli, S.; Rizzato, C.; Lupetti, A.; Colombari, B.; Pericolini, E.; Polonelli, L.; Magliani, W.; et al. The Synthetic Killer Peptide KP Impairs Candida albicans Biofilm in vitro. PLoS ONE 2017, 12, e0181278. [Google Scholar] [CrossRef] [Green Version]
- Giovati, L.; Santinoli, C.; Mangia, C.; Vismarra, A.; Belletti, S.; D’Adda, T.; Fumarola, C.; Ciociola, T.; Bacci, C.; Magliani, W.; et al. Novel Activity of a Synthetic Decapeptide Against Toxoplasma gondii Tachyzoites. Front. Microbiol. 2018, 9, 753. [Google Scholar] [CrossRef]
- Bajaj, B.K.; Raina, S.; Singh, S. Killer Toxin from a Novel Killer Yeast Pichia kudriavzevii RY55 with Idiosyncratic Antibacterial Activity. J. Basic Microbiol. 2013, 53, 645–656. [Google Scholar] [CrossRef]
- Pretscher, J.; Fischkal, T.; Branscheidt, S.; Jäger, L.; Kahl, S.; Schlander, M.; Thines, E.; Claus, H. Yeasts from Different Habitats and Their Potential as Biocontrol Agents. Fermentation 2018, 4, 31. [Google Scholar] [CrossRef] [Green Version]
- Huang, C.; Chen, X.; Xiong, L.; Chen, X.; Ma, L.; Chen, Y. Single Cell Oil Production from Low-Cost Substrates: The Possibility and Potential of Its Industrialization. Biotechnol. Adv. 2013, 31, 129–139. [Google Scholar] [CrossRef] [PubMed]
- Miranda, C.; Bettencourt, S.; Pozdniakova, T.; Pereira, J.; Sampaio, P.; Franco-Duarte, R.; Pais, C. Modified High-Throughput Nile Red Fluorescence Assay for the Rapid Screening of Oleaginous Yeasts Using Acetic Acid as Carbon Source. BMC Microbiol. 2020, 20, 60. [Google Scholar] [CrossRef] [PubMed]
- Bettencourt, S.; Miranda, C.; Pozdniakova, T.A.; Sampaio, P.; Franco-Duarte, R.; Pais, C. Single Cell Oil Production by Oleaginous Yeasts Grown in Synthetic and Waste-Derived Volatile Fatty Acids. Microorganisms 2020, 8, 1809. [Google Scholar] [CrossRef] [PubMed]
- Fabricio, M.F.; Valente, P.; Záchia Ayub, M.A. Oleaginous Yeast Meyerozyma guilliermondii Shows Fermentative Metabolism of Sugars in the Biosynthesis of Ethanol and Converts Raw Glycerol and Cheese Whey Permeate into Polyunsaturated Fatty Acids. Biotechnol. Prog. 2019, 35, e2895. [Google Scholar] [CrossRef] [PubMed]
- Adel, A.; El-Baz, A.; Shetaia, Y.; Sorour, N.M. Biosynthesis of Polyunsaturated Fatty Acids by Two Newly Cold-Adapted Egyptian Marine Yeast. 3 Biotech 2021, 11, 461. [Google Scholar] [CrossRef] [PubMed]
- Kelesidis, T.; Pothoulakis, C. Efficacy and Safety of the Probiotic Saccharomyces boulardii for the Prevention and Therapy of Gastrointestinal Disorders. Ther. Adv. Gastroenterol. 2012, 5, 111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sen, S.; Mansell, T.J. Yeasts as Probiotics: Mechanisms, Outcomes, and Future Potential. Fungal Genet. Biol. 2020, 137, 103333. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Vallance, B.A.; Boyer, L.; Bergstrom, K.S.B.; Walker, J.; Madsen, K.; O’Kusky, J.R.; Buchan, A.M.; Jacobson, K. Saccharomyces Boulardii Ameliorates Citrobacter Rodentium-Induced Colitis through Actions on Bacterial Virulence Factors. Am. J. Physiol. Gastrointest Liver Physiol. 2008, 294, G295–G306. [Google Scholar] [CrossRef] [Green Version]
- Ducluzeau, R.; Bensaada, M. Comparative Effect of a Single or Continuous Administration of Saccharomyces Boulardii on the Establishment of Various Strains of Candida in the Digestive Tract of Gnotobiotic Mice. Ann. Microbiol. 1982, 133, 491–501. [Google Scholar]
- Fayura, L.R.; Fedorovych, D.V.; Prokopiv, T.M.; Boretsky, Y.R.; Sibirny, A.A. The Pleiotropic Nature of Rib80, Hit1, and Red6 Mutations Affecting Riboflavin Biosynthesis in the Yeast Pichia guilliermondii. Microbiology 2007, 76, 55–59. [Google Scholar] [CrossRef]
- Schaible, U.E.; Kaufmann, S.H.E. A Nutritive View on the Host–Pathogen Interplay. Trends Microbiol. 2005, 13, 373–380. [Google Scholar] [CrossRef]
- Spadaro, D.; Droby, S. Development of Biocontrol Products for Postharvest Diseases of Fruit: The Importance of Elucidating the Mechanisms of Action of Yeast Antagonists. Trends Food Sci. Technol. 2016, 47, 39–49. [Google Scholar] [CrossRef]
- Freimoser, F.M.; Rueda-Mejia, M.P.; Tilocca, B.; Migheli, Q. Biocontrol Yeasts: Mechanisms and Applications. World J. Microbiol. Biotechnol. 2019, 35, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Sampaolesi, S.; Briand, L.E.; De Antoni, G.; León Peláez, A. The Synthesis of Soluble and Volatile Bioactive Compounds by Selected Brewer’s Yeasts: Antagonistic Effect against Enteropathogenic Bacteria and Food Spoiler–Toxigenic Aspergillus sp. Food Chem. X 2022, 13, 100193. [Google Scholar] [CrossRef]
- Hua, S.S.T.; Beck, J.J.; Sarreal, S.B.L.; Gee, W. The Major Volatile Compound 2-Phenylethanol from the Biocontrol Yeast, Pichia anomala, Inhibits Growth and Expression of Aflatoxin Biosynthetic Genes of Aspergillus flavus. Mycotoxin Res. 2014, 30, 71–78. [Google Scholar] [CrossRef] [PubMed]
- Masoud, W.; Poll, L.; Jakobsen, M. Influence of Volatile Compounds Produced by Yeasts Predominant during Processing of Coffea Arabica in East Africa on Growth and Ochratoxin A (OTA) Production by Aspergillus ochraceus. Yeast 2005, 22, 1133–1142. [Google Scholar] [CrossRef] [Green Version]
- Huang, R.; Che, H.J.; Zhang, J.; Yang, L.; Jiang, D.H.; Li, G.Q. Evaluation of Sporidiobolus pararoseus Strain YCXT3 as Biocontrol Agent of Botrytis cinerea on Post-Harvest Strawberry Fruits. Biol. Control 2012, 62, 53–63. [Google Scholar] [CrossRef]
- Huang, R.; Li, G.Q.; Zhang, J.; Yang, L.; Che, H.J.; Jiang, D.H.; Huang, H.C. Control of Postharvest Botrytis Fruit Rot of Strawberry by Volatile Organic Compounds of Candida intermedia. Dis. Control Pest Manag. 2011, 101, 859–869. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farbo, M.G.; Urgeghe, P.P.; Fiori, S.; Marcello, A.; Oggiano, S.; Balmas, V.; Hassan, Z.U.; Jaoua, S.; Migheli, Q. Effect of Yeast Volatile Organic Compounds on Ochratoxin A-Producing Aspergillus carbonarius and A. ochraceus. Int. J. Food Microbiol. 2018, 284, 1–10. [Google Scholar] [CrossRef]
- Fiori, S.; Urgeghe, P.P.; Hammami, W.; Razzu, S.; Jaoua, S.; Migheli, Q. Biocontrol Activity of Four Non- and Low-Fermenting Yeast Strains against Aspergillus carbonarius and Their Ability to Remove Ochratoxin A from Grape Juice. Int. J. Food Microbiol. 2014, 189, 45–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tilocca, B.; Balmas, V.; Hassan, Z.U.; Jaoua, S.; Migheli, Q. A Proteomic Investigation of Aspergillus carbonarius Exposed to Yeast Volatilome or to Its Major Component 2-Phenylethanol Reveals Major Shifts in Fungal Metabolism. Int. J. Food Microbiol. 2019, 306, 108265. [Google Scholar] [CrossRef] [PubMed]
- Holb, I.J.; Kunz, S. Integrated Control of Brown Rot Blossom Blight by Combining Approved Chemical Control Options with Aureobasidium pullulans in Organic Cherry Production. Crop Prot. 2013, 54, 114–120. [Google Scholar] [CrossRef]
- Weiss, A.; Weißhaupt, S.; Krawiec, P.; Kunz, S. Use of Aureobasidium pullulans for Resistance Management in Chemical Control of Botrytis cinerea in Berries. Acta Hortic. 2014, 1017, 237–242. [Google Scholar] [CrossRef]
- Prasongsuk, S.; Lotrakul, P.; Ali, I.; Bankeeree, W.; Punnapayak, H. The Current Status of Aureobasidium pullulans in Biotechnology. Folia Microbiol. 2017, 63, 129–140. [Google Scholar] [CrossRef]
- Price, N.P.; Bischoff, K.M.; Leathers, T.D.; Cossé, A.A.; Manitchotpisit, P. Polyols, not sugars, determine the structural diversity of anti-streptococcal liamocins produced by Aureobasidium pullulans strain NRRL 50380. J. Antibiot. 2016, 70, 136–141. [Google Scholar] [CrossRef]
- Parafati, L.; Vitale, A.; Restuccia, C.; Cirvilleri, G. Biocontrol Ability and Action Mechanism of Food-Isolated Yeast Strains against Botrytis cinerea Causing Post-Harvest Bunch Rot of Table Grape. Food Microbiol. 2015, 47, 85–92. [Google Scholar] [CrossRef] [PubMed]
- Miethke, M.; Marahiel, M.A. Siderophore-Based Iron Acquisition and Pathogen Control. Microbiol. Mol. Biol. Rev. 2007, 71, 413–451. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cassat, J.E.; Skaar, E.P. Iron in Infection and Immunity. Cell Host Microbe 2013, 13, 509. [Google Scholar] [CrossRef] [Green Version]
- Barber, M.F.; Elde, N.C. Buried Treasure: Evolutionary Perspectives on Microbial Iron Piracy. Trends Genet. 2015, 31, 627–636. [Google Scholar] [CrossRef]
- Sheldon, J.R.; Heinrichs, D.E. Recent Developments in Understanding the Iron Acquisition Strategies of Gram Positive Pathogens. FEMS Microbiol. Rev. 2015, 39, 592–630. [Google Scholar] [CrossRef] [Green Version]
- Boiteau, R.M.; Mende, D.R.; Hawco, N.J.; McIlvin, M.R.; Fitzsimmons, J.N.; Saito, M.A.; Sedwick, P.N.; DeLong, E.F.; Repeta, D.J. Siderophore-Based Microbial Adaptations to Iron Scarcity across the Eastern Pacific Ocean. Proc. Natl. Acad. Sci. USA 2016, 113, 14237–14242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kramer, J.; Özkaya, Ö.; Kümmerli, R. Bacterial Siderophores in Community and Host Interactions. Nat. Rev. Microbiol. 2019, 18, 152–163. [Google Scholar] [CrossRef]
- Wang, W.; Chi, Z.; Liu, G.; Buzdar, M.A.; Chi, Z.; Gu, Q. Chemical and Biological Characterization of Siderophore Produced by the Marine-Derived Aureobasidium pullulans HN6.2 and Its Antibacterial Activity. BioMetals 2009, 22, 965–972. [Google Scholar] [CrossRef]
- de Lima Targino, H.M.; Silva, V.S.L.; Escobar, I.E.C.; de Almeida Ribeiro, P.R.; Gava, C.A.T.; Fernandes-Júnior, P.I. Maize-Associated Meyerozyma from the Brazilian Semiarid Region Are Effective Plant Growth-Promoting Yeasts. Rhizosphere 2022, 22, 100538. [Google Scholar] [CrossRef]
- Puig, S.; Ramos-Alonso, L.; Romero, A.M.; Martínez-Pastor, M.T. The Elemental Role of Iron in DNA Synthesis and Repair. Metallomics 2017, 9, 1483–1500. [Google Scholar] [CrossRef] [Green Version]
- Sansone, G.; Rezza, I.; Calvente, V.; Benuzzi, D.; Tosetti, M.I.S. de Control of Botrytis cinerea Strains Resistant to Iprodione in Apple with Rhodotorulic Acid and Yeasts. Postharvest Biol. Technol. 2005, 35, 245–251. [Google Scholar] [CrossRef]
- Vadkertiová, R.; Sláviková, E. Killer Activity of Yeasts Isolated from Natural Environments against Some Medically Important Candida Species. Pol. J. Microbiol. 2007, 56, 39–43. [Google Scholar] [PubMed]
- Sipiczki, M. Metschnikowia Strains Isolated from Botrytized Grapes Antagonize Fungal and Bacterial Growth by Iron Depletion. Appl. Environ. Microbiol. 2006, 72, 6716–6724. [Google Scholar] [CrossRef] [Green Version]
- El-Tarabily, K.A.; Sivasithamparam, K. Potential of Yeasts as Biocontrol Agents of Soil-Borne Fungal Plant Pathogens and as Plant Growth Promoters. Mycoscience 2006, 47, 25–35. [Google Scholar] [CrossRef]
- Cloete, K.J.; Valentine, A.J.; Stander, M.A.; Blomerus, L.M.; Botha, A. Evidence of Symbiosis between the Soil Yeast Cryptococcus laurentii and a Sclerophyllous Medicinal Shrub, Agathosma Betulina (Berg.) Pillans. Microb. Ecol. 2009, 57, 624–632. [Google Scholar] [CrossRef] [PubMed]
- Klassen, R.; Schaffrath, R.; Buzzini, P.; Ganter, P.F. Antagonistic Interactions and Killer Yeasts. In Yeasts in Natural Ecosystems: Ecology; Springer: Cham, Switzerland, 2017; pp. 229–275. [Google Scholar] [CrossRef]
- Mannazzu, I.; Domizio, P.; Carboni, G.; Zara, S.; Zara, G.; Comitini, F.; Budroni, M.; Ciani, M. Yeast Killer Toxins: From Ecological Significance to Application. Crit. Rev. Biotechnol. 2019, 39, 603–617. [Google Scholar] [CrossRef] [PubMed]
- Izgu, D.A.; Kepekci, R.A.; Izgu, F. Inhibition of Penicillium digitatum and Penicillium italicum in Vitro and in Planta with Panomycocin, a Novel Exo-β-1,3-Glucanase Isolated from Pichia anomala NCYC 434. Antonie Van Leeuwenhoek 2011, 99, 85–91. [Google Scholar] [CrossRef]
- Perez, M.F.; Contreras, L.; Garnica, N.M.; Fernández-Zenoff, M.V.; Farías, M.E.; Sepulveda, M.; Ramallo, J.; Dib, J.R. Native Killer Yeasts as Biocontrol Agents of Postharvest Fungal Diseases in Lemons. PLoS ONE 2016, 11, e0165590. [Google Scholar] [CrossRef] [Green Version]
- Hua, M.X.; Chi, Z.; Liu, G.L.; Buzdar, M.A.; Chi, Z.M. Production of a Novel and Cold-Active Killer Toxin by Mrakia frigida 2E00797 Isolated from Sea Sediment in Antarctica. Extremophiles 2010, 14, 515–521. [Google Scholar] [CrossRef]
- Lowes, K.F.; Shearman, C.A.; Payne, J.; MacKenzie, D.; Archer, D.B.; Merry, R.J.; Gasson, M.J. Prevention of Yeast Spoilage in Feed and Food by the Yeast Mycocin HMK. Appl. Environ. Microbiol. 2000, 66, 1066. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, D.; Spadaro, D.; Garibaldi, A.; Gullino, M.L. Potential Biocontrol Activity of a Strain of Pichia guilliermondii against Grey Mold of Apples and Its Possible Modes of Action. Biol. Control 2011, 57, 193–201. [Google Scholar] [CrossRef]
- Zhang, D.; Spadaro, D.; Valente, S.; Garibaldi, A.; Gullino, M.L. Cloning, Characterization, Expression and Antifungal Activity of an Alkaline Serine Protease of Aureobasidium pullulans PL5 Involved in the Biological Control of Postharvest Pathogens. Int. J. Food Microbiol. 2012, 153, 453–464. [Google Scholar] [CrossRef] [PubMed]
- Parafati, L.; Cirvilleri, G.; Restuccia, C.; Wisniewski, M. Potential Role of Exoglucanase Genes (WaEXG1 and WaEXG2) in the Biocontrol Activity of Wickerhamomyces anomalus. Microb. Ecol. 2017, 73, 876–884. [Google Scholar] [CrossRef]
- Junker, K.; Chailyan, A.; Hesselbart, A.; Forster, J.; Wendland, J. Multi-Omics Characterization of the Necrotrophic Mycoparasite Saccharomycopsis schoenii. PLoS Pathog. 2019, 15, e1007692. [Google Scholar] [CrossRef] [Green Version]
- Zajc, J.; Gostinčar, C.; Černoša, A.; Gunde-Cimerman, N. Stress-Tolerant Yeasts: Opportunistic Pathogenicity Versus Biocontrol Potential. Genes 2019, 10, 42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lima, J.R.; Gondim, D.M.F.; Oliveira, J.T.A.; Oliveira, F.S.A.; Gonçalves, L.R.B.; Viana, F.M.P. Use of Killer Yeast in the Management of Postharvest Papaya Anthracnose. Postharvest Biol. Technol. 2013, 83, 58–64. [Google Scholar] [CrossRef]
- Raynaldo, F.A.; Dhanasekaran, S.; Ngea, G.L.N.; Yang, Q.; Zhang, X.; Zhang, H. Investigating the Biocontrol Potentiality of Wickerhamomyces anomalus against Postharvest Gray Mold Decay in Cherry Tomatoes. Sci. Hortic. 2021, 285, 110137. [Google Scholar] [CrossRef]
- Calvente, V.; Benuzzi, D.; De Tosetti, M.I.S. Antagonistic Action of Siderophores from Rhodotorula glutinis upon the Postharvest Pathogen Penicillium expansum. Int. Biodeterior Biodegrad. 1999, 43, 167–172. [Google Scholar] [CrossRef]
- Dang, T.D.T.; Vermeulen, A.; Ragaert, P.; Devlieghere, F. A Peculiar Stimulatory Effect of Acetic and Lactic Acid on Growth and Fermentative Metabolism of Zygosaccharomyces bailii. Food Microbiol. 2009, 26, 320–327. [Google Scholar] [CrossRef]
- Corsetti, A.; De Angelis, M.; Dellaglio, F.; Paparella, A.; Fox, P.F.; Settanni, L. Characterization of Sourdough Lactic Acid Bacteria Based on Genotypic and Cell-Wall Protein Analyses. J. Appl. Microbiol. 2003, 94, 641–654. [Google Scholar] [CrossRef] [PubMed]
- Hollomon, D. Does Agricultural Use of Azole Fungicides Contribute to Resistance in the Human Pathogen Aspergillus fumigatus? Pest Manag. Sci. 2017, 73, 1987–1993. [Google Scholar] [CrossRef] [PubMed]
- Axelsson, L.T.; Chung, T.C.; Dobrogosz, W.J.; Lindgren, S.E. Production of a Broad Spectrum Antimicrobial Substance by Lactobacillus reuteri. Microb. Ecol. Health Dis. 2009, 2, 131–136. [Google Scholar] [CrossRef] [Green Version]
- Dal Bello, F.; Clarke, C.I.; Ryan, L.A.M.; Ulmer, H.; Schober, T.J.; Ström, K.; Sjögren, J.; van Sinderen, D.; Schnürer, J.; Arendt, E.K. Improvement of the Quality and Shelf Life of Wheat Bread by Fermentation with the Antifungal Strain Lactobacillus plantarum FST 1.7. J. Cereal Sci. 2007, 45, 309–318. [Google Scholar] [CrossRef]
- Crowley, S.; Mahony, J.; Van Sinderen, D. Current Perspectives on Antifungal Lactic Acid Bacteria as Natural Bio-Preservatives. Trends Food Sci. Technol. 2013, 33, 93–109. [Google Scholar] [CrossRef]
- Bergsson, G.; Arnfinnsson, J.; SteingrÍmsson, O.; Thormar, H. In Vitro Killing of Candida albicans by Fatty Acids and Monoglycerides. Antimicrob. Agents Chemother. 2001, 45, 3209–3212. [Google Scholar] [CrossRef] [Green Version]
- Magnusson, J.; Ström, K.; Roos, S.; Sjögren, J.; Schnürer, J. Broad and Complex Antifungal Activity among Environmental Isolates of Lactic Acid Bacteria. FEMS Microbiol. Lett 2003, 219, 129–135. [Google Scholar] [CrossRef] [Green Version]
- And, T.J.A.; Bé Langer, R.R. Specificity and Mode of Action of the Antifungal Fatty Acid Cis-9-Heptadecenoic Acid Produced by Pseudozyma flocculosa. Appl. Environ. Microbiol. 2001, 67, 956–960. [Google Scholar] [CrossRef] [Green Version]
- Strobel, G.; Daisy, B. Bioprospecting for Microbial Endophytes and Their Natural Products. Microbiol. Mol. Biol. Rev. 2003, 67, 491–502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chatterjee, S.; Ghosh, S.; Mandal, N.C. Potential of an Endophytic Fungus Alternaria tenuissima PE2 Isolated from Psidium guajava L. for the Production of Bioactive Compounds. S. Afr. J. Bot. 2022, 150, 658–670. [Google Scholar] [CrossRef]
- Phongpaichit, S.; Rungjindamai, N.; Rukachaisirikul, V.; Sakayaroj, J. Antimicrobial Activity in Cultures of Endophytic Fungi Isolated from Garcinia Species. FEMS Immunol. Med. Microbiol. 2006, 48, 367–372. [Google Scholar] [CrossRef] [Green Version]
- Pongcharoen, W.; Rukachaisirikul, V.; Phongpaichit, S.; Kühn, T.; Pelzing, M.; Sakayaroj, J.; Taylor, W.C. Metabolites from the Endophytic Fungus Xylaria sp. PSU-D14. Phytochemistry 2008, 69, 1900–1902. [Google Scholar] [CrossRef]
- Zhang, H.W.; Song, Y.C.; Tan, R.X. Biology and Chemistry of Endophytes. Nat. Prod. Rep. 2006, 23, 753–771. [Google Scholar] [CrossRef]
- Strobel, G.A.; Miller, R.V.; Martinez-Miller, C.; Condron, M.M.; Teplow, D.B.; Hess, W.M. Cryptocandin, a Potent Antimycotic from the Endophytic Fungus Cryptosporiopsis cf. quercina. Microbiol. Read. 1999, 145 Pt 8, 1919–1926. [Google Scholar] [CrossRef] [Green Version]
- Ding, G.; Liu, S.; Guo, L.; Zhou, Y.; Che, Y. Antifungal Metabolites from the Plant Endophytic Fungus Pestalotiopsis foedan. J. Nat. Prod. 2008, 71, 615–618. [Google Scholar] [CrossRef]
- Moradi, A.; Yaghoubi-Avini, M.; Wink, J. Isolation of Nannocystis Species from Iran and Exploring Their Natural Products. Arch Microbiol. 2022, 204, 123. [Google Scholar] [CrossRef]
- Rhee, K.H. Cyclic Dipeptides Exhibit Synergistic, Broad Spectrum Antimicrobial Effects and Have Anti-Mutagenic Properties. Int. J. Antimicrob. Agents 2004, 24, 423–427. [Google Scholar] [CrossRef]
- Pereira, C.B.; Pereira de Sá, N.; Borelli, B.M.; Rosa, C.A.; Barbeira, P.J.S.; Cota, B.B.; Johann, S. Antifungal Activity of Eicosanoic Acids Isolated from the Endophytic Fungus Mycosphaerella sp. against Cryptococcus neoformans and C. gattii. Microb. Pathog. 2016, 100, 205–212. [Google Scholar] [CrossRef]
- Zafar, H.; Altamirano, D.S.; Ballou, E.R.; Nielsen, K. A Titanic Drug Resistance Threat in Cryptococcus Neoformans. Curr. Opin. Microbiol. 2019, 52, 158–164. [Google Scholar] [CrossRef]
- Botts, M.R.; Hull, C.M. Dueling in the Lung: How Cryptococcus Spores Race the Host for Survival. Curr. Opin. Microbiol. 2010, 13, 437–442. [Google Scholar] [CrossRef] [Green Version]
- Perfect, J.R.; Bicanic, T. Cryptococcosis Diagnosis and Treatment: What Do We Know Now. Fungal Genet. Biol. 2015, 78, 49–54. [Google Scholar] [CrossRef] [Green Version]
- Salehi, M.; Ahmadikia, K.; Badali, H.; Khodavaisy, S. Opportunistic Fungal Infections in the Epidemic Area of COVID-19: A Clinical and Diagnostic Perspective from Iran. Mycopathologia 2020, 185, 607–611. [Google Scholar] [CrossRef] [PubMed]
- Chi, W.C.; Pang, K.L.; Chen, W.L.; Wang, G.J.; Lee, T.H. Antimicrobial and INOS Inhibitory Activities of the Endophytic Fungi Isolated from the Mangrove Plant Acanthus ilicifolius var. xiamenensis. Bot. Stud. 2019, 60, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Sherry, L.; Ramage, G.; Kean, R.; Borman, A.; Johnson, E.M.; Richardson, M.D.; Rautemaa-Richardson, R. Biofilm-Forming Capability of Highly Virulent, Multidrug-Resistant Candida auris. Emerg. Infect. Dis. 2017, 23, 328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calvo, B.; Melo, A.S.A.; Perozo-Mena, A.; Hernandez, M.; Francisco, E.C.; Hagen, F.; Meis, J.F.; Colombo, A.L. First Report of Candida auris in America: Clinical and Microbiological Aspects of 18 Episodes of Candidemia. J. Infect. 2016, 73, 369–374. [Google Scholar] [CrossRef]
- Adam, R.D.; Revathi, G.; Okinda, N.; Fontaine, M.; Shah, J.; Kagotho, E.; Castanheira, M.; Pfaller, M.A.; Maina, D. Analysis of Candida auris Fungemia at a Single Facility in Kenya. Int. J. Infect. Dis. 2019, 85, 182–187. [Google Scholar] [CrossRef] [Green Version]
- Taori, S.K.; Khonyongwa, K.; Hayden, I.; Athukorala, G.D.A.; Letters, A.; Fife, A.; Desai, N.; Borman, A.M. Candida auris Outbreak: Mortality, Interventions and Cost of Sustaining Control. J. Infect. 2019, 79, 601–611. [Google Scholar] [CrossRef]
- Wall, G.; Herrera, N.; Lopez-Ribot, J.L. Repositionable Compounds with Antifungal Activity against Multidrug Resistant Candida auris Identified in the Medicines for Malaria Venture’s Pathogen Box. J. Fungi 2019, 5, 92. [Google Scholar] [CrossRef] [Green Version]
- Treviño-Rangel, R.D.J.; González, G.M.; Montoya, A.M.; Rojas, O.C.; Elizondo-Zertuche, M.; Álvarez-Villalobos, N.A. Recent Antifungal Pipeline Developments against Candida auris: A Systematic Review. J. Fungi 2022, 8, 1144. [Google Scholar] [CrossRef]
- Demain, A.L.; Martens, E. Production of Valuable Compounds by Molds and Yeasts. J. Antibiot. 2017, 70, 347–360. [Google Scholar] [CrossRef] [Green Version]
- Mendes, I.; Sanchez, I.; Franco-Duarte, R.; Camarasa, C.; Schuller, D.; Dequin, S.; Sousa, M.J. Integrating Transcriptomics and Metabolomics for the Analysis of the Aroma Profiles of Saccharomyces cerevisiae Strains from Diverse Origins. BMC Genom. 2017, 18, 455. [Google Scholar] [CrossRef] [Green Version]
- Fernandes, T.; Silva-Sousa, F.; Pereira, F.; Rito, T.; Soares, P.; Franco-Duarte, R.; Sousa, M.J. Biotechnological Importance of Torulaspora delbrueckii: From the Obscurity to the Spotlight. J. Fungi 2021, 7, 712. [Google Scholar] [CrossRef]
- Silva-Sousa, F.; Fernandes, T.; Pereira, F.; Rodrigues, D.; Rito, T.; Camarasa, C.; Franco-Duarte, R.; Sousa, M.J. Torulaspora delbrueckii Phenotypic and Metabolic Profiling towards Its Biotechnological Exploitation. J. Fungi 2022, 8, 569. [Google Scholar] [CrossRef]
- Arroyo-López, F.N.; Querol, A.; Bautista-Gallego, J.; Garrido-Fernández, A. Role of Yeasts in Table Olive Production. Int. J. Food Microbiol. 2008, 128, 189–196. [Google Scholar] [CrossRef]
- Franco-Duarte, R.; Bessa, D.; Gonçalves, F.; Martins, R.; Silva-Ferreira, A.C.; Schuller, D.; Sampaio, P.; Pais, C. Genomic and Transcriptomic Analysis of Saccharomyces cerevisiae Isolates with Focus in Succinic Acid Production. FEMS Yeast Res. 2017, 17, fox057. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Ong, K.L.; Cui, Z.; Sang, Z.; Li, X.; Patria, R.D.; Qi, Q.; Fickers, P.; Yan, J.; Lin, C.S.K. Promising Advancement in Fermentative Succinic Acid Production by Yeast Hosts. J. Hazard. Mater. 2021, 401, 123414. [Google Scholar] [CrossRef]
- Atanasov, A.G.; Waltenberger, B.; Pferschy-Wenzig, E.M.; Linder, T.; Wawrosch, C.; Uhrin, P.; Temml, V.; Wang, L.; Schwaiger, S.; Heiss, E.H.; et al. Discovery and Resupply of Pharmacologically Active Plant-Derived Natural Products: A Review. Biotechnol. Adv. 2015, 33, 1582–1614. [Google Scholar] [CrossRef] [Green Version]
- Ye, V.M.; Bhatia, S.K. Metabolic Engineering for the Production of Clinically Important Molecules: Omega-3 Fatty Acids, Artemisinin, and Taxol. Biotechnol. J. 2012, 7, 20–33. [Google Scholar] [CrossRef]
- Barrales-Cureño, H.J.; Ramos Valdivia, A.C.; Soto Hernández, M. Increased Production of Taxoids in Suspension Cultures of Taxus Globosa after Elicitation. Future Pharmacol. 2022, 2, 45–54. [Google Scholar] [CrossRef]
- Zaheer, K.; Humayoun Akhtar, M. An Updated Review of Dietary Isoflavones: Nutrition, Processing, Bioavailability and Impacts on Human Health. Crit. Rev. Food Sci. Nutr. 2017, 57, 1280–1293. [Google Scholar] [CrossRef]
- Cue, B.W.; Zhang, J. Green Process Chemistry in the Pharmaceutical Industry. Green Chem. Lett. Rev. 2009, 2, 193–211. [Google Scholar] [CrossRef]
- Sun, H.; Liu, Z.; Zhao, H.; Ang, E.L. Recent Advances in Combinatorial Biosynthesis for Drug Discovery. Drug Des. Dev. Ther. 2015, 9, 823–833. [Google Scholar] [CrossRef] [Green Version]
- Byrne, F.P.; Jin, S.; Paggiola, G.; Petchey, T.H.M.; Clark, J.H.; Farmer, T.J.; Hunt, A.J.; Robert McElroy, C.; Sherwood, J. Tools and Techniques for Solvent Selection: Green Solvent Selection Guides. Sustain. Chem. Process. 2016, 4, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Keasling, J.D. Manufacturing Molecules through Metabolic Engineering. Science 2010, 330, 1355–1358. [Google Scholar] [CrossRef]
- Luo, Y.; Li, B.Z.; Liu, D.; Zhang, L.; Chen, Y.; Jia, B.; Zeng, B.X.; Zhao, H.; Yuan, Y.J. Engineered Biosynthesis of Natural Products in Heterologous Hosts. Chem. Soc. Rev. 2015, 44, 5265–5290. [Google Scholar] [CrossRef] [Green Version]
- Song, M.C.; Kim, E.J.; Kim, E.; Rathwell, K.; Nam, S.J.; Yoon, Y.J. Microbial Biosynthesis of Medicinally Important Plant Secondary Metabolites. Nat. Prod. Rep. 2014, 31, 1497–1509. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, J.; Keasling, J.D. Engineering Cellular Metabolism. Cell 2016, 164, 1185–1197. [Google Scholar] [CrossRef] [Green Version]
- Goffeau, A.; Barrell, B.G.; Bussey, H.; Davis, R.W.; Dujon, B.; Feldmann, H.; Galibert, F.; Hoheisel, J.D.; Jacq, C.; Johnston, M.; et al. Life with 6000 Genes. Science 1996, 274, 563–567. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, H.; Yoo, S.J.; Kang, H.A. Yeast Synthetic Biology for the Production of Recombinant Therapeutic Proteins. FEMS Yeast Res. 2015, 15, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Porro, D.; Gasser, B.; Fossati, T.; Maurer, M.; Branduardi, P.; Sauer, M.; Mattanovich, D. Production of Recombinant Proteins and Metabolites in Yeasts. Appl. Microbiol. Biotechnol. 2011, 89, 939–948. [Google Scholar] [CrossRef]
- Buckholz, R.G.; Gleeson, M.A.G. Yeast Systems for the Commercial Production of Heterologous Proteins. Biotechnology 1991, 9, 1067–1072. [Google Scholar] [CrossRef] [PubMed]
- Meehl, M.A.; Stadheim, T.A. Biopharmaceutical Discovery and Production in Yeast. Curr. Opin. Biotechnol. 2014, 30, 120–127. [Google Scholar] [CrossRef] [PubMed]
- Paddon, C.J.; Westfall, P.J.; Pitera, D.J.; Benjamin, K.; Fisher, K.; McPhee, D.; Leavell, M.D.; Tai, A.; Main, A.; Eng, D.; et al. High-Level Semi-Synthetic Production of the Potent Antimalarial Artemisinin. Nature 2013, 496, 528–532. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jinek, M.; Chylinski, K.; Fonfara, I.; Hauer, M.; Doudna, J.A.; Charpentier, E. A Programmable Dual-RNA-Guided DNA endonuclease in adaptive bacterial immunity. Science 2012, 337, 816–822. [Google Scholar] [CrossRef]
- Dicarlo, J.E.; Norville, J.E.; Mali, P.; Rios, X.; Aach, J.; Church, G.M. Genome Engineering in Saccharomyces cerevisiae Using CRISPR-Cas Systems. Nucleic. Acids Res. 2013, 41, 4336–4343. [Google Scholar] [CrossRef] [Green Version]
- Galanie, S.; Thodey, K.; Trenchard, I.J.; Interrante, M.F.; Smolke, C.D. Complete Biosynthesis of Opioids in Yeast. Science 2015, 349, 1095–1100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, M.; Kildegaard, K.R.; Chen, Y.; Rodriguez, A.; Borodina, I.; Nielsen, J. De Novo Production of Resveratrol from Glucose or Ethanol by Engineered Saccharomyces cerevisiae. Metab. Eng. 2015, 32, 1–11. [Google Scholar] [CrossRef]
- EauClaire, S.F.; Zhang, J.; Rivera, C.G.; Huang, L.L. Combinatorial Metabolic Pathway Assembly in the Yeast Genome with RNA-Guided Cas9. J. Ind. Microbiol. Biotechnol. 2016, 43, 1001–1015. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Liu, Y.; Li, G.; Savolainen, O.; Chen, Y.; Nielsen, J. De Novo Biosynthesis of Bioactive Isoflavonoids by Engineered Yeast Cell Factories. Nat. Commun. 2021, 12, 6085. [Google Scholar] [CrossRef]
- Shen, X.X.; Opulente, D.A.; Kominek, J.; Zhou, X.; Steenwyk, J.L.; Buh, K.V.; Haase, M.A.B.; Wisecaver, J.H.; Wang, M.; Doering, D.T.; et al. Tempo and Mode of Genome Evolution in the Budding Yeast Subphylum. Cell 2018, 175, 1533–1545.e20. [Google Scholar] [CrossRef] [Green Version]
- Gírio, F.M.; Fonseca, C.; Carvalheiro, F.; Duarte, L.C.; Marques, S.; Bogel-Łukasik, R. Hemicelluloses for Fuel Ethanol: A Review. Bioresour. Technol. 2010, 101, 4775–4800. [Google Scholar] [CrossRef]
- Rebello, S.; Abraham, A.; Madhavan, A.; Sindhu, R.; Binod, P.; Karthika Bahuleyan, A.; Aneesh, E.M.; Pandey, A. Non-Conventional Yeast Cell Factories for Sustainable Bioprocesses. FEMS Microbiol. Lett. 2018, 365, 222. [Google Scholar] [CrossRef]
- Cao, X.; Wei, L.J.; Lin, J.Y.; Hua, Q. Enhancing Linalool Production by Engineering Oleaginous Yeast Yarrowia lipolytica. Bioresour. Technol. 2017, 245, 1641–1644. [Google Scholar] [CrossRef] [PubMed]
- Gao, S.; Tong, Y.; Zhu, L.; Ge, M.; Zhang, Y.; Chen, D.; Jiang, Y.; Yang, S. Iterative Integration of Multiple-Copy Pathway Genes in Yarrowia lipolytica for Heterologous β-Carotene Production. Metab. Eng. 2017, 41, 192–201. [Google Scholar] [CrossRef] [PubMed]
- Luo, Z.; Liu, N.; Lazar, Z.; Chatzivasileiou, A.; Ward, V.; Chen, J.; Zhou, J.; Stephanopoulos, G. Enhancing Isoprenoid Synthesis in Yarrowia lipolytica by Expressing the Isopentenol Utilization Pathway and Modulating Intracellular Hydrophobicity. Metab. Eng. 2020, 61, 344–351. [Google Scholar] [CrossRef]
- Zhang, L.; Yang, H.; Xia, Y.; Shen, W.; Liu, L.; Li, Q.; Chen, X. Engineering the Oleaginous Yeast Candida tropicalis for α-Humulene Overproduction. Biotechnol. Biofuels Bioprod. 2022, 15, 1–12. [Google Scholar] [CrossRef]
- Yun, C.R.; Kong, J.N.; Chung, J.H.; Kim, M.C.; Kong, K.H. Improved Secretory Production of the Sweet-Tasting Protein, Brazzein, in Kluyveromyces lactis. J. Agric. Food Chem. 2016, 64, 6312–6316. [Google Scholar] [CrossRef]
- Lin, Y.J.; Chang, J.J.; Lin, H.Y.; Thia, C.; Kao, Y.Y.; Huang, C.C.; Li, W.H. Metabolic Engineering a Yeast to Produce Astaxanthin. Bioresour. Technol. 2017, 245, 899–905. [Google Scholar] [CrossRef] [PubMed]
- Khongto, B.; Laoteng, K.; Tongta, A. Fermentation Process Development of Recombinant Hansenula Polymorpha for Gamma-Linolenic Acid Production. J. Microbiol. Biotechnol. 2010, 20, 1555–1562. [Google Scholar] [CrossRef]
- Bhataya, A.; Schmidt-Dannert, C.; Lee, P.C. Metabolic Engineering of Pichia pastoris X-33 for Lycopene Production. Process Biochem. 2009, 44, 1095–1102. [Google Scholar] [CrossRef]
- Liu, Y.; Tu, X.; Xu, Q.; Bai, C.; Kong, C.; Liu, Q.; Yu, J.; Peng, Q.; Zhou, X.; Zhang, Y.; et al. Engineered Monoculture and Co-Culture of Methylotrophic Yeast for de Novo Production of Monacolin J and Lovastatin from Methanol. Metab. Eng. 2018, 45, 189–199. [Google Scholar] [CrossRef] [PubMed]
- Zirpel, B.; Degenhardt, F.; Zammarelli, C.; Wibberg, D.; Kalinowski, J.; Stehle, F.; Kayser, O. Optimization of Δ9-Tetrahydrocannabinolic Acid Synthase Production in Komagataella phaffii via Post-Translational Bottleneck Identification. J. Biotechnol. 2018, 272–273, 40–47. [Google Scholar] [CrossRef]
- Araya-Garay, J.M.; Ageitos, J.M.; Vallejo, J.A.; Veiga-Crespo, P.; Sánchez-Pérez, A.; Villa, T.G. Construction of a Novel Pichia pastoris Strain for Production of Xanthophylls. AMB Express 2012, 2, 24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xue, Y.; Kong, C.; Shen, W.; Bai, C.; Ren, Y.; Zhou, X.; Zhang, Y.; Cai, M. Methylotrophic Yeast Pichia pastoris as a Chassis Organism for Polyketide Synthesis via the Full Citrinin Biosynthetic Pathway. J. Biotechnol. 2017, 242, 64–72. [Google Scholar] [CrossRef]
- Mavrommati, M.; Daskalaki, A.; Papanikolaou, S.; Aggelis, G. Adaptive Laboratory Evolution Principles and Applications in Industrial Biotechnology. Biotechnol. Adv. 2022, 54, 107795. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, T.; Osório, C.; Sousa, M.J.; Franco-Duarte, R. Contributions of Adaptive Laboratory Evolution towards the Enhancement of the Biotechnological Potential of Non-Conventional Yeast Species. J. Fungi 2023, 9, 186. [Google Scholar] [CrossRef] [PubMed]
- Reyes, L.H.; Gomez, J.M.; Kao, K.C. Improving Carotenoids Production in Yeast via Adaptive Laboratory Evolution. Metab. Eng. 2014, 21, 26–33. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Pan, A.; Spofford, C.; Zhou, N.; Alper, H.S. An Evolutionary Metabolic Engineering Approach for Enhancing Lipogenesis in Yarrowia lipolytica. Metab. Eng. 2015, 29, 36–45. [Google Scholar] [CrossRef] [PubMed]
- Dai, Z.; Liu, Y.; Guo, J.; Huang, L.; Zhang, X. Yeast Synthetic Biology for High-Value Metabolites. FEMS Yeast Res. 2015, 15, 1–13. [Google Scholar] [CrossRef] [Green Version]
Compound | Formula | Commercial Interest | Market Value in Millions of USD (Year) | Reference |
---|---|---|---|---|
Glutathione | Antioxidant | 316.56 (2020) | [17,18] | |
Melatonin | Sleep cycle receptor mediator and antioxidant | 437.9 (2021) | [26,29] | |
Riboflavin | Food coloring and supplement | 397 (2023) | [30,31] | |
Toxin K1 | KEX1 e KEX2 proteases encoded | Antifungal | - | [32] |
Toxin K28 | Antifungal | - | [33] | |
Toxin K2 | Antifungal | - | [34] | |
Toxin KP | Decapeptide KP (AKVTMTCSAS) | Toxoplasmosis and antifungal treatment | - | [35] |
Rhodotorulic Acid | Iron bioavailability and regulator of iron-mediated membrane transporters | - | [36] | |
Ferrichrome | Bioavailability and regulator of iron and other metals | - | [36,37] | |
Acetic Acid | Preservative and food additive; drug production, industrial and laboratory solvent | 2900 (2021) | [38,39] | |
Citronellol | Antifungal | ~146.8 (2030) | [40,41] | |
Phenylethyl Alcohol | Antimicrobial, antiseptic, disinfectant, aromatic essence, and preservative of pharmaceuticals and cosmetics | 255.3 (2021) | [40,42] | |
Indol | Fragrance component and flavor aggregator | 35.7 (2021) | [25,43] | |
Quercetin-3-glucoside | Antiviral, antioxidant | - | [44] | |
Caffeic Acid | Antioxidant, anti-inflammatory | [44] | ||
Naringenin | Antioxidant, anti-inflammatory, antifungal | [44] |
Producing Microorganism | Biocompound | Target Yeast Tested | MIC | Reference |
---|---|---|---|---|
Alternaria tenuissima | - | Candida albicans | 1400 µg/mL | [136] |
Cladosporium herbarum | Alkaloid-aspernigrin A | Candida albicans | 75.0 μg/mL | [139] |
Cryptosporiopsis quercina | Lipopeptide cryptocandin A | Candida albicans | 0.03 μg/mL | [140] |
Cryptosporiopsis quercina | Lipopeptide cryptocandin A | Cryptococcus neoformans | - | [140] |
Pestalotiopsis foedan | Isobenzofuranone, Pestaphtalides A | Candida albicans | - | [141] |
Xylaria sp. | - | Candida albicans | 128 µg/mL | [137] |
Xylaria sp. | Sordaricin | Candida albicans | 32 µg/mL | [138] |
Nannocystis | - | Candida albicans and Pichia anomala | - | [142] |
Streptomyces sp. | Cyclo(l-leucyl–l-prolyl) | Candida albicans; Candida glabrata; Candida tropicalis; | 32 mg/mL 16 mg/mL 8 mg/mL | [143] |
Streptomyces sp. | Cyclo(l-phenylalanyl–l-prolyl) | Candida albicans; Candida glabrata; Candida tropicalis; | 64 mg/mL 256 mg/mL 32 mg/mL | [143] |
Lactibacillus plantaram | 3-hydroxy tetradecanoic acid | Kluyveromyces marxianus | 10 μg/mL | [133] |
Lactibacillus plantaram | 3-hydroxy dodecanoic acid | Kluyveromyces marxianus | 25 μg/mL | [133] |
Lactibacillus plantaram | 3-hydroxy undecanoic acid | Kluyveromyces marxianus | 25 μg/mL | [133] |
Mycosphaerella sp. | 2-amino-3,4-dihydroxy-2-25 (hydroxymethyl)-14-oxo-6,12-eicosenoic acid | Cryptococcus neoformans | 1.95–7.82 μM | [144] |
Mycosphaerella sp. | Myriocin | Cryptococcus neoformans | 0.48–1.95 μM | [144] |
Yeast | Compound | Application | Reference |
---|---|---|---|
Yarrowia lipolytica | β-carotene | Antioxidant | [190] |
Linalool | Vitamin precursor, antifungal, antimicrobial and fragrance fixative | [189] | |
Lycopene | Antioxidant | [191] | |
Kluyveromyces lactis | Brazzein | Sweetener compound | [193] |
Kluyveromyces marxianus | Astaxanthin | Antioxidant | [194] |
Hansenula polymorpha | Gamma-linolenic acid | Anti-inflammatory and imunorregulatory | [195] |
Candida tropicalis | α-Humulene | Anti-inflammatory | [192] |
Komagataella phaffii (formerly Pichia pastoris) | Lycopene | Antioxidant | [196] |
Lovastatin | Antihypercolesterolemia | [197] | |
Δ9-Tetrahydrocannabinol | Compound with analgesic properties | [198] | |
Astaxanthin | Antioxidant | [199] | |
Citrinin | Antibiotic and antifungal | [200] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tadioto, V.; Giehl, A.; Cadamuro, R.D.; Guterres, I.Z.; dos Santos, A.A.; Bressan, S.K.; Werlang, L.; Stambuk, B.U.; Fongaro, G.; Silva, I.T.; et al. Bioactive Compounds from and against Yeasts in the One Health Context: A Comprehensive Review. Fermentation 2023, 9, 363. https://doi.org/10.3390/fermentation9040363
Tadioto V, Giehl A, Cadamuro RD, Guterres IZ, dos Santos AA, Bressan SK, Werlang L, Stambuk BU, Fongaro G, Silva IT, et al. Bioactive Compounds from and against Yeasts in the One Health Context: A Comprehensive Review. Fermentation. 2023; 9(4):363. https://doi.org/10.3390/fermentation9040363
Chicago/Turabian StyleTadioto, Viviani, Anderson Giehl, Rafael Dorighello Cadamuro, Iara Zanella Guterres, Angela Alves dos Santos, Stefany Kell Bressan, Larissa Werlang, Boris U. Stambuk, Gislaine Fongaro, Izabella Thaís Silva, and et al. 2023. "Bioactive Compounds from and against Yeasts in the One Health Context: A Comprehensive Review" Fermentation 9, no. 4: 363. https://doi.org/10.3390/fermentation9040363
APA StyleTadioto, V., Giehl, A., Cadamuro, R. D., Guterres, I. Z., dos Santos, A. A., Bressan, S. K., Werlang, L., Stambuk, B. U., Fongaro, G., Silva, I. T., & Alves, S. L., Jr. (2023). Bioactive Compounds from and against Yeasts in the One Health Context: A Comprehensive Review. Fermentation, 9(4), 363. https://doi.org/10.3390/fermentation9040363