Transcriptional Response of Multi-Stress-Tolerant Saccharomyces cerevisiae to Sequential Stresses
Abstract
:1. Introduction
2. Materials and Methods
2.1. Yeast Strain, Culture Conditions, and Experimental Design
2.2. RNA Preparation, Library Construction, and Sequencing
2.3. Reads Mapping, Annotation, and Gene Expression Analysis
2.4. Enrichment Analysis
2.5. Enriched Promoter Motifs
2.6. Quantitative Real-Time PCR Validation
3. Results
3.1. Global Analysis of the Transcriptome
3.2. Identification of Common Genes in Response to Sequential Stresses
3.3. Gene Ontology Functional Annotation and Enrichment of Gene Cluster
3.4. KEGG Enrichment Analysis of DEGs
3.5. Transcription Factors Enriched in Clustered Genes
3.6. RNA-Seq Expression Validation via Quantitative Real-Time PCR
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Martínez-Espinosa, R.M. Introductory Chapter: A Brief Overview on Fermentation and Challenges for the Next Future. In New Advances on Fermentation Processes; Martínez-Espinosa, R.M., Ed.; IntechOpen: Rijeka, Croatia, 2020; p. Ch. 1. [Google Scholar]
- Gibson, B.R.; Lawrence, S.J.; Leclaire, J.P.; Powell, C.D.; Smart, K.A. Yeast responses to stresses associated with industrial brewery handling. FEMS Microbiol. Rev. 2007, 31, 535–569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beales, N. Adaptation of Microorganisms to Cold Temperatures, Weak Acid Preservatives, Low pH, and Osmotic Stress: A Review. Compr Rev. Food Sci. Food Saf. 2004, 3, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Attfield, P.V. Stress tolerance: The key to effective strains of industrial baker’s yeast. Nat. Biotechnol. 1997, 15, 1351–1357. [Google Scholar] [CrossRef] [PubMed]
- Gasch, A.P.; Spellman, P.T.; Kao, C.M.; Carmel-Harel, O.; Eisen, M.B.; Storz, G.; Botstein, D.; Brown, P.O. Genomic expression programs in the response of yeast cells to environmental changes. Mol. Biol. Cell 2000, 11, 4241–4257. [Google Scholar] [CrossRef]
- Guan, Q.; Haroon, S.; Bravo, D.G.; Will, J.L.; Gasch, A.P. Cellular memory of acquired stress resistance in Saccharomyces cerevisiae. Genetics 2012, 192, 495–505. [Google Scholar] [CrossRef] [Green Version]
- Gutin, J.; Joseph-Strauss, D.; Sadeh, A.; Shalom, E.; Friedman, N. Genetic screen of the yeast environmental stress response dynamics uncovers distinct regulatory phases. Mol Syst Biol 2019, 15, e8939. [Google Scholar] [CrossRef]
- Ikner, A.; Shiozaki, K. Yeast signaling pathways in the oxidative stress response. Mutat. Res. 2005, 569, 13–27. [Google Scholar] [CrossRef]
- Yang, J.; Tavazoie, S. Regulatory and evolutionary adaptation of yeast to acute lethal ethanol stress. PLoS ONE 2020, 15, e0239528. [Google Scholar] [CrossRef]
- Berry, D.B.; Guan, Q.; Hose, J.; Haroon, S.; Gebbia, M.; Heisler, L.E.; Nislow, C.; Giaever, G.; Gasch, A.P. Multiple means to the same end: The genetic basis of acquired stress resistance in yeast. PLoS Genet 2011, 7, e1002353. [Google Scholar] [CrossRef] [Green Version]
- Meriem, Z.B.; Khalil, Y.; Hersen, P.; Fabre, E. Hyperosmotic Stress Response Memory is Modulated by Gene Positioning in Yeast. Cells 2019, 8, 582. [Google Scholar] [CrossRef] [Green Version]
- Taymaz-Nikerel, H.; Cankorur-Cetinkaya, A.; Kirdar, B. Genome-Wide Transcriptional Response of Saccharomyces cerevisiae to Stress-Induced Perturbations. Front. Bioeng. Biotechnol. 2016, 4, 17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bravim, F.; Palhano, F.L.; Fernandes, A.A.; Fernandes, P.M. Biotechnological properties of distillery and laboratory yeasts in response to industrial stresses. J. Ind Microbiol. Biotechnol. 2010, 37, 1071–1079. [Google Scholar] [CrossRef] [PubMed]
- Costa, A.C.T.; Hornick, J.; Antunes, T.F.S.; Santos, A.M.C.; Fernandes, A.A.R.; Broach, J.R.; Fernandes, P.M.B. Complete genome sequence and analysis of a Saccharomyces cerevisiae strain used for sugarcane spirit production. Braz. J. Microbiol. 2021, 52, 1087–1095. [Google Scholar] [CrossRef] [PubMed]
- Bravim, F.; da Silva, L.F.; Souza, D.T.; Lippman, S.I.; Broach, J.R.; Fernandes, A.A.; Fernandes, P.M. High hydrostatic pressure activates transcription factors involved in Saccharomyces cerevisiae stress tolerance. Curr. Pharm. Biotechnol. 2012, 13, 2712–2720. [Google Scholar] [CrossRef] [Green Version]
- Chasman, D.; Ho, Y.H.; Berry, D.B.; Nemec, C.M.; MacGilvray, M.E.; Hose, J.; Merrill, A.E.; Lee, M.V.; Will, J.L.; Coon, J.J.; et al. Pathway connectivity and signaling coordination in the yeast stress-activated signaling network. Mol. Syst. Biol. 2014, 10, 759. [Google Scholar] [CrossRef]
- Trapnell, C.; Williams, B.A.; Pertea, G.; Mortazavi, A.; Kwan, G.; van Baren, M.J.; Salzberg, S.L.; Wold, B.J.; Pachter, L. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol. 2010, 28, 511–515. [Google Scholar] [CrossRef] [Green Version]
- Ge, S.X.; Son, E.W.; Yao, R. iDEP: An integrated web application for differential expression and pathway analysis of RNA-Seq data. BMC Bioinform. 2018, 19, 534. [Google Scholar] [CrossRef] [Green Version]
- Huang, D.W.; Sherman, B.T.; Lempicki, R.A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nature Protoc. 2009, 4, 44–57. [Google Scholar] [CrossRef]
- Ge, S.X.; Jung, D.; Yao, R. ShinyGO: A graphical gene-set enrichment tool for animals and plants. Bioinformatics 2019, 36, 2628–2629. [Google Scholar] [CrossRef]
- Teste, M.A.; Duquenne, M.; Francois, J.M.; Parrou, J.L. Validation of reference genes for quantitative expression analysis by real-time RT-PCR in Saccharomyces cerevisiae. BMC Mol. Biol. 2009, 10, 99. [Google Scholar] [CrossRef] [Green Version]
- Bisson, L.F.; Fraenkel, D.G. Involvement of kinases in glucose and fructose uptake by Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 1983, 80, 1730–1734. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, H.; Rong, H.; Li, X.; Tong, S.; Zhu, Z.; Niu, L.; Teng, M. The crystal structure and identification of NQM1/YGR043C, a transaldolase from Saccharomyces cerevisiae. Proteins 2008, 73, 1076–1081. [Google Scholar] [CrossRef] [PubMed]
- Gasch, A.P. The environmental stress response: A common yeast response to diverse environmental stresses. In Yeast Stress Responses; Hohmann, S., Mager, W.H., Eds.; Springer: Berlin/Heidelberg, Germany, 2003; pp. 11–70. [Google Scholar]
- Hiltunen, J.K.; Mursula, A.M.; Rottensteiner, H.; Wierenga, R.K.; Kastaniotis, A.J.; Gurvitz, A. The biochemistry of peroxisomal beta-oxidation in the yeast Saccharomyces cerevisiae. FEMS Microbiol. Rev. 2003, 27, 35–64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trott, A.; Morano, K.A. SYM1 is the stress-induced Saccharomyces cerevisiae ortholog of the mammalian kidney disease gene Mpv17 and is required for ethanol metabolism and tolerance during heat shock. Eukaryot. Cell 2004, 3, 620–631. [Google Scholar] [CrossRef] [Green Version]
- Schlösser, T.; Gätgens, C.; Weber, U.; Stahmann, K.-P. Alanine: Glyoxylate aminotransferase of Saccharomyces cerevisiae–encoding gene AGX1 and metabolic significance. Yeast 2004, 21, 63–73. [Google Scholar] [CrossRef] [Green Version]
- Nash, R.; Weng, S.; Hitz, B.; Balakrishnan, R.; Christie, K.R.; Costanzo, M.C.; Dwight, S.S.; Engel, S.R.; Fisk, D.G.; Hirschman, J.E.; et al. Expanded protein information at SGD: New pages and proteome browser. Nucleic. Acids Res. 2007, 35, D468–D471. [Google Scholar] [CrossRef]
- Heinisch, J.J.; Lorberg, A.; Schmitz, H.P.; Jacoby, J.J. The protein kinase C-mediated MAP kinase pathway involved in the maintenance of cellular integrity in Saccharomyces cerevisiae. Mol. Microbiol. 1999, 32, 671–680. [Google Scholar] [CrossRef] [Green Version]
- Hlynialuk, C.; Schierholtz, R.; Vernooy, A.; van der Merwe, G. Nsf1/Ypl230w participates in transcriptional activation during non-fermentative growth and in response to salt stress in Saccharomyces cerevisiae. Microbiology 2008, 154, 2482–2491. [Google Scholar] [CrossRef]
- Zhang, N.; Wu, J.; Oliver, S.G. Gis1 is required for transcriptional reprogramming of carbon metabolism and the stress response during transition into stationary phase in yeast. Microbiology 2009, 155, 1690–1698. [Google Scholar] [CrossRef] [Green Version]
- Fernandes, A.R.; Mira, N.P.; Vargas, R.C.; Canelhas, I.; Sa-Correia, I. Saccharomyces cerevisiae adaptation to weak acids involves the transcription factor Haa1p and Haa1p-regulated genes. Biochem. Biophys. Res. Commun. 2005, 337, 95–103. [Google Scholar] [CrossRef]
- Bravim, F.; Lippman, S.I.; da Silva, L.F.; Souza, D.T.; Fernandes, A.A.; Masuda, C.A.; Broach, J.R.; Fernandes, P.M. High hydrostatic pressure activates gene expression that leads to ethanol production enhancement in a Saccharomyces cerevisiae distillery strain. Appl. Microbiol. Biotechnol. 2013, 97, 2093–2107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deparis, Q.; Claes, A.; Foulquie-Moreno, M.R.; Thevelein, J.M. Engineering tolerance to industrially relevant stress factors in yeast cell factories. FEMS Yeast Res. 2017, 17, fox036. [Google Scholar] [CrossRef] [PubMed]
- Young, E.T.; Dombek, K.M.; Tachibana, C.; Ideker, T. Multiple pathways are co-regulated by the protein kinase Snf1 and the transcription factors Adr1 and Cat8. J. Biol. Chem. 2003, 278, 26146–26158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peltier, E.; Friedrich, A.; Schacherer, J.; Marullo, P. Quantitative Trait Nucleotides Impacting the Technological Performances of Industrial Saccharomyces cerevisiae Strains. Front. Genet. 2019, 10, 683. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Denis, C.L.; Young, E.T. Isolation and characterization of the positive regulatory gene ADR1 from Saccharomyces cerevisiae. Mol. Cell Biol. 1983, 3, 360–370. [Google Scholar] [CrossRef] [PubMed]
- Simon, M.; Adam, G.; Rapatz, W.; Spevak, W.; Ruis, H. The Saccharomyces cerevisiae ADR1 gene is a positive regulator of transcription of genes encoding peroxisomal proteins. Mol. Cell Biol. 1991, 11, 699–704. [Google Scholar] [CrossRef]
- Tachibana, C.; Yoo, J.Y.; Tagne, J.B.; Kacherovsky, N.; Lee, T.I.; Young, E.T. Combined global localization analysis and transcriptome data identify genes that are directly coregulated by Adr1 and Cat8. Mol. Cell Biol. 2005, 25, 2138–2146. [Google Scholar] [CrossRef] [Green Version]
- Koerkamp, M.G.; Rep, M.; Bussemaker, H.J.; Hardy, G.P.; Mul, A.; Piekarska, K.; Szigyarto, C.A.; De Mattos, J.M.; Tabak, H.F. Dissection of transient oxidative stress response in Saccharomyces cerevisiae by using DNA microarrays. Mol. Biol. Cell 2002, 13, 2783–2794. [Google Scholar] [CrossRef] [Green Version]
- de la Torre-Ruiz, M.A.; Serrano, L.; Petkova, M.I.; Pujol-Carrion, N. Signalling Oxidative Stress in Saccharomyces cerevisiae. In Oxidative Stress; Volodymyr, L., Halyna, M.S., Eds.; IntechOpen: Rijeka, Croatia, 2012. [Google Scholar]
- Ozaki, K.; Tanaka, K.; Imamura, H.; Hihara, T.; Kameyama, T.; Nonaka, H.; Hirano, H.; Matsuura, Y.; Takai, Y. Rom1p and Rom2p are GDP/GTP exchange proteins (GEPs) for the Rho1p small GTP binding protein in Saccharomyces cerevisiae. EMBO J. 1996, 15, 2196–2207. [Google Scholar] [CrossRef]
- Grant, C.M. Metabolic reconfiguration is a regulated response to oxidative stress. J. Biol. 2008, 7, 1. [Google Scholar] [CrossRef] [Green Version]
- Kitichantaropas, Y.; Boonchird, C.; Sugiyama, M.; Kaneko, Y.; Harashima, S.; Auesukaree, C. Cellular mechanisms contributing to multiple stress tolerance in Saccharomyces cerevisiae strains with potential use in high-temperature ethanol fermentation. AMB Express 2016, 6, 107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bravim, F.; Mota, M.M.; Fernandes, A.A.; Fernandes, P.M. High hydrostatic pressure leads to free radicals accumulation in yeast cells triggering oxidative stress. FEMS Yeast Res 2016, 16, fow052. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lopez-Martinez, G.; Rodriguez-Porrata, B.; Margalef-Catala, M.; Cordero-Otero, R. The STF2p hydrophilin from Saccharomyces cerevisiae is required for dehydration stress tolerance. PLoS ONE 2012, 7, e33324. [Google Scholar] [CrossRef] [PubMed]
- Toledano, M.B.; Delaunay, A.; Biteau, B.; Spector, D.; Azevedo, D. Oxidative stress responses in yeast. In Yeast Stress Responses; Hohmann, S., Mager, W.H., Eds.; Springer: Berlin/Heidelberg, Germany, 2003; pp. 241–303. [Google Scholar]
- Lopez-Huertas, E.; Charlton, W.L.; Johnson, B.; Graham, I.A.; Baker, A. Stress induces peroxisome biogenesis genes. EMBO J. 2000, 19, 6770–6777. [Google Scholar] [CrossRef]
- Sibirny, A.A. Yeast peroxisomes: Structure, functions and biotechnological opportunities. FEMS Yeast Res 2016, 16, fow038. [Google Scholar] [CrossRef] [Green Version]
- Tang, X.; Lee, J.; Chen, W.N. Engineering the fatty acid metabolic pathway in Saccharomyces cerevisiae for advanced biofuel production. Metab. Eng. Commun. 2015, 2, 58–66. [Google Scholar] [CrossRef]
- Manzanares-Estreder, S.; Espi-Bardisa, J.; Alarcon, B.; Pascual-Ahuir, A.; Proft, M. Multilayered control of peroxisomal activity upon salt stress in Saccharomyces cerevisiae. Mol. Microbiol. 2017, 104, 851–868. [Google Scholar] [CrossRef] [Green Version]
- Jung, S.; Marelli, M.; Rachubinski, R.A.; Goodlett, D.R.; Aitchison, J.D. Dynamic changes in the subcellular distribution of Gpd1p in response to cell stress. J. Biol. Chem. 2010, 285, 6739–6749. [Google Scholar] [CrossRef] [Green Version]
- Ishii, A.; Kawai, M.; Noda, H.; Kato, H.; Takeda, K.; Asakawa, K.; Ichikawa, Y.; Sasanami, T.; Tanaka, K.; Kimura, Y. Accelerated invagination of vacuoles as a stress response in chronically heat-stressed yeasts. Sci. Rep. 2018, 8, 2644. [Google Scholar] [CrossRef] [Green Version]
- Gutin, J.; Sadeh, A.; Rahat, A.; Aharoni, A.; Friedman, N. Condition-specific genetic interaction maps reveal crosstalk between the cAMP/PKA and the HOG MAPK pathways in the activation of the general stress response. Mol. Syst. Biol. 2015, 11, 829. [Google Scholar] [CrossRef]
- Fierro-Risco, J.; Rincon, A.M.; Benitez, T.; Codon, A.C. Overexpression of stress-related genes enhances cell viability and velum formation in Sherry wine yeasts. Appl. Microbiol. Biotechnol. 2013, 97, 6867–6881. [Google Scholar] [CrossRef] [PubMed]
- Pacheco, A.; Pereira, C.; Almeida, M.J.; Sousa, M.J. Small heat-shock protein Hsp12 contributes to yeast tolerance to freezing stress. Microbiology 2009, 155, 2021–2028. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stanley, D.; Bandara, A.; Fraser, S.; Chambers, P.J.; Stanley, G.A. The ethanol stress response and ethanol tolerance of Saccharomyces cerevisiae. J. Appl. Microbiol. 2010, 109, 13–24. [Google Scholar] [CrossRef] [PubMed]
- Haslbeck, M.; Braun, N.; Stromer, T.; Richter, B.; Model, N.; Weinkauf, S.; Buchner, J. Hsp42 is the general small heat shock protein in the cytosol of Saccharomyces cerevisiae. EMBO J. 2004, 23, 638–649. [Google Scholar] [CrossRef] [Green Version]
- von Janowsky, B.; Major, T.; Knapp, K.; Voos, W. The Disaggregation Activity of the Mitochondrial ClpB Homolog Hsp78 Maintains Hsp70 Function during Heat Stress. J. Mol. Biol. 2006, 357, 793–807. [Google Scholar] [CrossRef]
Target mRNA | Primer Sequence 5′–3′ | Amplicon Size (bp) | PCR Efficiency a (%) |
---|---|---|---|
HSP12 | Forward, 5′CGCAGGTAGAAAAGGATTCG3′ | 194 | 105 |
Reverse, 5′TCAGCGTTATCCTTGCCTTT3′ | |||
YGP1 | Forward, 5′TGACGGTGGTTACTCTTCCA3’ | 49 | 104 |
Reverse, 5′GAACGGCAGAACTCAAGGAG3’ | |||
SYM1 | Forward, 5′ACGGGTAGCTGTCGATCAAT3′ | 126 | 97 |
Reverse, 5′AGGCCACCATTGCTCTTTTA3′ | |||
STF2 | Forward, 5′CGGTGAATCTCCAAATCACA3’ | 108 | 99 |
Reverse, 5′CACTGGGGGTATTTCACCAT3’ | |||
HSP26 | Forward, 5′ATGCTGGCGCTCTTTATGAT3’ | 95 | 95 |
Reverse, 5′TTCTAGGGAAACCGAAACCA3’ | |||
SSE2 | Forward, 5′CACTGGGGTCAAGGTTCCTA3′ | 137 | 94 |
Reverse, 5′GGTAAAGGCACTGGCTCTTG3′ | |||
HSP42 | Forward, 5′TGAACGCATTATCCAACCAA3′ | 94 | 100 |
Reverse, 5′TTGTCCATAATGGGGATGGT3′ | |||
ALG9 | Forward, 5′ACATCGTCGCCCCAATAAAT3′ | 142 | 93 |
Reverse, 5′GATTGGCTCCGGTACGTAAA3′ |
Pathways | Count | % | p-Value | FDR |
---|---|---|---|---|
Metabolic pathways | 48 | 21.9 | 6.8 × 10−8 | 1.8 × 10−6 |
Biosynthesis of secondary metabolites | 23 | 10.5 | 3.8 × 10−4 | 3.6 × 10−3 |
Biosynthesis of antibiotics | 19 | 8.7 | 3.6 × 10−4 | 3.6 × 10−3 |
Carbon metabolism | 16 | 7.3 | 6.3 × 10−6 | 1.1 × 10−4 |
Starch and sucrose metabolism | 12 | 5.5 | 5.9 × 10−8 | 1.8 × 10−6 |
Glycolysis/gluconeogenesis | 8 | 3.7 | 3.9 × 10−3 | 1.9 × 10−2 |
Peroxisome | 7 | 3.2 | 1.9 × 10−3 | 1.1 × 10−2 |
Alanine, aspartate, and glutamate metabolism | 6 | 2.7 | 3.6 × 10−3 | 1.9 × 10−2 |
Amino sugar and nucleotide sugar metabolism | 6 | 2.7 | 4.8 × 10−3 | 2.1 × 10−2 |
Phenylalanine metabolism | 5 | 2.3 | 4.1 × 10−4 | 3.6 × 10−3 |
beta-Alanine metabolism | 5 | 2.3 | 8.4 × 10−4 | 6.4 × 10−3 |
Tyrosine metabolism | 5 | 2.3 | 1.1 × 10−3 | 7.6 × 10−3 |
Fructose and mannose metabolism | 5 | 2.3 | 5.7 × 10−3 | 2.3 × 10−2 |
Glutathione metabolism | 5 | 2.3 | 9.3 × 10−3 | 3.2 × 10−2 |
Galactose metabolism | 5 | 2.3 | 9.3 × 10−3 | 3.2 × 10−2 |
Pentose phosphate pathway | 5 | 2.3 | 1.6 × 10−2 | 4.7 × 10−2 |
Methane metabolism | 5 | 2.3 | 1.6 × 10−2 | 4.7 × 10−2 |
Butanoate metabolism | 4 | 1.8 | 9.7 × 10−3 | 3.2 × 10−2 |
Enriched Motif in Promoter | TF | TF Family |
---|---|---|
GGGG | Adr1 (*) | C2H2 ZF |
TAGGGG | Gis1 | C2H2 ZF |
AGGGG | Gis1 | C2H2 ZF |
AGGGG | Gis1 | C2H2 ZF |
GCGGGG | Mig3 | C2H2 ZF |
TAT | Mot2 | RRM |
AAGGGG | Msn2 | C2H2 ZF |
AGGGG | Msn2 | C2H2 ZF |
AGGG | Msn2 | C2H2 ZF |
AGGGG | Msn4 | C2H2 ZF |
AGGGG | Msn4 | C2H2 ZF |
AGGGG | Msn4 | C2H2 ZF |
TCAGGGG | Rei1 | C2H2 ZF |
TCAGGGG | Rei1 | C2H2 ZF |
TCAGGGG | Rei1 | C2H2 ZF |
AGGGG | Rgm1 | C2H2 ZF |
AGGGG | Rgm1 | C2H2 ZF |
TCAGGGG | Rgm1 | C2H2 ZF |
TTAGGGGT | Rph1 | C2H2 ZF |
ATTTAGGGGG | Rph1 | C2H2 ZF |
TTAGGGGT | Rph1 | C2H2 ZF |
TTAGGGGT | Rph1 | C2H2 ZF |
TCAGGGG | Usv1 (*) | C2H2 ZF |
AGGGG | Usv1 (*) | C2H2 ZF |
TCAGGGG | Usv1 (*) | C2H2 ZF |
ATAGGGG | YER130C | C2H2 ZF |
ATAGGGG | YER130C | C2H2 ZF |
ATAGGGG | YER130C | C2H2 ZF |
ATAGGGG | YER130C | C2H2 ZF |
GTGGGGGG | YGR067C | C2H2 ZF |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Costa, A.C.T.; Russo, M.; Fernandes, A.A.R.; Broach, J.R.; Fernandes, P.M.B. Transcriptional Response of Multi-Stress-Tolerant Saccharomyces cerevisiae to Sequential Stresses. Fermentation 2023, 9, 195. https://doi.org/10.3390/fermentation9020195
Costa ACT, Russo M, Fernandes AAR, Broach JR, Fernandes PMB. Transcriptional Response of Multi-Stress-Tolerant Saccharomyces cerevisiae to Sequential Stresses. Fermentation. 2023; 9(2):195. https://doi.org/10.3390/fermentation9020195
Chicago/Turabian StyleCosta, Ane Catarine Tosi, Mariano Russo, A. Alberto R. Fernandes, James R. Broach, and Patricia M. B. Fernandes. 2023. "Transcriptional Response of Multi-Stress-Tolerant Saccharomyces cerevisiae to Sequential Stresses" Fermentation 9, no. 2: 195. https://doi.org/10.3390/fermentation9020195
APA StyleCosta, A. C. T., Russo, M., Fernandes, A. A. R., Broach, J. R., & Fernandes, P. M. B. (2023). Transcriptional Response of Multi-Stress-Tolerant Saccharomyces cerevisiae to Sequential Stresses. Fermentation, 9(2), 195. https://doi.org/10.3390/fermentation9020195