Bio-Succinic Acid Production from Palm Oil Mill Effluent Using Enterococcus gallinarum with Sequential Purification of Biogas
Abstract
:1. Introduction
2. Materials and Methods
2.1. Palm Oil Mill Effluent (POME)
2.2. Microorganisms and Inoculum Preparation
2.3. Effect of Dilution of POME and Neutralizing Agents on Succinic Acid Production
2.4. Screening Parameters for Succinic Acid by PBD
2.5. The Optimization of Succinic Acid Production by BBD
2.6. Biogas Preparation
2.7. Succinic Acid Production Coupling with CO2 Removal from Biogas
2.8. Analytical Methods
3. Results and Discussion
3.1. Effect of Dilution and Netralizing Agents on Succinic Acid Production from POME
3.2. Screening Parameters for Succinic Acid Production by PBD
3.3. The Optimum Nutrient Supplementation for Succinic Acid Production by PBD
3.4. Succinic Acid Production Coupling with CO2 Removal from Biogas
Microbial Strains | Main Substrates | CO2 Sources | Time 1 (h) | Succinic Acid Production | By-Products 3 (g/L) | % Succinic acid 4 | Ref. | ||
---|---|---|---|---|---|---|---|---|---|
Conc. (g/L) | Yield 2 (g/g) | Prod. (g/L-h) | |||||||
Enterococcus gallinarum | POME | Biogas | 48 | 19.1 ± 0.65 | 1.37 | 0.398 | 9.52 | 66.7 | This Study |
Enterococcus gallinarum | POME | MgCO3 | 60 | 23.7 ± 0.30 | 1.71 | 0.395 | 8.31 | 74.1 | This study |
A. succinogenes 130Z | Crude glycerol | MgCO3 | 96 | 6.5 ± 0.1 | 2.1 | 1.3 | N/A | N/A | [21] |
A. succinogenes 130Z | Sugars-rich industrial waste | MgCO3 | 24 | 22.6 ± 0.5 | 0.64 | 0.94 | 20.9 | N/A | [23] |
MgCO3 + biogas | 24 | 25.5 ± 2.4 | 0.64 | 1.06 | 20.0 | N/A | [23] | ||
A. succinogenes 130Z | Whey | CO2 gas | N/A | 13.98 ± 0.1 | 0.6067 | 0.840 | 7.85 | N/A | [37] |
Enterobacter aerogenes LU2 | Whery permeate | MgCO3 | 168 | 57.7 | 0.62 | 0.34 | N/A | N/A | [38] |
Basfia succinici-producens | OFHKW hydroly-sate | MgCO3 | 12 | 5.5 ± 0.2 | 0.39 | N/A | N/A | N/A | [39] |
MgCO3 + biogas | 12 | 3.8 ± 0.8 | 0.25 | N/A | N/A | N/A | [39] | ||
A. succinogenes 130Z | OFHKW hydroly-sate | MgCO3 | 24 | 42.3 ± 2.5 | 0.705 | N/A | N/A | N/A | [40] |
Biogas | 24 | 21.7 ± 1.7 | 0.630 | N/A | (>30%) | N/A | [40] | ||
MgCO3 + biogas | 24 | 45.7 ± 2.5 | 0.754 | N/A | (24–25%) | 75.6 | [40] |
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Allais, F.; Coqueret, X.; Farmer, T.; Raverty, W.; Rémond, C.; Paës, G. Editorial: From biomass to advanced bio-based chemicals & materials: A Multidisciplinary perspective. Front. Chem. 2020, 8, 131. [Google Scholar]
- Malode, S.J.; Prabhu, K.K.; Mascarenhas, R.J.; Shetti, N.P.; Aminabhavi, T.M. Recent advances and viability in biofuel production. Energy Convers. Manag. X 2021, 10, 100070. [Google Scholar] [CrossRef]
- Moshood, T.D.; Nawanir, G.; Mahmud, F.; Mohamad, F.; Ahmad, M.H.; AbdulGhani, A. Sustainability of biodegradable plastics: New problem or solution to solve the global plastic pollution? Curr. Res. Green Sustain. Chem. 2022, 5, 100273. [Google Scholar] [CrossRef]
- Omwene, P.I.; Yağcıoğlu, M.; Öcal-Sarihan, Z.B.; Ertan, F.; Keris-Sen, Ü.D.; Karagunduz, A.; Keskinler, B. Batch fermentation of succinic acid from cheese whey by Actinobacillus succinogenes under variant medium composition. 3 Biotech 2021, 11, 389. [Google Scholar] [CrossRef]
- Lu, J.; Li, J.; Gao, H.; Zhou, D.; Xu, H.; Cong, Y.; Zhang, W.; Xin, F.; Jiang, M. Recent progress on bio-succinic acid production from lignocellulosic biomass. World J. Microbiol. Biotechnol. 2021, 37, 16. [Google Scholar] [CrossRef]
- Putri, D.N.; Sahlan, M.; Montastruc, L.; Meyer, M.; Negny, S.; Hermansyah, H. Progress of fermentation methods for bio-succinic acid production using agro-industrial waste by Actinobacillus succinogenes. Energy Rep. 2020, 6, 234–239. [Google Scholar] [CrossRef]
- Song, Y.; Lee, Y.G.; Ahn, Y.S.; Nguyen, D.T.; Bae, H.J. Utilization of bamboo as biorefinery feedstock: Co-production of xylo-oligosaccharide with succinic acid and lactic acid. Bioresour Technol. 2023, 372, 128694. [Google Scholar] [CrossRef]
- Thuy, N.T.H.; Kongkaew, A.; Flood, A.; Boontawan, A. Fermentation and crystallization of succinic acid from Actinobacillus succinogenes ATCC55618 using fresh cassava root as the main substrate. Bioresour. Technol. 2017, 233, 342–352. [Google Scholar] [CrossRef]
- Anwar, N.A.K.K.; Hassan, N.; Yusof, N.M.; Idris. A. High-titer bio-succinic acid production from sequential alkalic and metal salt pretreated empty fruit bunch via simultaneous saccharification and fermentation. Ind. Crops Prod. 2021, 166, 113478. [Google Scholar] [CrossRef]
- Xi, Y.L.; Dai, W.Y.; Xu, R.; Zhang, J.H.; Chen, K.Q.; Jiang, M.; Wei, P.; Ouyang, P.K. Ultrasonic pretreatment and acid hydrolysis of sugarcane bagasse for succinic acid production using Actinobacillus succinogenes. Bioprocess Biosyst. Eng. 2013, 36, 1779–1785. [Google Scholar] [CrossRef]
- Ma, J.J.; Fujino, T.; Lim, Y.; Niyommaneerat, W.; Chavalparit, O. Greenhouse gas emission from palm oil industry in Thailand and its countermeasures. Int. J. Earth Environ. Sci. 2021, 6, 184. [Google Scholar]
- Krishnan, S.; Homroskla, P.; Saritpongteeraka, K.; Suttinun, O.; Nasrullah, M.; Tirawanichakul, Y.; Chaiprapat, S. Specific degradation of phenolic compounds from palm oil mill effluent using ozonation and its impact on methane fermentation. Chem. Eng. J. 2023, 451, 138487. [Google Scholar] [CrossRef]
- Ng, D.K.S.; Wong, S.L.X.; Andiappan, V.; Ng, L.Y. Mathematical optimisation for sustainable bio-methane (Bio-CH4) production from palm oil mill effluent (POME). Energy 2023, 265, 126211. [Google Scholar] [CrossRef]
- Mahmod, S.S.; Takriff, M.S.; AL-Rajabi, M.M.; Abdul, P.M.; Gunny, A.A.N.; Silvamany, H.; Jahim, J.M. Water reclamation from palm oil mill effluent (POME): Recent technologies, by-product recovery, and challenges. J. Water Process Eng. 2023, 52, 103488. [Google Scholar] [CrossRef]
- Akhbari, A.; Ibrahim, S.; Ahmad, M.S. Optimization of up-flow velocity and feed flow rate in up-flow anaerobic sludge blanket fixed-film reactor on bio-hydrogen production from palm oil mill effluent. Energy 2023, 266, 126435. [Google Scholar] [CrossRef]
- Liew, P.W.Y.; Jong, B.C.; Sudesh, K.; Najimudin, N.; Mok, P.S. Characterization of P(3HB) from untreated raw palm oil mill effluent using Azotobacter vinelandii ΔAvin_16040 lacking S-layer protein. World J. Microbiol. Biotechnol. 2023, 39, 68. [Google Scholar] [CrossRef]
- Louhasakul, Y.; Treu, L.; Kougias, P.G.; Campanaro, S.; Cheirsilp, B.; Angelidaki, I. Valorization of palm oil mill wastewater for integrated production of microbial oil and biogas in a biorefinery approach. J. Clean. Prod. 2021, 296, 126606. [Google Scholar] [CrossRef]
- Shaw, K.M.; Poh, P.E.; Ho, Y.K.; Chan, S.K.; Chew, I.M.L. Predicting volatile fatty acid synthesis from palm oil mill effluent on an industrial scale. Biochem. Eng. J. 2022, 187, 108671. [Google Scholar] [CrossRef]
- Nagime, P.V.; Upaichit, A.; Cheirsilp, B.; Boonsawang, P. Isolation and screening of microorganisms for high yield of succinic acid production. Biotechnol. Appl. Biochem. 2022, in press. [CrossRef]
- Liu, X.; Zhao, G.; Sun, S.; Fan, C.; Feng, X.; Xiong, P. Biosynthetic pathway and metabolic engineering of succinic acid. Front Bioeng. Biotechnol. 2022, 10, 843887. [Google Scholar] [CrossRef]
- Kanchanasuta, S.; Champreda, V.; Pisutpaisal, N.; Singhakant, C. Optimization of bio-succinic fermentation process from crude glycerol by Actinobacillus succinogenes. Environ. Eng. Res. 2021, 26, 200121. [Google Scholar] [CrossRef]
- Gunnarsson, I.B.; Alvarado-Morales, M.; Angelidaki, I. Utilization of CO2 fixating bacterium Actinobacillus succinogenes 130Z for simultaneous biogas upgrading and biosuccinic acid production. Environ. Sci. Technol. 2014, 48, 12464–12468. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vigato, F.; Angelidaki, I.; Woodley, J.M.; Alvarado-Morales, M. Dissolved CO2 profile in bio-succinic acid production from sugars-rich industrial waste. Biochem. Eng. J. 2022, 187, 108602. [Google Scholar] [CrossRef]
- Pinkian, N.; Phuengjayaem, S.; Tanasupawat, S.; Teeradakorn, S. Optimization of succinic acid production by succinic acid bacteria isolated in Thailand. Songklanakarin J. Sci. Technol. 2018, 40, 1281–1290. [Google Scholar]
- Olajuyin, A.M.; Yang, M.; Thygesen, A.; Tian, J.; Mu, T.; Xing, J. Effective production of succinic acid from coconut water (Cocos nucifera) by metabolically engineered Escherichia coli with overexpression of Bacillus subtilis pyruvate carboxylase. Biotechnol. Reports 2019, 24, e00378. [Google Scholar] [CrossRef]
- Miller, G.L. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 1959, 31, 426–428. [Google Scholar] [CrossRef]
- APHA; AWWA; WEF. Chemical Oxygen Demand. In Standard Methods for the Examination of Water and Wastewater, 21st ed.; American Public Health Association: Washington, DC, USA, 2005; Part 5220. [Google Scholar]
- Wang, C.C.; Zhu, L.W.; Li, H.M.; Tang, Y.J. Performance analyses of a neutralizing agent combination strategy for the production of succinic acid by Actinobacillus succinogenes ATCC 55618. Bioproc. Biosyst. Eng. 2012, 35, 659–664. [Google Scholar] [CrossRef]
- Andersson, C.; Helmerius, J.; Hodge, D.; Berglund, K.A.; Rova, U. Inhibition of succinic acid production in metabolically engineered Escherichia coli by neutralizing agent, organic acids, and osmolarity. Biotechnol. Progress 2009, 25, 116–123. [Google Scholar] [CrossRef]
- Bumyut, A.; Champreda, V.; Singhakant, C.; Kanchanasuta, S. Effects of immobilization of Actinobacillus succinogenes on efficiency of bio-succinic acid production from glycerol. Biomass Convers. Biorefin. 2022, 12, 643–654. [Google Scholar] [CrossRef]
- Liu, Y.P.; Zheng, P.; Sun, Z.H.; Ni, Y.; Dong, J.J.; Wei, P. Strategies of pH control and glucose-fed batch fermentation for production of succinic acid by Actinobacillus succinogenes CGMCC 1593. J. Chem. Technol. Biotechnol. 2008, 83, 722–729. [Google Scholar] [CrossRef]
- Agarwal, L.; Isar, J.; Meghwanshi, G.K.; Saxena, R.K. A cost effective fermentative production of succinic acid from cane molasses and corn steep liquor by Escherichia coli. J. Appl. Microbiol. 2006, 100, 1348–1354. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Li, Z.; Ye, Q.; Yang, Y.; Chen, S. Development of succinic acid production from corncob hydrolysate by Actinobacillus succinogenes. J. Ind. Microbiol. Biotechnol. 2010, 37, 1033–1040. [Google Scholar] [CrossRef]
- Tan, J.P.; Luthfi, A.A.I.; Manaf, S.F.A.; Wu, T.Y.; Jahim, J.M. Incorporation of CO2 during the production of succinic acid from sustainable oil palm frond juice. J. CO2 Util. 2018, 26, 595–601. [Google Scholar] [CrossRef]
- Kuglarz, M.; Rom, M. Influence of carbon dioxide and nitrogen source on sustainable production of succinic acid from Miscanthus hydrolysates. Int. J. Environ. Sci. Dev. 2019, 10, 362–367. [Google Scholar] [CrossRef] [Green Version]
- Nualsri, C.; Kongjan, P.; Reungsang, A.; Imai, T. Effect of biogas sparging on the performance of bio-hydrogen reactor over a long-term operation. PLoS ONE 2017, 12, e0171248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Louasté, B.; Eloutassi, N. Succinic acid production from whey and lactose by Actinobacillus succinogenes 130Z in batch fermentation. Biotechnol. Rep. 2020, 27, e00481. [Google Scholar] [CrossRef]
- Szczerba, H.; Komoń-Janczara, E.; Dudziak, A.; Waśko, A.; Targoński, Z. A novel biocatalyst, Enterobacter aerogenes LU2, for efficient production of succinic acid using whey permeate as a cost-effective carbon source. Biotechnol. Biofuels 2020, 13, 96. [Google Scholar] [CrossRef]
- Babaei, M.; Tsapekos, P.; Alvarado-Morales, M.; Hosseini, M.; Ebrahimi, S.; Niaei, A.; Angelidaki, I. Valorization of organic waste with simultaneous biogas upgrading for the production of succinic acid. Biochem. Eng. J. 2019, 147, 136–145. [Google Scholar] [CrossRef]
- Kuglarz, M.; Angelidaki, I. Succinic Production from source-separated kitchen biowaste in a biorefinery concept: Focusing on alternative carbon dioxide source for fermentation processes. Fermentation 2023, 9, 259. [Google Scholar] [CrossRef]
Variables | Keys | Low Level (−1) | High Level (+1) |
---|---|---|---|
MgCl2 (g/L) | A | 0.2 | 2.0 |
CaCl2 (g/L) | B | 0.2 | 1.5 |
MnCl2 (g/L) | C | 0.05 | 0.07 |
Na2HPO4 (g/L) | D | 0.3 | 4.4 |
NaH2PO4 (g/L) | E | 1.5 | 4.4 |
MgCO3 (g/L) | F | 15 | 30 |
Initial pH | G | 6.0 | 8.0 |
Yeast extract (YE) (g/L) | H | 5.0 | 10 |
(NH4) 2SO4 (g/L) | J | 1.4 | 3 |
Peptone (g/L) | K | 3.0 | 12 |
NH4Cl (g/L) | L | 2.5 | 5.3 |
Dilution | Neutralizing Agents | Biomass (g/L) | SA (g/L) | FA (g/L) | LA (g/L) | AA (g/L) | % COD Removal | pH |
---|---|---|---|---|---|---|---|---|
Undilted POME | MgCO3 | 1.53 ± 0.06 | 5.62 ± 0.02 | 0 | 0 | 0 | 23.3 | 6.82 ± 0.05 |
2-fold dilution | MgCO3 | 2.61 ± 0.09 | 11.5 ± 0.43 | 0.021 | 0.442 | 0.278 | 50.0 | 6.24 ± 0.03 |
2-fold dilution | CaCO3 | 2.03 ± 0.10 | 7.23 ± 0.67 | 0.314 | 0.863 | 1.31 | - | 5.36 ± 0.03 |
2-fold dilution | NaOH | 1.24 ± 0.03 | 3.31 ± 0.35 | 0 | 0.325 | 0 | - | 4.51 ± 0.05 |
2-fold dilution | Na2CO3 | 1.48 ± 0.08 | 4.53 ± 0.28 | 0 | 0 | 0.442 | - | 4.85 ± 0.18 |
5-fold dilution | MgCO3 | 2.39 ± 0.01 | 8.25 ± 0.01 | 0 | 0.554 | 0.293 | 40.0 | 6.64 ± 0.01 |
Run | A | B | C | D | E | F | G | H | J | K | L | Succinic Acid (g/L) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | 10.11 |
2 | −1 | −1 | −1 | +1 | −1 | +1 | +1 | −1 | +1 | +1 | +1 | 22.46 |
3 | −1 | +1 | +1 | +1 | −1 | −1 | −1 | + | −1 | +1 | +1 | 15.50 |
4 | +1 | −1 | +1 | +1 | +1 | −1 | −1 | −1 | +1 | −1 | +1 | 14.99 |
5 | +1 | +1 | +1 | −1 | −1 | −1 | +1 | −1 | +1 | +1 | −1 | 22.08 |
6 | −1 | −1 | +1 | −1 | +1 | +1 | −1 | +1 | +1 | +1 | −1 | 18.56 |
7 | +1 | −1 | −1 | −1 | +1 | −1 | +1 | +1 | −1 | +1 | +1 | 17.24 |
8 | −1 | +1 | −1 | +1 | +1 | −1 | +1 | +1 | +1 | −1 | −1 | 16.76 |
9 | +1 | −1 | +1 | +1 | −1 | +1 | +1 | +1 | −1 | −1 | −1 | 15.79 |
10 | +1 | +1 | −1 | −1 | −1 | +1 | −1 | +1 | +1 | −1 | +1 | 15.48 |
11 | −1 | +1 | +1 | −1 | +1 | +1 | +1 | −1 | −1 | −1 | +1 | 17.67 |
12 | +1 | +1 | −1 | +1 | +1 | +1 | −1 | −1 | −1 | +1 | −1 | 23.06 |
Effect | Sum of Squares | % Contribution | Mean Square | F-Value | p-Value ** | Significant ** | |
---|---|---|---|---|---|---|---|
Model | - | 149.4 | - | 16.6 | 42.4 | 0.023 | Yes |
A | 1.26 | 4.79 | 3.19 | 4.79 | 12.2 | 0.073 | No |
B | 1.90 | 10.8 | 7.21 | 10.8 | 27.7 | 0.034 | Yes |
C | −0.087 | (0.023) * | 0.02 | - | - | - | - |
D | 1.24 | 4.59 | 3.06 | 4.59 | 11.7 | 0.076 | No |
E | 1.14 | 3.92 | 2.61 | 3.92 | 10.0 | 0.087 | No |
F | 2.72 | 22.5 | 14.8 | 22.5 | 56.9 | 0.017 | Yes |
G | 2.38 | 17.0 | 11.3 | 17.0 | 43.6 | 0.022 | Yes |
H | −1.84 | 10.2 | 6.76 | 10.2 | 26.0 | 0.036 | Yes |
J | 1.83 | 10.0 | 6.67 | 10.0 | 25.6 | 0.037 | Yes |
K | 4.68 | 65.8 | 43.8 | 65.8 | 168.1 | 0.006 | Yes |
L | −0.50 | (0.76) * | 0.51 | - | - | - | - |
Run | MgCO3 (g/L) (X1) | Peptone (g/L) (X2) | Succinic Acid (g/L) | % Error | |
---|---|---|---|---|---|
Actual Values | Predicted Values | ||||
1 | 15 | 3 | 16.9 | 16.6 | 1.69 |
2 | 15 | 7.5 | 24.1 | 22.9 | 4.79 |
3 | 15 | 7.5 | 23.3 | 22.9 | 1.52 |
4 | 15 | 12 | 19.2 | 21.0 | −9.45 |
5 | 22.5 | 3 | 16.3 | 18.0 | −10.2 |
6 | 22.5 | 3 | 17.9 | 18.0 | −0.391 |
7 | 22.5 | 7.5 | 26.4 | 26.8 | −1.33 |
8 | 22.5 | 7.5 | 27.2 | 26.8 | 1.65 |
9 | 22.5 | 7.5 | 25.4 | 26.8 | −5.31 |
10 | 22.5 | 7.5 | 27.0 | 26.8 | 0.926 |
11 | 22.5 | 7.5 | 27.0 | 26.8 | 0.926 |
12 | 22.5 | 12 | 28.3 | 27.3 | 3.64 |
13 | 22.5 | 12 | 28.7 | 27.3 | 4.98 |
14 | 30 | 3 | 11.8 | 10.4 | 12. 2 |
15 | 30 | 7.5 | 21.3 | 21.6 | −1.38 |
16 | 30 | 7.5 | 21.1 | 21.6 | −2.35 |
17 | 30 | 12 | 23.9 | 24.6 | −2.78 |
Sources | Sum of Squares | df | Mean Square | F-Value | p-Value | Significant |
---|---|---|---|---|---|---|
Model | 366.7 | 5 | 73.3 | 50.9 | <0.0001 | Yes |
X1-MgCO3 | 3.64 | 1 | 3.64 | 2.53 | 0.1399 | No |
X2-Peptone | 172.9 | 1 | 172.9 | 120 | <0.0001 | Yes |
X1X2 | 24.0 | 1 | 24.0 | 16.7 | 0.0018 | Yes |
X12 | 84.8 | 1 | 84.8 | 58.9 | <0.0001 | Yes |
X22 | 72.1 | 1 | 72.1 | 50.1 | <0.0001 | Yes |
Residual | 15.8 | 11 | 1.44 | |||
Lack of Fit | 13.7 | 7 | 1.95 | 3.62 | 0.1157 | No |
Pure Error | 2.16 | 4 | 0.54 | |||
R2 | 0.9586 | |||||
%C.V. | 5.29 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nagime, P.V.; Upaichit, A.; Cheirsilp, B.; Boonsawang, P. Bio-Succinic Acid Production from Palm Oil Mill Effluent Using Enterococcus gallinarum with Sequential Purification of Biogas. Fermentation 2023, 9, 369. https://doi.org/10.3390/fermentation9040369
Nagime PV, Upaichit A, Cheirsilp B, Boonsawang P. Bio-Succinic Acid Production from Palm Oil Mill Effluent Using Enterococcus gallinarum with Sequential Purification of Biogas. Fermentation. 2023; 9(4):369. https://doi.org/10.3390/fermentation9040369
Chicago/Turabian StyleNagime, Pooja Vilas, Apichat Upaichit, Benjamas Cheirsilp, and Piyarat Boonsawang. 2023. "Bio-Succinic Acid Production from Palm Oil Mill Effluent Using Enterococcus gallinarum with Sequential Purification of Biogas" Fermentation 9, no. 4: 369. https://doi.org/10.3390/fermentation9040369
APA StyleNagime, P. V., Upaichit, A., Cheirsilp, B., & Boonsawang, P. (2023). Bio-Succinic Acid Production from Palm Oil Mill Effluent Using Enterococcus gallinarum with Sequential Purification of Biogas. Fermentation, 9(4), 369. https://doi.org/10.3390/fermentation9040369