Very High Thermotolerance of an Adaptive Evolved Saccharomyces cerevisiae in Cellulosic Ethanol Fermentation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Enzymes and Reagents
2.2. Strains and Culture
2.3. Biorefinery Processing
2.4. Adaptive Evolution
2.5. Cellulosic Ethanol Fermentation
2.6. Transcriptome Analyses
2.7. Analysis
3. Results and Discussions
3.1. Thermotolerance of the Adaptively Evolved S. cerevisiae Z100 at 50 °C
3.2. Improved Thermotolerance of S. cerevisiae Z100 Facilitated Cellulosic Ethanol Fermentation
3.3. Transcriptome Analyses Revealed the Potential Genes Responsible for Improved Thermotolerance of S. cerevisiae Z100
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wallace-Salinas, V.; Gorwa-Grauslund, M.F. Adaptive evolution of an industrial strain of Saccharomyces cerevisiae for combined tolerance to inhibitors and temperature. Biotechnol. Biofuels 2013, 6, 9. [Google Scholar] [CrossRef] [PubMed]
- Fu, X.F.; Li, P.S.; Zhang, L.; Li, S.Z. Understanding the stress responses of Kluyveromyces marxianus after an arrest during high-temperature ethanol fermentation based on integration of RNA-Seq and metabolite data. Appl. Microbiol. Biotechnol. 2019, 103, 2715–2729. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Liu, Y.; Sun, H.; Li, C.; Zhao, Z.; Liu, G. Advances in mechanisms and modifications for rendering yeast thermotolerance. J. Biosci. Bioeng. 2016, 121, 599–606. [Google Scholar] [CrossRef] [PubMed]
- Leonel, L.V.; Arruda, P.V.; Chandel, A.K.; Felipe, M.G.A.; Sene, L. Kluyveromyces marxianus: A potential biocatalyst of renewable chemicals and lignocellulosic ethanol production. Crit. Rev. Biotechnol. 2021, 41, 1131–1152. [Google Scholar] [CrossRef]
- Prado, C.D.; Mandrujano, G.P.L.; Souza, J.P.; Sgobbi, F.B.; Novaes, H.R.; da Silva, J.P.M.O.; Alves, M.H.R.; Eliodório, K.P.; Cunha, G.C.G.; Giudici, R.; et al. Physiological characterization of a new thermotolerant yeast strain isolated during Brazilian ethanol production, and its application in high-temperature fermentation. Biotechnol. Biofuels 2020, 13, 178. [Google Scholar] [CrossRef]
- Costa, C.E.; Møller-Hansen, I.; Romaní, A.; Teixeira, J.A.; Borodina, I.; Domingues, L. Resveratrol production from hydrothermally pretreated eucalyptus wood using recombinant industrial Saccharomyces cerevisiae strains. ACS Synth. Biol. 2021, 10, 1895–1903. [Google Scholar] [CrossRef]
- Khatun, M.M.; Yu, X.; Kondo, A.; Bai, F.W.; Zhao, X. Improved ethanol production at high temperature by consolidated bioprocessing using Saccharomyces cerevisiae strain engineered with artificial zinc finger protein. Bioresour. Technol. 2017, 245, 1447–1454. [Google Scholar] [CrossRef]
- Li, P.; Fu, X.; Zhang, L.; Li, S. CRISPR/Cas-based screening of a gene activation library in Saccharomyces cerevisiae identifies a crucial role of OLE1 in thermotolerance. Microb. Biotechnol. 2019, 12, 1154–1163. [Google Scholar] [CrossRef]
- Raimalani, V.; Panchamia, B.; Prabha, C.R. Characterization of the chimeric protein cUBC1 engineered by substituting the linker of E2-25K into UBC1 enzyme of Saccharomyces cerevisiae. Int. J. Biol. Macromol. 2022, 209, 991–1000. [Google Scholar] [CrossRef]
- Howard, M.K.; Sohn, B.S.; von Borcke, J.; Xu, A.; Jackrel, M.E. Functional analysis of proposed substrate-binding residues of Hsp104. PLoS ONE 2020, 15, e0230198. [Google Scholar] [CrossRef]
- Tu, W.L.; Ma, T.Y.; Ou, C.M.; Guo, G.L.; Chao, Y. Simultaneous saccharification and co-fermentation with a thermotolerant Saccharomyces cerevisiae to produce ethanol from sugarcane bagasse under high temperature conditions. BioResources 2021, 16, 1358–1372. [Google Scholar] [CrossRef]
- Caspeta, L.; Coronel, J.; Montes de Oca, A.; Abarca, E.; González, L.; Martínez, A. Engineering high-gravity fermentations for ethanol production at elevated temperature with Saccharomyces cerevisiae. Biotechnol. Bioeng. 2019, 116, 2587–2597. [Google Scholar] [CrossRef] [PubMed]
- Cox, J.; Schubert, A.M.; Travisano, M.; Putonti, C. Adaptive evolution and inherent tolerance to extreme thermal environments. BMC Evol. Biol. 2010, 10, 75. [Google Scholar] [CrossRef] [PubMed]
- García-Ríos, E.; Lairón-Peris, M.; Muñiz-Calvo, S.; Heras, J.M.; Ortiz-Julien, A.; Poirot, P.; Rozès, N.; Querol, A.; Guillamón, J.M. Thermo-adaptive evolution to generate improved Saccharomyces cerevisiae strains for cocoa pulp fermentations. Int. J. Food Microbiol. 2021, 342, 109077. [Google Scholar] [CrossRef]
- Huang, C.J.; Lu, M.Y.; Chang, Y.W.; Li, W.H. Experimental evolution of yeast for high-temperature tolerance. Mol. Biol. Evol. 2018, 35, 1823–1839. [Google Scholar] [CrossRef]
- Randez-Gil, F.; Prieto, J.A.; Rodríguez-Puchades, A.; Casas, J.; Sentandreu, V.; Estruch, F. Myriocin-induced adaptive laboratory evolution of an industrial strain of Saccharomyces cerevisiae reveals its potential to remodel lipid composition and heat tolerance. Microb. Biotechnol. 2020, 13, 1066–1081. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–256. [Google Scholar] [CrossRef]
- Li, H.X.; Shen, Y.; Wu, M.L.; Hou, J.; Jiao, C.L.; Li, Z.L.; Liu, X.L.; Bao, X.M. Engineering a wild-type diploid Saccharomyces cerevisiae strain for second-generation bioethanol production. Bioresour. Bioprocess. 2016, 3, 51. [Google Scholar] [CrossRef]
- Liu, G.; Zhang, Q.; Li, H.X.; Qureshi, A.S.; Zhang, J.; Bao, X.M.; Bao, J. Dry biorefining maximizes the potentials of simultaneous saccharification and co-fermentation for cellulosic ethanol production. Biotechnol. Bioeng. 2018, 115, 60–69. [Google Scholar] [CrossRef]
- He, Y.; Zhang, J.; Bao, J. Acceleration of biodetoxification on dilute acid pretreated lignocellulose feedstock by aeration and the consequent ethanol fermentation evaluation. Biotechnol. Biofuels 2016, 9, 19. [Google Scholar] [CrossRef]
- Sluiter, A.; Hames, B.; Ruiz, R.; Scarlata, C.; Sluiter, J.; Templeton, D.; Crocker, D. Determination of Structural Carbohydrates and Lignin in Biomass; Technical Report NREL/TP-510-42618; National Renewable Energy Laboratory (NREL): Golden, CO, USA, 2012. [Google Scholar]
- He, Y.; Zhang, J.; Bao, J. Dry dilute acid pretreatment by co-currently feeding of corn stover feedstock and dilute acid solution without impregnation. Bioresour. Technol. 2014, 158, 360–364. [Google Scholar] [CrossRef]
- Zhang, B.; Khushik, F.A.; Zhan, B.; Bao, J. Transformation of lignocellulose to starch-like carbohydrates by organic acid-catalyzed pretreatment and biological detoxification. Biotechnol. Bioeng. 2021, 118, 4105–4118. [Google Scholar] [CrossRef] [PubMed]
- Berovic, M.; Herga, M. Heat shock on Saccharomyces cerevisiae inoculum increases glycerol production in wine fermentation. Biotechnol. Lett. 2007, 29, 891–894. [Google Scholar] [CrossRef] [PubMed]
- Omori, T.; Ogawa, K.; Umemoto, Y.; Yuki, K.; Kajihara, Y.; Shimoda, M.; Wada, H. Enhancement of glycerol production by brewing yeast (Saccharomyces cerevisiae) with heat shock treatment. J. Ferment. Bioeng. 1996, 82, 187–190. [Google Scholar] [CrossRef]
- Xu, K.; Gao, L.M.; Hassan, J.U.; Zhao, Z.P.; Li, C.; Huo, Y.X.; Liu, G. Improving the thermo-tolerance of yeast base on the antioxidant defense system. Chem. Eng. Sci. 2018, 175, 335–342. [Google Scholar] [CrossRef]
- Postmus, J.; Canelas, A.B.; Bouwman, J.; Bakker, B.M.; van Gulik, W.; de Mattos, M.J.; Brul, S.; Smits, G.J. Quantitative analysis of the high temperature-induced glycolytic flux increase in Saccharomyces cerevisiae reveals dominant metabolic regulation. J. Biol. Chem. 2008, 283, 23524–23532. [Google Scholar] [CrossRef]
- Kosuke, S.; Takahiro, H.; Akari, H.; Hiroya, Y.; Yasuyoshi, S. Yeast Hog1 proteins are sequestered in stress granules during high-temperature stress. J. Cell. Sci. 2018, 131, 209114. [Google Scholar] [CrossRef]
- Hottiger, T.; De Virgilio, C.; Hall, M.N.; Boller, T.; Wiemken, A. The role of trehalose synthesis for the acquisition of thermotolerance in yeast: II. Physiological concentrations of trehalose increase the thermal stability of proteins in vitro. Eur. J. Biochem. 1994, 219, 187–193. [Google Scholar] [CrossRef]
- Lopienska-Biernat, E.; Stryinski, R.; Dmitryjuk, M.; Wasilewska, B. Infective larvae of Anisakis simplex (Nematoda) accumulate trehalose and glycogen in response to starvation and temperature stress. Biol. Open 2019, 8, bio040014. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, B.; Geberekidan, M.; Yan, Z.; Yi, X.; Bao, J. Very High Thermotolerance of an Adaptive Evolved Saccharomyces cerevisiae in Cellulosic Ethanol Fermentation. Fermentation 2023, 9, 393. https://doi.org/10.3390/fermentation9040393
Zhang B, Geberekidan M, Yan Z, Yi X, Bao J. Very High Thermotolerance of an Adaptive Evolved Saccharomyces cerevisiae in Cellulosic Ethanol Fermentation. Fermentation. 2023; 9(4):393. https://doi.org/10.3390/fermentation9040393
Chicago/Turabian StyleZhang, Bin, Mesfin Geberekidan, Zhao Yan, Xia Yi, and Jie Bao. 2023. "Very High Thermotolerance of an Adaptive Evolved Saccharomyces cerevisiae in Cellulosic Ethanol Fermentation" Fermentation 9, no. 4: 393. https://doi.org/10.3390/fermentation9040393
APA StyleZhang, B., Geberekidan, M., Yan, Z., Yi, X., & Bao, J. (2023). Very High Thermotolerance of an Adaptive Evolved Saccharomyces cerevisiae in Cellulosic Ethanol Fermentation. Fermentation, 9(4), 393. https://doi.org/10.3390/fermentation9040393