Evaluation of Fermentability of Whole Soybeans and Soybean Oligosaccharides by a Canine In Vitro Fermentation Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fiber Sources and Treatment Preparation
2.2. Dog Donors and Inoculum Preparation
2.3. Canine In Vitro Microbial Fermentation
2.4. Determination of Organic Matter Disappearance (OMD) and Chemical Analysis
2.5. Statistical Analysis
3. Results
3.1. OMD and pH
3.2. Short-Chain Fatty Acids
4. Discussion
4.1. Nutritional Compositions
4.2. OMD and pH
4.3. Short-Chain Fatty Acids
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kim, H.S.; Aldrich, C.G. Extrusion and product parameters for extruded dog diets with graded levels of whole soybeans. Anim. Feed Sci. Technol. 2023, 295, 115504. [Google Scholar] [CrossRef]
- Kim, H.S.; Boss, C.; Lee, J.W.; Patterson, R.; Woyengo, T.A. Chemical composition and porcine in vitro disappearance of heat-pretreated and multi-enzyme-supplemented soybean hulls. Anim. Feed Sci. Technol. 2021, 277, 114951. [Google Scholar] [CrossRef]
- Cole, J.T.; Fahey, G.C., Jr.; Merchen, N.R.; Patil, A.R.; Murray, S.M.; Hussein, H.S.; Brent, J.L., Jr. Soybean hulls as a dietary fiber source for dogs. J. Anim. Sci. 1999, 77, 917–924. [Google Scholar] [CrossRef]
- Félix, A.P.; Rivera, N.L.M.; Sabchuk, T.T.; Lima, D.C.; Oliveira, S.G.; Maiorka, A. The effect of soy oligosaccharide extraction on diet digestibility, faecal characteristics, and intestinal gas production in dogs. Anim. Feed Sci. Technol. 2013, 184, 86–93. [Google Scholar] [CrossRef]
- Kumar, V.; Rani, A.; Goyal, L.; Dixit, A.K.; Manjaya, J.G.; Dev, J.; Swamy, M. Sucrose and raffinose family oligosaccharides (RFOs) in soybean seeds as influenced by genotype and growing location. J. Agric. Food Chem. 2010, 58, 5081–5085. [Google Scholar] [CrossRef]
- Gibson, G.R.; Roberfroid, M.B. Dietary modulation of the human colonic microbiota: Introducing the concept of prebiotics. J. Nutr. 1995, 125, 1401–1412. [Google Scholar] [CrossRef] [PubMed]
- Hutkins, R.W.; Krumbeck, J.A.; Bindels, L.B.; Cani, P.D.; Fahey, G., Jr.; Goh, Y.J.; Hamaker, B.; Martens, E.C.; Mills, D.A.; Rastal, R.A.; et al. Prebiotics: Why definitions matter. Curr. Opin. Biotechnol. 2016, 37, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Roberfroid, M.; Gibson, G.R.; Hoyles, L.; McCartney, A.L.; Rastall, R.; Rowland, I.; Wolvers, D.; Watzl, B.; Szajewska, H.; Stahl, B.; et al. Prebiotic effects: Metabolic and health benefits. Br. J. Nutr. 2010, 104, S1–S63. [Google Scholar] [CrossRef]
- Mussatto, S.I.; Mancilha, I.M. Non-digestible oligosaccharides: A review. Carbohydr. Polym. 2007, 68, 587–597. [Google Scholar] [CrossRef]
- Zuo, Y.; Fahey, G.C., Jr.; Merchen, N.R.; Bajjalieh, N.L. Digestion responses to low oligosaccharide soybean meal by ileally-cannulated dogs. J. Anim. Sci. 1996, 74, 2441–2449. [Google Scholar] [CrossRef]
- Choct, M.; Dersjant-Li, Y.; McLeish, J.; Peisker, M. Soy oligosaccharides and soluble non-starch polysaccharides: A review of digestion, nutritive and anti-nutritive effects in pigs and poultry. Asian-Australas. J. Anim. Sci. 2010, 23, 1386–1398. [Google Scholar] [CrossRef]
- Silvio, J.; Harmon, D.L.; Gross, K.L.; McLeod, K.R. Influence of fiber fermentability on nutrient digestion in the dog. Nutrition 2000, 16, 289–295. [Google Scholar] [CrossRef]
- Swanson, K.S.; Grieshop, C.M.; Clapper, G.M.; Shields, R.G., Jr.; Belay, T.; Merchen, N.R.; Fahey, G.C., Jr. Fruit and vegetable fiber fermentation by gut microflora from canines. J. Anim. Sci. 2001, 79, 919–926. [Google Scholar] [CrossRef]
- Fahey, G.C., Jr.; Merchen, N.R.; Corbin, J.E.; Hamilton, A.K.; Serbe, K.A.; Lewis, S.M.; Hirakawa, D.A. Dietary fiber for dogs: I. Effects of graded levels of dietary beet pulp on nutrient intake, digestibility, metabolizable energy and digesta mean retention time. J. Anim. Sci. 1990, 68, 4221–4228. [Google Scholar] [CrossRef] [PubMed]
- Sunvold, G.D.; Fahey, G.C., Jr.; Merchen, N.R.; Titgemeyer, E.C.; Bourquin, L.D.; Bauer, L.L.; Reinhart, G.A. Dietary fiber for dogs: IV. In vitro fermentation of selected fiber sources by dog fecal inoculum and in vivo digestion and metabolism of fiber-supplemented diets. J. Anim. Sci. 1995, 73, 1099–1109. [Google Scholar] [CrossRef] [PubMed]
- Donadelli, R.A.; Titgemeyer, E.C.; Aldrich, C.G. Organic matter disappearance and production of short-and branched-chain fatty acids from selected fiber sources used in pet foods by a canine in vitro fermentation model. J. Anim. Sci. 2019, 97, 4532–4539. [Google Scholar] [CrossRef] [PubMed]
- Bosch, G.; Pellikaan, W.F.; Rutten, P.G.P.; Van der Poel, A.F.B.; Verstegen, M.W.A.; Hendriks, W.H. Comparative in vitro fermentation activity in the canine distal gastrointestinal tract and fermentation kinetics of fiber sources. J. Anim. Sci. 2008, 86, 2979–2989. [Google Scholar] [CrossRef]
- Vickers, R.J.; Sunvold, G.D.; Kelley, R.L.; Reinhart, G.A. Comparison of fermentation of selected fructooligosaccharides and other fiber substrates by canine colonic microflora. Am. J. Vet. Res. 2001, 62, 609–615. [Google Scholar] [CrossRef]
- Pontious, B.; Aldrich, C.G.; Smith, S. Evaluation of carriers for use in supplemental nutrient premixes in pet food and animal feeds. In Petfood Forum; Kansas City, MO, USA, 2018; Volume 1, p. 14. [Google Scholar]
- Donadelli, R.A.; Aldrich, C.G. The effects on nutrient utilization and stool quality of Beagle dogs fed diets with beet pulp, cellulose, and Miscanthus grass. J. Anim. Sci. 2019, 97, 4134–4139. [Google Scholar] [CrossRef]
- Churms, S.C.; Zweig, G.; Sherma, J. Handbook of chromatography. In Carbohydrates; CRC Press: Boca Raton, FL, USA, 1982; Volume 1. [Google Scholar]
- Erwin, E.S.; Marco, G.J.; Emery, E.M. Volatile fatty acid analyses of blood and rumen fluid by gas chromatography. J. Dairy Sci. 1961, 44, 1768–1771. [Google Scholar] [CrossRef]
- Grieshop, C.M.; Kadzere, C.T.; Clapper, G.M.; Flickinger, E.A.; Bauer, L.L.; Frazier, R.L.; Fahey, G.C. Chemical and nutritional characteristics of United States soybeans and soybean meals. J. Agric. Food Chem. 2003, 51, 7684–7691. [Google Scholar] [CrossRef]
- Tian, G.; Wu, X.; Chen, D.; Yu, B.; He, J. Adaptation of gut microbiome to different dietary nonstarch polysaccharide fractions in a porcine model. Mol. Nutr. Food Res. 2017, 61, 1700012. [Google Scholar] [CrossRef] [PubMed]
- Tao, S.; Bai, Y.; Zhou, X.; Zhao, J.; Yang, H.; Zhang, S.; Wang, J. In vitro fermentation characteristics for different ratios of soluble to insoluble dietary fiber by fresh fecal microbiota from growing pigs. ACS Omega 2019, 4, 15158–15167. [Google Scholar] [CrossRef]
- Li, Q.; Loman, A.A.; Coffman, A.M.; Ju, L. Soybean hull induced production of carbohydrases and protease among Aspergillus and their effectiveness in soy flour carbohydrate and protein separation. J. Biotechnol. 2017, 248, 35–42. [Google Scholar] [CrossRef] [PubMed]
- Alexander, C.; Swanson, K.S.; Fahey, G.C., Jr.; Garleb, K.A. Perspective: Physiologic importance of short-chain fatty acids from nondigestible carbohydrate fermentation. Adv. Nutr. 2019, 10, 576–589. [Google Scholar] [CrossRef] [PubMed]
- Holscher, H.D. Dietary fiber and prebiotics and the gastrointestinal microbiota. Gut Microbes 2017, 8, 172–184. [Google Scholar] [CrossRef]
- Wong, J.M.; De Souza, R.; Kendall, C.W.; Emam, A.; Jenkins, D.J. Colonic health: Fermentation and short chain fatty acids. J. Clin. Gastroenterol. 2006, 40, 235–243. [Google Scholar] [CrossRef] [PubMed]
- Hernot, D.C.; Boileau, T.W.; Bauer, L.L.; Middelbos, I.S.; Murphy, M.R.; Swanson, K.S.; Fahey, G.C., Jr. In vitro fermentation profiles, gas production rates, and microbiota modulation as affected by certain fructans, galactooligosaccharides, and polydextrose. J. Agric. Food Chem. 2009, 57, 1354–1361. [Google Scholar] [CrossRef]
- Noack, J.; Timm, D.; Hospattankar, A.; Slavin, J. Fermentation profiles of wheat dextrin, inulin and partially hydrolyzed guar gum using an in vitro digestion pretreatment and in vitro batch fermentation system model. Nutrients 2013, 5, 1500–1510. [Google Scholar] [CrossRef]
- Lan, Y.; Williams, B.A.; Verstegen, M.W.A.; Patterson, R.; Tamminga, S. Soy oligosaccharides in vitro fermentation characteristics and its effect on caecal microorganisms of young broiler chickens. Anim. Feed Sci. Technol. 2007, 133, 286–297. [Google Scholar] [CrossRef]
- De Vadder, F.; Kovatcheva-Datchary, P.; Goncalves, D.; Vinera, J.; Zitoun, C.; Duchampt, A.; Bäckhed, F.; Mithieux, G. Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits. Cell 2014, 156, 84–96. [Google Scholar] [CrossRef]
- Ruppin, H.; Bar-Meir, S.; Soergel, K.H.; Wood, C.M.; Schmitt, M.G., Jr. Absorption of short-chain fatty acids by the colon. Gastroenterology 1980, 78, 1500–1507. [Google Scholar] [CrossRef]
- Middelbos, I.S.; Fastinger, N.D.; Fahey, G.C., Jr. Evaluation of fermentable oligosaccharides in diets fed to dogs in comparison to fiber standards. J. Anim. Sci. 2007, 85, 3033–3044. [Google Scholar] [CrossRef]
- Gaudier, E.; Jarry, A.; Blottiere, H.M.; de Coppet, P.; Buisine, M.P.; Aubert, J.P.; Laboisse, C.; Cherbut, C.; Hoebler, C. Butyrate specifically modulates MUC gene expression in intestinal epithelial goblet cells deprived of glucose. Am. J. Physiol. Gastrointest. 2004, 287, G1168–G1174. [Google Scholar] [CrossRef]
- Hamer, H.M.; Jonkers, D.M.A.E.; Venema, K.; Vanhoutvin, S.A.L.W.; Troost, F.J.; Brummer, R.J. The role of butyrate on colonic function. AP&T 2008, 27, 104–119. [Google Scholar] [CrossRef]
- Wächtershäuser, A.; Stein, J. Rationale for the luminal provision of butyrate in intestinal diseases. Eur. J. Nutr. 2000, 39, 164–171. [Google Scholar] [CrossRef] [PubMed]
- Karr-Lilienthal, L.K.; Kadzere, C.T.; Grieshop, C.M.; Fahey, G.C., Jr. Chemical and nutritional properties of soybean carbohydrates as related to nonruminants: A review. Livest. Prod. Sci. 2005, 97, 1–12. [Google Scholar] [CrossRef]
- Yamaguchi, F.; Kojima, H.; Muramoto, M.; Ota, Y.; Hatanaka, C. Effects of hexametaphosphate on soybean pectic polysaccharide extraction. Biosci. Biotechnol. Biochem. 1996, 60, 2028–2031. [Google Scholar] [CrossRef]
- Bakker, G.C.M.; Dekker, R.A.; Jongbloed, R.; Jongbloed, A.W. Non-starch polysaccharides in pig feeding. Vet. Q. 1998, 20 (Suppl. S3), 59–64. [Google Scholar] [CrossRef]
- Hore, P.; Messer, M. Studies on disaccharidase activities of the small intestine of the domestic cat and other carnivorous mammals. CBP 1968, 24, 717–725. [Google Scholar] [CrossRef]
- Welsh, J.D.; Walker, A. Intestinal disaccharidase and alkaline phosphatase activity in the dog. Proc. Soc. Exp. Biol. Med. 1965, 120, 525–527. [Google Scholar] [CrossRef] [PubMed]
- Alvarenga, I.C.; Aldrich, C.G.; Shi, Y.C. Factors affecting digestibility of starches and their implications on adult dog health. Anim. Feed Sci. Technol. 2021, 282, 115134. [Google Scholar] [CrossRef]
- Buddington, R.K.; Elnif, J.; Malo, C.; Donahoo, J.B. Activities of gastric, pancreatic, and intestinal brush-border membrane enzymes during postnatal development of dogs. Am. J. Vet. Res. 2003, 64, 627–634. [Google Scholar] [CrossRef] [PubMed]
- Kienzle, E. Enzymaktivität in pancreas, darmwand und chymus des hundes in abhängigkeit von alter und futterart. J. Anim. Physiol. Anim. Nutr. 1988, 60, 276–288. [Google Scholar] [CrossRef]
- Blachier, F.; Mariotti, F.; Huneau, J.F.; Tomé, D. Effects of amino acid-derived luminal metabolites on the colonic epithelium and physiopathological consequences. Amino Acids 2007, 33, 547–562. [Google Scholar] [CrossRef]
- Nery, J.; Goudez, R.; Biourge, V.; Tournier, C.; Leray, V.; Martin, L.; Thorin, C.; Nguyen, P.; Dumon, H. Influence of dietary protein content and source on colonic fermentative activity in dogs differing in body size and digestive tolerance. J. Anim. Sci. 2012, 90, 2570–2580. [Google Scholar] [CrossRef]
- Panasevich, M.R.; Kerr, K.R.; Serao, M.R.; de Godoy, M.R.C.; Guérin-Deremaux, L.; Lynch, G.L.; Wils, D.; Dowd, S.E.; Fahey, G.C., Jr.; Swanson, K.S.; et al. Evaluation of soluble corn fiber on chemical composition and nitrogen-corrected true metabolizable energy and its effects on in vitro fermentation and in vivo responses in dogs. J. Anim. Sci. 2015, 93, 2191–2200. [Google Scholar] [CrossRef]
- Hamer, H.M.; De Preter, V.; Windey, K.; Verbeke, K. Functional analysis of colonic bacterial metabolism: Relevant to health? Am. J. Physiol. Gastrointest. 2012, 302, G1–G9. [Google Scholar] [CrossRef]
- Detweiler, K.B.; He, F.; Mangian, H.F.; Davenport, G.M.; De Godoy, M.R. Effects of high inclusion of soybean hulls on apparent total tract macronutrient digestibility, fecal quality, and fecal fermentative end-product concentrations in extruded diets of adult dogs. J. Anim. Sci. 2019, 97, 1027–1035. [Google Scholar] [CrossRef] [PubMed]
- Propst, E.L.; Flickinger, E.A.; Bauer, L.L.; Merchen, N.R.; Fahey, G.C., Jr. A dose-response experiment evaluating the effects of oligofructose and inulin on nutrient digestibility, stool quality, and fecal protein catabolites in healthy adult dogs. J. Anim. Sci. 2003, 81, 3057–3066. [Google Scholar] [CrossRef]
- Yoshikawa, S.; Araoka, R.; Kajihara, Y.; Ito, T.; Miyamoto, H.; Kodama, H. Valerate production by Megasphaera elsdenii isolated from pig feces. J. Biosci. Bioeng. 2018, 125, 519–524. [Google Scholar] [CrossRef] [PubMed]
- Benno, Y.; Nakao, H.; Uchida, K.; Mitsuoka, T. Individual and seasonal variations in the composition of fecal microflora of beagle dogs. Bifidobact. Microflora 1992, 11, 69–76. [Google Scholar] [CrossRef] [PubMed]
- Chesson, A. Nutritional significance and nutritive value of plant polysaccharides. In Feedstuff Evaluation; Butterworths: Guildford, UK, 1990; pp. 179–195. [Google Scholar]
- Firmansyah, A.; Penn, D.; Lebenthal, E. Isolated colonocyte metabolism of glucose, glutamine, n-butyrate, and β-hydroxybutyrate in malnutrition. Gastroenterology 1989, 97, 622–629. [Google Scholar] [CrossRef] [PubMed]
- Drackley, J.K.; Beaulieu, A.D.; Sunvold, G. Energetic substrates for intestinal cells. Recent Adv. Canine Feline Nutr. 1998, 2, 463–472. [Google Scholar]
Oligosaccharide | % of Dry Matter |
---|---|
Sucrose | 4.28 |
Raffinose | 0.56 |
Stachyose | 3.16 |
Verbascose | 0.01 |
Nutrient | Diet |
---|---|
Dry matter, % | 91.4 |
Ash, % of dry matter | 8.0 |
Crude protein, % of dry matter | 31.2 |
Acid hydrolyzed ether extract, % of dry matter | 15.2 |
Total dietary fiber, % of dry matter | 14.0 |
Solution | Medium | Anerobic Dilution |
---|---|---|
Solution A 1, mL | 330.0 | 37.50 |
Solution B 2, mL | 330.0 | 37.50 |
Mineral solution 3, mL | 10.0 | - |
Vitamin solution 4, mL | 10.0 | - |
Folate-biotin solution 5, mL | 5.0 | - |
Riboflavin solution 6, mL | 5.0 | - |
Hemin solution 7, mL | 2.5 | - |
Resazurin solution 8, mL | 1.0 | 1.00 |
Water, mL | 296.0 | 854.00 |
Yeast extract, g | 0.5 | - |
Trypticase, g | 0.5 | - |
Na2CO3, g | 4.0 | 6.37 |
Cysteine hydrochloride, g | 0.5 | 0.50 |
Item | WSB | DWSB | SH | BP | PF |
---|---|---|---|---|---|
Fiber sources | |||||
Dry matter, % | 92.5 | 91.9 | 98.0 | 91.9 | 92.4 |
-dry matter basis- | |||||
Organic matter, % | 94.9 | 93.7 | 95.1 | 94.6 | 96.9 |
Crude protein, % | 38.5 | 47.8 | 17.0 | 15.2 | 14.0 |
Total dietary fiber, % | 21.5 * | 25.8 | 67.9 | 61.1 | 72.9 |
Insoluble dietary fiber, % | 19.4 * | 23.3 | 58.3 | 36.5 | 68.0 |
Soluble dietary fiber 1, % | 2.1 * | 2.5 | 9.6 | 24.6 | 4.9 |
TDF residues | |||||
Dry matter, % | n.d. 2 | 90.5 | 90.9 | 89.3 | 89.7 |
-dry matter basis- | |||||
Organic matter, % | n.d. | 94.9 | 97.0 | 94.0 | 97.7 |
Crude protein, % | n.d. | 38.0 | 12.6 | 12.9 | 8.4 |
Incubation Time, h | Blank | PF | BP | SH | WSB | WSBRSV | WSBOS | SEM 1 | p-Value |
---|---|---|---|---|---|---|---|---|---|
OMD, % | |||||||||
4 h | . | 15.8 d | 39.3 b | 19.6 d | 28.8 c | 37.2 b | 58.3 a | 1.70 | <0.0001 |
8 h | . | 19.3 c | 41.2 b | 18.5 c | 34.9 b | 38.6 b | 55.2 a | 1.34 | <0.0001 |
12 h | . | 18.6 d | 41.0 b | 20.5 d | 37.6 c | 43.6 b | 60.2 a | 0.60 | <0.0001 |
pH | |||||||||
4 h | 7.05 a | 6.94 ab | 6.49 d | 6.82 bc | 6.79 bc | 6.64 cd | 6.71 cd | 0.046 | <0.0001 |
8 h | 7.05 a | 6.99 a | 6.60 b | 6.95 ab | 6.96 ab | 6.76 ab | 6.92 ab | 0.080 | 0.0193 |
12 h | 7.50 a | 7.05 b | 6.66 d | 7.07 b | 6.90 bc | 6.74 cd | 7.01 b | 0.041 | <0.0001 |
Fermentation Time, h | PF | BP | SH | WSB | WSBRSV | WSBOS | SEM 1 | p-Value |
---|---|---|---|---|---|---|---|---|
Acetate, µmol/g of substrate | ||||||||
4 | 458 d | 1876 a | 794 c | 671 cd | 1232 b | 1411 b | 54.5 | <0.0001 |
8 | 616 e | 2172 a | 873 de | 1009 d | 1476 c | 1858 b | 60.4 | <0.0001 |
12 | 832 e | 2844 a | 1060 de | 1415 cd | 1817 bc | 2123 b | 86.2 | <0.0001 |
Propionate, µmol/g of substrate | ||||||||
4 | 176 d | 482 bc | 314 cd | 243 d | 570 ab | 698 a | 37.1 | <0.0001 |
8 | 228 d | 606 b | 326 c | 356 c | 657 b | 923 a | 18.1 | <0.0001 |
12 | 296 b | 923 a | 399 b | 468 b | 835 a | 992 a | 45.6 | <0.0001 |
Butyrate, µmol/g of substrate | ||||||||
4 | 27 b | 66 b | 64 b | 77 b | 205 a | 249 a | 15.2 | <0.0001 |
8 | 32 e | 78 d | 50 e | 105 c | 220 b | 308 a | 5.4 | <0.0001 |
12 | 44 c | 130 b | 63 bc | 109 bc | 266 a | 295 a | 16.6 | <0.0001 |
Isobutyrate, µmol/g of substrate | ||||||||
4 | 2.8 c | 4.0 bc | 11.9 bc | 10.7 bc | 15.4 ab | 25.0 a | 2.41 | 0.0003 |
8 | 4.4 c | 4.1 c | 8.0 c | 14.6 b | 18.0 b | 35.9 a | 1.38 | <0.0001 |
12 | 5.7 c | 12.7 bc | 11.5 bc | 14.2 bc | 19.0 b | 33.8 a | 2.31 | <0.0001 |
Isovalerate, µmol/g of substrate | ||||||||
4 | 1.9 c | 4.0 c | 14.3 bc | 13.0 bc | 20.8 ab | 31.5 a | 3.03 | 0.0002 |
8 | 2.9 c | 2.4 c | 8.5 c | 18.7 b | 23.0 b | 42.2 a | 1.65 | <0.0001 |
12 | 4.8 d | 10.3 cd | 12.2 bcd | 19.3 bc | 24.4 b | 40.5 a | 2.96 | <0.0001 |
Valerate, µmol/g of substrate | ||||||||
4 | 1.5 c | 3.4 bc | 3.5 bc | 2.5 c | 7.2 ab | 9.5 a | 0.93 | 0.0004 |
8 | 7.9 c | 7.6 c | 9.3 c | 13.3 c | 22.8 b | 46.6 a | 1.38 | <0.0001 |
12 | 14.3 d | 27.4 cd | 18.8 d | 45.7 bc | 63.3 ab | 79.0 a | 4.32 | <0.0001 |
Total SCFA, µmol/g of substrate | ||||||||
4 | 667 c | 2435 a | 1201 b | 1017 bc | 2050 a | 2424 a | 111.4 | <0.0001 |
8 | 891 d | 2869 a | 1274 cd | 1516 c | 2417 b | 3214 a | 81.4 | <0.0001 |
12 | 1196 d | 3948 a | 1565 cd | 2071 c | 3025 b | 3563 ab | 155.2 | <0.0001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, H.S.; Titgemeyer, E.C.; Aldrich, C.G. Evaluation of Fermentability of Whole Soybeans and Soybean Oligosaccharides by a Canine In Vitro Fermentation Model. Fermentation 2023, 9, 414. https://doi.org/10.3390/fermentation9050414
Kim HS, Titgemeyer EC, Aldrich CG. Evaluation of Fermentability of Whole Soybeans and Soybean Oligosaccharides by a Canine In Vitro Fermentation Model. Fermentation. 2023; 9(5):414. https://doi.org/10.3390/fermentation9050414
Chicago/Turabian StyleKim, Hee Seong, Evan C. Titgemeyer, and Charles Gregory Aldrich. 2023. "Evaluation of Fermentability of Whole Soybeans and Soybean Oligosaccharides by a Canine In Vitro Fermentation Model" Fermentation 9, no. 5: 414. https://doi.org/10.3390/fermentation9050414
APA StyleKim, H. S., Titgemeyer, E. C., & Aldrich, C. G. (2023). Evaluation of Fermentability of Whole Soybeans and Soybean Oligosaccharides by a Canine In Vitro Fermentation Model. Fermentation, 9(5), 414. https://doi.org/10.3390/fermentation9050414