Saccharomyces cerevisiae Culture’s Dose–Response Effects on Ruminal Nutrient Digestibility and Microbial Community: An In Vitro Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Rumen Fluid Preparation
2.2. Experimental Design and Sample Collection
2.3. Sample Collection, Measurement, and Calculation
2.3.1. In Vitro Degradability
2.3.2. DNA Extraction and Sequencing
2.3.3. Bioinformatic Analysis
2.4. Statistical Analysis
3. Results
3.1. In Vitro Nutrient Digestibility and Incubation Fluid pH Value
3.2. Bacterial Diversity
3.3. Bacterial Composition and Difference
3.4. Predicted Functions of Bacterial
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xue, F.; Nan, X.; Sun, F.; Pan, X.; Guo, Y.; Jiang, L.; Xiong, B. Metagenome sequencing to analyze the impacts of thiamine supplementation on ruminal fungi in dairy cows fed high-concentrate diets. AMB Express 2018, 8, 158–169. [Google Scholar] [CrossRef] [PubMed]
- Mickdam, E.; Khiaosa-Ard, R.; Metzler-Zebeli, B.U.; Klevenhusen, F.; Chizzola, R.; Zebeli, Q. Rumen microbial abundance and fermentation profile during severe subacute ruminal acidosis and its modulation by plant derived alkaloids in vitro. Anaerobe 2016, 39, 4–13. [Google Scholar] [CrossRef] [PubMed]
- Enemark, J.M. The monitoring, prevention and treatment of sub-acute ruminal acidosis (SARA): A review. Vet. J. 2008, 176, 32–43. [Google Scholar] [CrossRef] [PubMed]
- Gozho, G.N.; Krause, D.O.; Plaizier, J.C. Ruminal lipopolysaccharide concentration and inflammatory response during grain-induced subacute ruminal acidosis in dairy cows. J. Dairy Sci. 2007, 90, 856–866. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.Z.; Ding, L.Y.; Chen, L.M.; Xu, J.H.; Zhao, R.; Yang, W.Z.; Wang, H.R.; Wang, M.Z. Feeding corn grain steeped in citric acid modulates rumen fermentation and inflammatory responses in dairy goats. Animal 2019, 13, 301–308. [Google Scholar] [CrossRef]
- Ishaq, S.L.; Alzahal, O.; Walker, N.; Mcbride, B. An Investigation into Rumen Fungal and Protozoal Diversity in Three Rumen Fractions, during High-Fiber or Grain-Induced Sub-Acute Ruminal Acidosis Conditions, with or without Active Dry Yeast Supplementation. Front. Microbiol. 2017, 8, 1943. [Google Scholar] [CrossRef]
- Amin, A.B.; Mao, S. Influence of yeast on rumen fermentation, growth performance and quality of products in ruminants: A review. Anim. Nutr. 2021, 7, 31–41. [Google Scholar] [CrossRef]
- Fonty, G.; Chaucheyras-Durand, F. Effects and modes of action of live yeasts in the rumen. Biologia 2006, 61, 741–750. [Google Scholar] [CrossRef]
- Broadway, P.; Carroll, J.; Sanchez, N. Live Yeast and Yeast Cell Wall Supplements Enhance Immune Function and Performance in Food-Producing Livestock: A Review. Microorganisms 2015, 3, 417–427. [Google Scholar] [CrossRef]
- Bach, A.; Guasch, I.; Elcoso, G.; Chaucheyras-Durand, F.; Castex, M.; Fàbregas, F.; Garcia-Fruitos, E.; Aris, A. Changes in gene expression in the rumen and colon epithelia during the dry period through lactation of dairy cows and effects of live yeast supplementation. J. Dairy Sci. 2018, 101, 2631–2640. [Google Scholar] [CrossRef]
- Ogunade, I.M.; Lay, J.; Andries, K.; Mcmanus, C.J.; Bebe, F. Effects of live yeast on differential genetic and functional attributes of rumen microbiota in beef cattle. J. Anim. Sci. Biotechnol. 2019, 10, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Mao, H.L.; Mao, H.L.; Wang, J.K.; Liu, J.X.; Yoon, I. Effects of Saccharomyces cerevisiae fermentation product on in vitro fermentation and microbial communities of low-quality forages and mixed diets. J. Anim. Sci. 2013, 7, 3291–3298. [Google Scholar] [CrossRef]
- Zhu, W.; Wei, Z.; Xu, N.; Yang, F.; Yoon, I.; Chung, Y.; Liu, J.; Wang, J. Effects of Saccharomyces cerevisiae fermentation products on performance and rumen fermentation and microbiota in dairy cows fed a diet containing low quality forage. J. Anim. Sci. Biotechnol. 2017, 8, 36. [Google Scholar] [CrossRef] [PubMed]
- Dias, J.; Silva, R.B.; Fernandes, T.; Barbosa, E.F.; Gracas, L.; Araujo, R.C.; Pereira, R.; Pereira, M.N. Yeast culture increased plasma niacin concentration, evaporative heat loss, and feed efficiency of dairy cows in a hot environment. J. Dairy Sci. 2018, 101, 5924–5936. [Google Scholar] [CrossRef]
- Dann, H.M.; Drackley, J.K.; Mccoy, G.C.; Hutjens, M.F.; Garrett, J.E. Effects of Yeast Culture (Saccharomyces cerevisiae) on Prepartum Intake and Postpartum Intake and Milk Production of Jersey Cows1. J. Dairy Sci. 2000, 83, 123–127. [Google Scholar] [CrossRef] [PubMed]
- Zaworski, E.M.; Shriver-Munsch, C.M.; Fadden, N.A.; Sanchez, W.K.; Yoon, I.; Bobe, G. Effects of feeding various dosages of Saccharomyces cerevisiae fermentation product in transition dairy cows. J. Dairy Sci. 2014, 97, 3081–3098. [Google Scholar] [CrossRef]
- Olagaray, K.E.; Sivinski, S.E.; Saylor, B.A.; Mamedova, L.K.; Sauls-Hiesterman, J.A.; Yoon, I.; Bradford, B.J. Effect of Saccharomyces cerevisiae fermentation product on feed intake parameters, lactation performance, and metabolism of transition dairy cattle. J. Dairy Sci. 2019, 102, 8092–8107. [Google Scholar] [CrossRef] [PubMed]
- Yáñez-Ruiz, D.R.; Bannink, A.; Dijkstra, J.; Kebreab, E.; Morgavi, D.P.; Kiely, P.O.; Reynolds, C.K.; Schwarm, A.; Shingfield, K.J.; Yu, Z.; et al. Design, implementation and interpretation of in vitro batch culture experiments to assess enteric methane mitigation in ruminants—A review. Anim. Feed Sci. Technol. 2016, 216, 1–18. [Google Scholar] [CrossRef]
- Liu, W.; Wang, Q.; Song, J.; Xin, J.; Zhang, S.; Lei, Y.; Yang, Y.; Xie, P.; Suo, H. Comparison of Gut Microbiota of Yaks From Different Geographical Regions. Front. Microbiol. 2021, 12, 666940. [Google Scholar] [CrossRef] [PubMed]
- Kong, F.; Lu, N.; Liu, Y.; Zhang, S.; Jiang, H.; Wang, H.; Wang, W.; Li, S. Aspergillus oryzae and Aspergillus niger Co-Cultivation Extract Affects In Vitro Degradation, Fermentation Characteristics, and Bacterial Composition in a Diet-Specific Manner. Animals 2021, 11, 1248. [Google Scholar] [CrossRef]
- Kong, F.; Gao, Y.; Tang, M.; Fu, T.; Diao, Q.; Bi, Y.; Tu, Y. Effects of dietary rumen–protected Lys levels on rumen fermentation and bacterial community composition in Holstein heifers. Appl. Microbiol. Biotechnol. 2020, 104, 6623–6634. [Google Scholar] [CrossRef] [PubMed]
- Al-Rabadi, G.J.S.; Gilbert, R.G.; Gidley, M.J. Effect of particle size on kinetics of starch digestion in milled barley and sorghum grains by porcine alpha-amylase. J. Cereal Sci. 2009, 50, 198–204. [Google Scholar] [CrossRef]
- Bi, Y.; Zeng, S.; Zhang, R.; Diao, Q.; Tu, Y. Effects of dietary energy levels on rumen bacterial community composition in Holstein heifers under the same forage to concentrate ratio condition. BMC Microbiol. 2018, 18, 69. [Google Scholar] [CrossRef]
- Chen, S.; Zhou, Y.; Chen, Y.; Gu, J. Fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018, 34, 1884–1890. [Google Scholar] [CrossRef]
- Magoč, T.; Salzberg, S.L. FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics 2011, 27, 2957–2963. [Google Scholar] [CrossRef]
- Edgar, R.C. UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 2013, 10, 996–998. [Google Scholar] [CrossRef]
- Cole, J.R.; Wang, Q.; Cardenas, E.; Fish, J.; Chai, B.; Farris, R.J.; Kulam-Syed-Mohideen, A.; McGarrell, D.M.; Marsh, T.; Garrity, G.M. The Ribosomal Database Project: Improved alignments and new tools for rRNA analysis. Nucleic Acids Res. 2009, 37, D141–D145. [Google Scholar] [CrossRef]
- Pitta, D.W.; Kumar, S.; Vecchiarelli, B.; Shirley, D.J.; Bittinger, K.; Baker, L.D.; Ferguson, J.D.; Thomsen, N. Temporal dynamics in the ruminal microbiome of dairy cows during the transition period. J. Anim. Sci. 2014, 92, 4014–4022. [Google Scholar] [CrossRef] [PubMed]
- Costantini, M.S.; Medeiros, M.C.I.; Crampton, L.H.; Reed, F.A. Wild gut microbiomes reveal individuals, species, and location as drivers of variation in two critically endangered Hawaiian honeycreepers. PeerJ 2021, 9, e1229. [Google Scholar] [CrossRef]
- Langille, M.G.I.; Zaneveld, J.; Caporaso, J.G.; Mcdonald, D.; Knights, D.; Reyes, J.A.; Clemente, J.C.; Burkepile, D.E.; Vega Thurber, R.L.; Knight, R.; et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat. Biotechnol. 2013, 31, 814–821. [Google Scholar] [CrossRef]
- Alzahal, O.; Dionissopoulos, L.; Laarman, A.H.; Walker, N.; Mcbride, B.W. Active dry Saccharomyces cerevisiae can alleviate the effect of subacute ruminal acidosis in lactating dairy cows. J. Dairy Sci. 2014, 97, 7751–7763. [Google Scholar] [CrossRef]
- Sun, X.; Wang, Y.; Wang, E.; Zhang, S.; Wang, Q.; Zhang, Y.; Wang, Y.; Cao, Z.; Yang, H.; Wang, W.; et al. Effects of Saccharomyces cerevisiae Culture on Ruminal Fermentation, Blood Metabolism, and Performance of High-Yield Dairy Cows. Animals 2021, 11, 2401. [Google Scholar] [CrossRef]
- Lascano, G.J.; Zanton, G.I.; Heinrichs, A.J. Concentrate levels and Saccharomyces cerevisiae affect rumen fluid-associated bacteria numbers in dairy heifers. Livest. Sci. 2009, 126, 189–194. [Google Scholar] [CrossRef]
- Hossain, S.A.; Parnerkar, S.; Haque, N.; Gupta, R.S.; Tyagi, A.K. Influence of dietary supplementation of live yeast (Saccharomyces cerevisiae) on nutrient utilization ruminal and biochemical profiles of Kankrej calves. Int. J. Appl. Anim. Sci. 2012, 1, 30–38. [Google Scholar]
- Williams, P.E.; Tait, C.A.; Innes, G.M.; Newbold, C.J. Effects of the inclusion of yeast culture (Saccharomyces cerevisiae plus growth medium) in the diet of dairy cows on milk yield and forage degradation and fermentation patterns in the rumen of steers. J. Anim. Sci. 1991, 7, 3016–3026. [Google Scholar] [CrossRef] [PubMed]
- Knollinger, S.E.; Poczynek, M.; Miller, B.; Mueller, I.; de Almeida, R.; Murphy, M.R.; Cardoso, F.C. Effects of Autolyzed Yeast Supplementation in a High-Starch Diet on Rumen Health, Apparent Digestibility, and Production Variables of Lactating Holstein Cows. Animals 2022, 12, 2445. [Google Scholar] [CrossRef]
- Harrison, G.A.; Hemken, R.W.; Dawson, K.A.; Harmon, R.J.; Barker, K.B. Influence of addition of yeast culture supplement to diets of lactating cows on ruminal fermentation and microbial populations. J. Dairy Sci. 1988, 71, 2967–2975. [Google Scholar] [CrossRef]
- Mwenya, B.; Santoso, B.; Sar, C.; Pen, B.; Morikawa, R.; Takaura, K.; Umetsu, K.; Kimura, K.; Takahashi, J. Effects of yeast culture and galacto-oligosaccharides on ruminal fermentation in holstein cows. J. Dairy Sci. 2005, 88, 1404–1412. [Google Scholar] [CrossRef]
- Wohlt, J.E.; Finkelstein, A.D.; Chung, C.H. Yeast culture to improve intake, nutrient digestibility, and performance by dairy cattle during early lactation. J. Dairy Sci. 1991, 4, 1395–1400. [Google Scholar] [CrossRef] [PubMed]
- Lascano, G.J.; Heinrichs, A.J.; Tricarico, J.M. Substitution of starch by soluble fiber and Saccharomyces cerevisiae dose response on nutrient digestion and blood metabolites for precision-fed dairy heifers. J. Dairy Sci. 2012, 95, 3298–3309. [Google Scholar] [CrossRef]
- Zhou, X.; Ouyang, Z.; Zhang, X.; Wei, Y.; Tang, S.; Ma, Z.; Tan, Z.; Zhu, N.; Teklebrhan, T.; Han, X. Sweet Corn Stalk Treated with Saccharomyces cerevisiae Alone or in combination with Lactobacillus Plantarum: Nutritional Composition, Fermentation Traits and Aerobic Stability. Animals 2019, 9, 598. [Google Scholar] [CrossRef] [PubMed]
- Ghazanfar, S.; Ahmed, I.; Khalid, N. Probiotic Yeast: Mode of Action and Its Effects on Ruminant Nutrition; Intechopen: Madrid, Spain, 2017. [Google Scholar]
- Jiang, Y.; Ogunade, I.M.; Pech-Cervantes, A.A.; Fan, P.X.; Li, X.; Kim, D.H.; Arriola, K.G.; Poindexter, M.B.; Jeong, K.C.; Vyas, D.; et al. Effect of sequestering agents based on a Saccharomyces cerevisiae fermentation product and clay on the ruminal bacterial community of lactating dairy cows challenged with dietary aflatoxin B1. J. Dairy Sci. 2020, 103, 1431–1447. [Google Scholar] [CrossRef] [PubMed]
- Mizrahi, I.; Wallace, R.J.; Moraïs, S. The rumen microbiome: Balancing food security and environmental impacts. Nat. Rev. Microbiol. 2021, 19, 553–566. [Google Scholar] [CrossRef]
- Dennis, V.A.; Dixit, S.; O’Brien, S.M.; Alvarez, X.; Pahar, B.; Philipp, M.T. LiveBorrelia burgdorferi Spirochetes Elicit Inflammatory Mediators from Human Monocytes via the Toll-Like Receptor Signaling Pathway. Infect. Immun. 2009, 77, 1238–1245. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Wang, W.; Zhou, R.; Ng, S.C.; Li, J.; Huang, M.; Zhou, F.; Wang, X.; Shen, B.; Kamm, M.A.; et al. Characteristics of Fecal and Mucosa-Associated Microbiota in Chinese Patients With Inflammatory Bowel Disease. Medicine 2014, 93, e51. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Yao, Y.; Dong, M.; Xia, T.; Li, D.; Xie, M.; Wu, J.; Wen, A.; Wang, Q.; Zhu, G.; et al. Characterisation of the gut microbial community of rhesus macaques in high-altitude environments. BMC Microbiol. 2020, 20, 68–83. [Google Scholar] [CrossRef]
- Nordhoff, M.; Moter, A.; Schrank, K.; Wieler, L.H. High prevalence of treponemes in bovine digital dermatitis-a molecular epidemiology. Vet. Microbiol. 2008, 131, 293–300. [Google Scholar] [CrossRef]
- Li, J.; Xing, J.; Li, D.; Wang, X.; Zhao, L.; Lv, S.; Huang, D. Effects of beta-glucan extracted from Saccharomyces cerevisiae on humoral and cellular immunity in weaned piglets. Arch. Anim. Nutr. 2005, 59, 303–312. [Google Scholar] [CrossRef]
- Li, L.; Qu, L.; Li, T. Supplemental dietary selenohomolanthionine affects growth and rumen bacterial population of shaanbei white cashmere wether goats. Front. Microbiol. 2022, 13, 942848. [Google Scholar] [CrossRef]
- Palmonari, A.; Federiconi, A.; Cavallini, D.; Sniffen, C.J.; Mammi, L.; Turroni, S.; Amico, F.D.; Holder, P.; Formigoni, A. Impact of molasses on ruminal volatile fatty acid production and microbiota composition in vitro. Animals 2023, 13, 728. [Google Scholar] [CrossRef]
- Xue, M.Y.; Sun, H.Z.; Wu, X.H.; Liu, J.X.; Guan, L.L. Multi-omics reveals that the rumen microbiome and its metabolome together with the host metabolome contribute to individualized dairy cow performance. Microbiome 2020, 8, 64. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Ogunade, I.M.; Qi, S.; Hackmann, T.J.; Staples, C.R.; Adesogan, A.T. Effects of the dose and viability of Saccharomyces cerevisiae. 1. Diversity of ruminal microbes as analyzed by Illumina MiSeq sequencing and quantitative PCR. J. Dairy Sci. 2017, 100, 325–342. [Google Scholar] [CrossRef] [PubMed]
- Mullins, C.R.; Mamedova, L.K.; Carpenter, A.J.; Ying, Y.; Allen, M.S.; Yoon, I.; Bradford, B.J. Analysis of rumen microbial populations in lactating dairy cattle fed diets varying in carbohydrate profiles and Saccharomyces cerevisiae fermentation product. J. Dairy Sci. 2013, 96, 5872–5881. [Google Scholar] [CrossRef] [PubMed]
- Jiao, P.; Wei, C.; Sun, Y.; Xie, X.; Zhang, Y.; Wang, S.; Hu, G.; Alzahal, O.; Yang, W. Screening of live yeast and yeast derivatives for their impact of strain and dose on in vitro ruminal fermentation and microbial profiles with varying media pH levels in high-forage beef cattle diet. J. Sci. Food Agric. 2019, 99, 6751–6760. [Google Scholar] [CrossRef]
- Gao, K.; Geng, C. Alterations in the rumen bacterial communities and metabolites of finishing bulls fed high-concentrate diets supplemented with active dry yeast and yeast culture. Front. Microbiol. 2022, 13, 908244. [Google Scholar] [CrossRef]
Items | Contents |
---|---|
Ingredients | |
Corn silage | 50.07 |
Alfalfa hay | 7.93 |
Oat hay | 2.31 |
Steam-flaked corn | 9.74 |
Corn flour | 4.95 |
Corn hulls | 2.70 |
Soybean meal | 7.61 |
Soybean hulls | 2.78 |
Whole cottonseeds | 2.88 |
Molasses | 2.35 |
Distillers Dried Grains with solubles | 4.17 |
Sodium bicarbonate | 0.28 |
Trans-rumen fatty acids | 0.42 |
Premix 1 | 1.81 |
Nutrient levels | |
NEL (MJ/kg) 2 | 5.75 |
Crude protein, % | 16.00 |
Crude fat, % | 3.85 |
Crude ash, % | 8.11 |
Neutral detergent fiber, % | 38.18 |
Acid detergent fiber, % | 25.32 |
Starch, % | 28.14 |
Calcium, % | 0.80 |
Phosphorus, % | 0.42 |
Item 1 | Groups 2 | SEM | Contrasts 3 | |||
---|---|---|---|---|---|---|
CON | LSC | HSC | Control vs. SC | LSC vs. HSC | ||
DM, % | 59.68 | 60.80 | 61.93 | 1.03 | 0.096 | 0.293 |
ADF, % | 36.10 | 36.77 | 39.79 | 0.64 | 0.058 | 0.032 |
NDF, % | 27.56 | 28.97 | 29.74 | 0.46 | 0.071 | 0.461 |
CP, % | 52.26 | 57.27 | 58.36 | 0.99 | 0.003 | 0.508 |
Starch, % | 94.46 | 94.55 | 94.45 | 0.97 | 0.945 | 0.921 |
pH | 6.45 | 6.47 | 6.54 | 0.02 | 0.538 | 0.076 |
Item | Groups 1 | SEM | Contrasts 2 | |||
---|---|---|---|---|---|---|
CON | LSC | HSC | Control vs. SC | LSC vs. HSC | ||
Metabolism of cofactors and vitamins | 13.88 | 14.17 | 14.47 | 0.13 | 0.065 | 0.241 |
Carbohydrate metabolism | 13.81 | 14.01 | 14.28 | 0.07 | 0.021 | 0.079 |
Amino acid metabolism | 12.70 | 12.72 | 12.85 | 0.08 | 0.436 | 0.090 |
Metabolism of terpenoids and polyketides | 8.50 | 8.15 | 7.96 | 0.10 | 0.018 | 0.292 |
Metabolism of other amino acids | 7.04 | 7.11 | 7.52 | 0.13 | 0.038 | 0.811 |
Replication and repair | 6.23 | 6.25 | 6.33 | 0.03 | 0.351 | 0.264 |
Energy metabolism | 5.48 | 5.62 | 5.70 | 0.10 | 0.081 | 0.478 |
Glycan biosynthesis and metabolism | 5.13 | 5.44 | 5.68 | 0.11 | 0.093 | 0.383 |
Lipid metabolism | 3.81 | 3.85 | 4.05 | 0.07 | 0.029 | 0.056 |
Translation | 3.40 | 3.42 | 3.43 | 0.02 | 0.824 | 0.291 |
Folding, sorting and degradation | 3.00 | 3.02 | 3.03 | 0.02 | 0.302 | 0.349 |
Cell motility | 2.59 | 2.71 | 2.88 | 0.05 | 0.259 | 0.611 |
Xenobiotics biodegradation and metabolism | 2.67 | 2.56 | 2.73 | 0.15 | 0.613 | 0.519 |
Biosynthesis of other secondary metabolites | 2.68 | 2.80 | 2.81 | 0.05 | 0.212 | 0.988 |
Nucleotide metabolism | 2.10 | 2.13 | 2.16 | 0.15 | 0.161 | 0.296 |
Cell growth and death | 1.70 | 1.73 | 1.76 | 0.05 | 0.081 | 0.237 |
Membrane transport | 1.63 | 1.64 | 1.65 | 0.01 | 0.957 | 0.859 |
Transcription | 1.05 | 1.07 | 1.10 | 0.02 | 0.343 | 0.504 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dai, D.; Liu, Y.; Kong, F.; Guo, C.; Dong, C.; Xu, X.; Li, S.; Wang, W. Saccharomyces cerevisiae Culture’s Dose–Response Effects on Ruminal Nutrient Digestibility and Microbial Community: An In Vitro Study. Fermentation 2023, 9, 411. https://doi.org/10.3390/fermentation9050411
Dai D, Liu Y, Kong F, Guo C, Dong C, Xu X, Li S, Wang W. Saccharomyces cerevisiae Culture’s Dose–Response Effects on Ruminal Nutrient Digestibility and Microbial Community: An In Vitro Study. Fermentation. 2023; 9(5):411. https://doi.org/10.3390/fermentation9050411
Chicago/Turabian StyleDai, Dongwen, Yanfang Liu, Fanlin Kong, Cheng Guo, Chunxiao Dong, Xiaofeng Xu, Shengli Li, and Wei Wang. 2023. "Saccharomyces cerevisiae Culture’s Dose–Response Effects on Ruminal Nutrient Digestibility and Microbial Community: An In Vitro Study" Fermentation 9, no. 5: 411. https://doi.org/10.3390/fermentation9050411
APA StyleDai, D., Liu, Y., Kong, F., Guo, C., Dong, C., Xu, X., Li, S., & Wang, W. (2023). Saccharomyces cerevisiae Culture’s Dose–Response Effects on Ruminal Nutrient Digestibility and Microbial Community: An In Vitro Study. Fermentation, 9(5), 411. https://doi.org/10.3390/fermentation9050411