Fermentation as a Strategy to Valorize Olive Pomace, a By-Product of the Olive Oil Industry
Abstract
:1. Introduction
2. Olive Pomace (OP) Importance
3. Microbiological Traits of OP
4. OPP Valorization via Fermentation
4.1. OP for Energy Production
4.2. OP in Enzyme Production
4.3. OP in Animal Feeding
4.4. OP in Food Fortification
4.5. OP as a Fermented Food
5. Fermentation as a Byproduct Valorization Approach
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Victor, D. World Population Reaches 8 Billion, U.N. Says. 2022. Available online: https://www.nytimes.com/2022/11/15/world/world-population-8-billion.html (accessed on 28 February 2023).
- Roser, M.; Rodés-Guirao, L. Future Population Growth. Available online: https://ourworldindata.org/future-population-growth#citation (accessed on 28 February 2023).
- Dijk, M.; Morley, T.; Rau, M.L.; Saghai, Y. A meta-analysis of projected global food demand and population at risk of hunger for the period 2010–2050. Nat. Food 2021, 2, 494–501. [Google Scholar] [CrossRef] [PubMed]
- The 17 Goals|Sustainable Development. Available online: https://sdgs.un.org/goals (accessed on 24 November 2022).
- Suárez, M.; Romero, M.P.; Motilva, M.J. Development of a phenol-enriched olive oil with phenolic compounds from olive cake. J. Agric. Food Chem. 2010, 58, 10396–10403. [Google Scholar] [CrossRef] [PubMed]
- Del Rio, D.; Rodriguez-Mateos, A.; Spencer, J.P.; Tognolini, M.; Borges, G.; Crozier, A. Dietary (poly)phenolics in human health: Structures, bioavailability, and evidence of protective effects against chronic diseases. Antioxid. Redox Signal. 2013, 18, 1818–1892. [Google Scholar] [CrossRef] [PubMed]
- Pandey, K.B.; Rizvi, S.I. Plant polyphenols as dietary antioxidants in human health and disease. Oxid. Med. Cell. Longev. 2009, 2, 270–278. [Google Scholar] [CrossRef]
- Cicerale, S.; Lucas, L.; Keas, R. Biological activities of phenolic compounds present in virgin olive oil. Int. J. Mol. Sci. 2010, 11, 458–479. [Google Scholar] [CrossRef]
- Cicerale, S.; Conlan, X.A.; Sinclair, A.J.; Keast, R.S. Chemistry and health of olive oil phenolics. Crit. Rev. Food Sci. Nutr. 2009, 49, 218–236. [Google Scholar] [CrossRef]
- Boss, A.; Bishop, K.S.; Marlow, G.; Barnett, M.P.; Ferguson, L.R. Evidence to Support the Anti-Cancer Effect of Olive Leaf Extract and Future Directions. Nutrients 2016, 8, 513. [Google Scholar] [CrossRef]
- Ellis, L.Z.; Liu, W.; Luo, Y.; Okamoto, M.; Qu, D.; Dunn, J.H.; Fujita, M. Green tea polyphenol epigallocatechin-3-gallate suppresses melanoma growth by inhibiting inflammasome and IL-1β secretion. Biochem. Biophys. Res. Commun. 2011, 414, 551–556. [Google Scholar] [CrossRef]
- Roig, A.; Cayuela, M.L.; Sánchez-Monedero, M.A. An overview on olive mill wastes and their valorisation methods. Waste Manag. 2006, 26, 960–969. [Google Scholar] [CrossRef]
- Rodrigues, F.; Pimentel, F.B.; Oliveira, M.B.P.P. Olive by-products: Challenge application in cosmetic industry. Ind. Crops Prod. 2015, 70, 116–124. [Google Scholar] [CrossRef]
- Akratos, C.S.; Tekerlekopoulou, A.G.; Vasiliadou, I.A.; Vayenas, D.V. Cocomposting of olive mill waste for the production of soil amendments—FORTH/ICE-HT. In Olive Mill Waste Recent Advances for Sustainable Management; Academic Press: Cambridge, MA, USA, 2017; Chapter 8; pp. 161–182. [Google Scholar] [CrossRef]
- Saadi, I.; Laor, Y.; Raviv, M.; Medina, S. Land spreading of olive mill wastewater: Effects on soil microbial activity and potential phytotoxicity. Chemosphere 2007, 66, 75–83. [Google Scholar] [CrossRef]
- The World of Olive Oil—International Olive Council. 2022. Available online: https://www.internationaloliveoil.org/the-world-of-olive-oil/ (accessed on 28 February 2023).
- Olive Pomace Oil. Available online: https://oriva.es/en/olive-pomace-oil/ (accessed on 24 November 2022).
- Berbel, J.; Posadillo, A. Review and Analysis of Alternatives for the Valorisation of Agro-Industrial Olive Oil By-Products. Sustainability 2018, 10, 237. [Google Scholar] [CrossRef]
- Durante, M.; Bleve, G.; Selvaggini, R.; Veneziani, G.; Servili, M.; Mita, G. Bioactive Compounds and Stability of a Typical Italian Bakery Products “Taralli” Enriched with Fermented Olive Paste. Molecules 2019, 24, 3258. [Google Scholar] [CrossRef]
- Alburquerque, J.A.; Gonzálvez, J.; García, D.; Cegarra, J. Agrochemical characterisation of “alperujo”, a solid by-product of the two-phase centrifugation method for olive oil extraction. Bioresour. Technol. 2004, 91, 195–200. [Google Scholar] [CrossRef]
- Mennane, Z.; Tada, S.; Aki, I.; Faid, M. Physicochemical and microbiological characterization of the olive residue of 26 traditional oil mills in Beni Mellal (Morroco). Technol. Lab. 2010, 5, 4–9. [Google Scholar]
- Clemente, A.; Sánchez-Vioque, R.; Vioque, J.; Bautista, J.; Millán, F. Chemical composition of extracted dried olive pomaces containing two and three phases. Food Biotechnol. 2009, 11, 273–291. [Google Scholar] [CrossRef]
- Difonzo, G.; Troilo, M.; Squeo, G. Functional Compounds From Olive Pomace to Obtain High-Added Value Foods—A Review|Request PDF. J. Sci. Food Agric. 2020, 101, 15–26. [Google Scholar] [CrossRef]
- Moubarik, A.; Barba, F.J.; Grimi, N. Understanding the physicochemical properties of olive kernel to be used as a potential tool in the development of phenol-formaldehyde wood adhesive. Int. J. Adhes. Adhes. 2015, 61, 122–126. [Google Scholar] [CrossRef]
- El-Sheikh, A.; Newman, A.P.; Al-Daffaee, H.; Phull, S.; Cresswell, N. Characterization of activated carbon prepared from a single cultivar of Jordanian Olive stones by chemical and physicochemical techniques. J. Anal. Appl. Pyrolysis 2004, 71, 151–164. [Google Scholar] [CrossRef]
- Kiritsakis, K.; Evangelou, E.; Sakellaropoulos, N. Olive Oil Processing, Categories, Nutritional Benefits, and Byproducts. Handb. Veg. Veg. Process. 2018, 32, 745–760. [Google Scholar] [CrossRef]
- Eliche-Quesada, D.; Leite-Costa, J. Use of bottom ash from olive pomace combustion in the production of eco-friendly fired clay bricks. Waste Manag. 2016, 48, 323–333. [Google Scholar] [CrossRef] [PubMed]
- Anastopoulos, I.; Massas, I.; Ehaliotis, C. Use of residues and by-products of the olive-oil production chain for the removal of pollutants from environmental media: A review of batch biosorption approaches. J. Environ. Sci. Health. Part A Toxic/Hazard. Subst. Environ. Eng. 2015, 50, 677–718. [Google Scholar] [CrossRef] [PubMed]
- Delgado-Moreno, L.; Sánchez-Moreno, L.; Peña, A. Assessment of olive cake as soil amendment for the controlled release of triazine herbicides. Sci. Total Environ. 2007, 378, 119–123. [Google Scholar] [CrossRef] [PubMed]
- Vivas, A.; Moreno, B.; Garcia-Rodriguez, S.; Benitez, E. Assessing the impact of composting and vermicomposting on bacterial community size and structure, and microbial functional diversity of an olive-mill waste. Bioresour. Technol. 2009, 100, 1319–1326. [Google Scholar] [CrossRef]
- Morillo, J.A.; Antizar-Ladislao, B.; Monteoliva-Sánchez, M.; Ramos-Cormenzana, A.; Russell, N.J. Bioremediation and biovalorisation of olive-mill wastes. Appl. Microbiol. Biotechnol. 2009, 82, 25–39. [Google Scholar] [CrossRef]
- Nunes, M.A.; Palmeira, J.D.; Melo, D.; Machado, S.; Lobo, J.C.; Costa, A.S.G.; Alves, R.C.; Ferreira, H.; Oliveira, M.B.P.P. Chemical Composition and Antimicrobial Activity of a New Olive Pomace Functional Ingredient. Pharmaceuticals 2021, 14, 913. [Google Scholar] [CrossRef]
- Visioli, F.; Romani, A.; Mulinacci, N.; Zarini, S.; Conte, D.; Vincieri, F.F.; Galli, C. Antioxidant and other biological activities of olive mill waste waters. J. Agric. Food Chem. 1999, 47, 3397–3401. [Google Scholar] [CrossRef]
- Japón-Luján, R.; Luque de Castro, M.D. Liquid-liquid extraction for the enrichment of edible oils with phenols from olive leaf extracts. J. Agric. Food Chem. 2008, 56, 2505–2511. [Google Scholar] [CrossRef]
- Fernández-Bolaños, J.; Rodríguez, G.; Rodríguez, R.; Heredia, A.; Guillén, R.; Jiménez, A. Production in large quantities of highly purified hydroxytyrosol from liquid-solid waste of two-phase olive oil processing or “Alperujo”. J. Agric. Food Chem. 2002, 50, 6804–6811. [Google Scholar] [CrossRef]
- Quero, J.; Ballesteros, L.F.; Ferreira-Santos, P.; Velderrain-Rodriguez, G.R.; Rocha, C.M.R.; Pereira, R.N.; Teixeira, J.A.; Martin-Belloso, O.; Osada, J.; Rodríguez-Yoldi, M.J. Unveiling the Antioxidant Therapeutic Functionality of Sustainable Olive Pomace Active Ingredients. Antioxidants 2022, 11, 828. [Google Scholar] [CrossRef]
- DellaGreca, M.; Previtera, L.; Temussi, F.; Zarrelli, A. Low-molecular-weight components of olive oil mill waste-waters. Phytochem. Anal. PCA 2004, 15, 184–188. [Google Scholar] [CrossRef]
- Servili, M.; Baldioli, M.; Selvaggini, R.; Miniati, E.; Macchioni, A.; Montedoro, G. High-performance liquid chromatography evaluation of phenols in olive fruit, virgin olive oil, vegetation waters, and pomace and 1D- and 2D-nuclear magnetic resonance characterization. J. Am. Oil Chem. Soc. 1999, 76, 873–882. [Google Scholar] [CrossRef]
- Lafka, T.; Lazou, A.; Sinanoglou, V.; Lazos, E. Phenolic and antioxidant potential of olive oil mill wastes. Food Chem. 2011, 125, 92–98. [Google Scholar] [CrossRef]
- Ryan, D.; Robards, K.; Lavee, S. Changes in phenolic content of olive during maturation. Int. J. Food Sci. Technol. 2001, 34, 265–274. [Google Scholar] [CrossRef]
- Alu’datt, M.; Alli, I.; Ereifej, K.; Alhamad, M.; Al-Tawaha, A.; Rababah, T. Optimisation, characterisation and quantification of phenolic compounds in olive cake. Food Chem. 2010, 123, 117–122. [Google Scholar] [CrossRef]
- Fki, I.; Bouaziz, M.; Sahnoun, Z.; Sayadi, S. Hypocholesterolemic effects of phenolic-rich extracts of Chemlali olive cultivar in rats fed a cholesterol-rich diet. Bioorg. Med. Chem. 2005, 13, 5362–5370. [Google Scholar] [CrossRef]
- Gómez-Rico, A.; Fregapane, G.; Salvador, M. Effect of cultivar and ripening on minor components in Spanish olive fruits and their corresponding oils|Request PDF. Food Res. Int. 2008, 41, 233–440. [Google Scholar] [CrossRef]
- Obied, H.K.; Bedgood, D.R.; Prenzler, P.D.; Robards, K. Bioscreening of Australian olive mill waste extracts: Biophenol content, antioxidant, antimicrobial and molluscicidal activities. Food Chem. Toxicol. Int. J. Publ. Br. Ind. Biol. Res. Assoc. 2007, 45, 1238–1248. [Google Scholar] [CrossRef]
- Lanza, B.; Cellini, M.; Di Marco, S.; D’Amico, E.; Simone, N.; Giansante, L.; Pompilio, A.; Di Loreto, G.; Bacceli, M.; Del Re, P.; et al. Olive Pâté by Multi-Phase Decanter as Potential Source of Bioactive Compounds of Both Nutraceutical and Anticancer Effects. Molecules 2020, 25, 5967. [Google Scholar] [CrossRef]
- Siciliano, A.; Stillitano, M.A.; Limonti, c. Energetic Valorization of Wet Olive Mill Wastes through a Suitable Integrated Treatment: H2O2 with Lime and Anaerobic Digestion. Sustainability 2016, 8, 1150. [Google Scholar] [CrossRef]
- Tekin, A.R. Biogas production from olive pomace. Resour. Conserv. Recycl. 2000, 30, 301–313. [Google Scholar] [CrossRef]
- Uddin, M.A.; Siddiki, S.Y.A.; Ahmed, S.F.; Rony, Z.I.; Chowdhury, M.A.K.; Mofijur, M. Estimation of Sustainable Bioenergy Production from Olive Mill Solid Waste. Energies 2021, 14, 7654. [Google Scholar] [CrossRef]
- López, J.; Heras, T.; Gordillo, T. Evaluación de La Producción de Los Subproductos Agroindustriales en Andalucía; Descripción Los Subproductos: Andalucia, Spain, 2015. [Google Scholar] [CrossRef]
- Borja, R.; Rincón, B.; Raposo, F.; Alba, J.; Mart, A. Kinetics of mesophilic anaerobic digestion of the two-phase olive mill solid waste. Biochem. Eng. J. 2003, 15, 139–145. [Google Scholar] [CrossRef]
- Azbar, N.; Bayram, A.; Filibeli, A.; Muezzinoglu, A.; Sengul, F.; Ozer, A. A Review of Waste Management Options in Olive Oil Production. Crit. Rev. Environ. Sci. Technol. 2004, 34, 209–247. [Google Scholar] [CrossRef]
- Manzanares, P.; Ruiz, E.; Ballesteros, M.; Negro, M.; Gallego, F.; López-Linares, J.; Castro, E. Residual biomass potential in olive tree cultivation and olive oil industry in Spain: Valorization proposal in a biorefinery context. SJAR 2017, 15, e0206. [Google Scholar] [CrossRef]
- Fernandes, M.C.; Torrado, I.; Carvalheiro, F.; Dores, V.; Guerra, V.; Lourenço, P.M.L.; Duarte, L.C. Bioethanol production from extracted olivepomace: Dilute acid hydrolysis. Bioethanol 2022, 2, 103–111. [Google Scholar] [CrossRef]
- Leite, A. Olive Pomace Pretreatments to Enhance Its Valorisation by Solid-State Fermentation. Master’s Thesis, Universidade do Minho, Braga, Portugal, 2015. [Google Scholar]
- Taherzadeh, M.J.; Karimi, K. Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: A review. Int. J. Mol. Sci. 2008, 9, 1621–1651. [Google Scholar] [CrossRef]
- Oliveira, F.; Moreira, C.; Salgado, J.M.; Abrunhosa, L.; Venâncio, A.; Belo, I. Olive pomace valorization by Aspergillus species: Lipase production using solid-state fermentation. J. Sci. Food Agric. 2016, 96, 3583–3589. [Google Scholar] [CrossRef]
- Papadaki, E.; Kontogiannopoulos, K.N.; Assimopoulou, A.N.; Mantzouridou, F.T. Feasibility of multi-hydrolytic enzymes production from optimized grape pomace residues and wheat bran mixture using Aspergillus niger in an integrated citric acid-enzymes production process. Bioresour. Technol. 2020, 309, 123317. [Google Scholar] [CrossRef]
- Oliveira, F.; Salgado, J.M.; Abrunhosa, L.; Pérez-Rodríguez, N.; Domínguez, J.M.; Venâncio, A.; Belo, I. Optimization of lipase production by solid-state fermentation of olive pomace: From flask to laboratory-scale packed-bed bioreactor. Bioprocess Biosyst. Eng. 2017, 40, 1123–1132. [Google Scholar] [CrossRef]
- Salihu, A.; Alam, M.Z.; AbdulKarim, M.I.; Salleh, H.M. Lipase production: An insight in the utilization of renewable agricultural residues. Resour. Conserv. Recycl. 2012, 58, 36–44. [Google Scholar] [CrossRef]
- Enzymes Market Size, Growth, Share, Trends, Report 2022–2030. Available online: https://www.precedenceresearch.com/enzymes-market (accessed on 5 February 2023).
- Munekata, P.E.S.; Domínguez, R.; Pateiro, M.; Nawaz, A.; Hano, C.; Walayat, N.; Lorenzo, J.M. Strategies to Increase the Value of Pomaces with Fermentation. Fermentation 2021, 7, 299. [Google Scholar] [CrossRef]
- Ibrahim, D.; Moustafa, A.; Shahin, S.; Sherief, W.A.K.; Farag, M.; Nassan, M.; Ibrahim, S. Impact of Fermented or Enzymatically Fermented Dried Olive Pomace on Growth, Expression of Digestive Enzyme and Glucose Transporter Genes, Oxidative Stability of Frozen Meat, and Economic Efficiency of Broiler Chickens. Front. Vet. Sci. 2021, 8, 644325. [Google Scholar] [CrossRef]
- Correddu, F.; Caratzu, M.F.; Lunesu, M.F.; Carta, S.; Pulina, G.; Nudda, A. Grape, Pomegranate, Olive, and Tomato By-Products Fed to Dairy Ruminants Improve Milk Fatty Acid Profile without Depressing Milk Production. Foods 2023, 12, 865. [Google Scholar] [CrossRef]
- Molina-Alcaide, E.; Morales-García, E.Y.; Martín-García, A.I.; Ben Salem, H.; Nefzaoui, A.; Sanz-Sampelayo, M.R. Effects of partial replacement of concentrate with feed blocks on nutrient utilization, microbial N flow, and milk yield and composition in goats. J. Dairy Sci. 2010, 93, 2076–2087. [Google Scholar] [CrossRef]
- Gomes, L.C.; Alcalde, C.R.; Santos, G.T.; Feihrmann, A.C.; Molina, B.S.L.; Grande, P.A.; Valloto, A.A. Concentrate with calcium salts of fatty acids increases the concentration of polyunsaturated fatty acids in milk produced by dairy goats. Small Rumin. Res. 2015, 124, 81–88. [Google Scholar] [CrossRef]
- Cedola, A.; Cardinali, A.; D’Antuono, I.; Conte, A.; Del Nobile, M. Cereal foods fortified with by-products from the olive oil industry. Food Biosci. 2020, 33, 100490. [Google Scholar] [CrossRef]
- Simonato, B.; Trevisan, S.; Tolve, R.; Favati, F. Pasta fortification with olive pomace: Effects on the technological characteristics and nutritional properties|Request PDF. Lebensm.-Wiss. Und-Technol. 2019, 114, 108368. [Google Scholar] [CrossRef]
- Cecchi, L.; Schuster, N.; Flynn, D.; Bechtel, R.; Bellumori, M.; Innocenti, M.; Mulinacci, N.; Guinard, J.X. Sensory Profiling and Consumer Acceptance of Pasta, Bread, and Granola Bar Fortified with Dried Olive Pomace (Pâté): A Byproduct from Virgin Olive Oil Production. J. Food Sci. 2019, 84, 2995–3008. [Google Scholar] [CrossRef]
- Aliakbarian, B.; Casale, M.; Paini, M.; Casazza, A.; Lanteri, S.; Perego, P. Production of a novel fermented milk fortified with natural antioxidants and its analysis by NIR spectroscopy. LWT—Food Sci. Technol. 2015, 62, 376–383. [Google Scholar] [CrossRef]
- Ribeiro, T.B.; Costa, C.M.; Bonifácio-Lopes, T.; Silva, S.; Veiga, M.; Monforte, A.R.; Nunes, J.; Vincente, A.A.; Pintado, M. Prebiotic effects of olive pomace powders in the gut: In vitro evaluation of the inhibition of adhesion of pathogens, prebiotic and antioxidant effects. Food Hydrocoll. 2021, 112, 106312. [Google Scholar] [CrossRef]
- Guermazi, Z.; Benincasa, C. Olive pomace as spreadable pulp: A new product for human consumption. AIMS Agric. Food 2018, 3, 441–454. [Google Scholar] [CrossRef]
- Poiana, M.; Romeo, F. Variaciones de los parámetros químicos y microbiológicos durante la fermentación natural en salmuera de aceitunas de variedades sicilianas. Grasas Aceites 2006, 57, 402–408. [Google Scholar] [CrossRef]
- Fadda, C.; Caro, A.; Sanguinetti, A.; Piga, A. Texture and antioxidant evolution of naturally green table olives as affected by different sodium chloride brine concentrations|Request PDF. Grasas Aceites 2014, 65, e002. [Google Scholar] [CrossRef]
- Ramírez, E.; Medina, E.; Brenes, M.; Romero, C. Endogenous enzymes involved in the transformation of oleuropein in Spanish table olive varieties. J. Agric. Food Chem. 2014, 62, 9569–9575. [Google Scholar] [CrossRef]
- Gikas, E.; Papadopoulos, N.; Tsarbopoulos, A. Kinetic Study of the Acidic Hydrolysis of Oleuropein, the Major Bioactive Metabolite of Olive Oil. J. Liq. Chromatogr. Relat. Technol. 2006, 29, 497–508. [Google Scholar] [CrossRef]
- Medina, E.; Romero, C.; Brenes, M.; Garcia, P. Profile of anti-lactic acid bacteria compounds during storage of olives which are not treated with alkali|Request PDF. Eur. Food Res. Technol. 2008, 228, 133–138. [Google Scholar] [CrossRef]
- Skerget, M.; Kotnik, P.; Hadolin, M.; Hras, A.; Simonic, M.; Knez, Z. Phenols, proanthocyanidins, flavones and flavonols in some plant materials and their antioxidant activities. Food Chem. 2005, 89, 191–198. [Google Scholar] [CrossRef]
- Cecchi, L.; Bellumori, M.; Cipriani, C.; Mocali, A.; Innocenti, M.; Mulinacci, N.; Giovannelli, L. A two-phase olive mill by-product (pâté) as a convenient source of phenolic compounds: Content, stability, and antiaging properties in cultured human fibroblasts. J. Funct. Foods 2018, 40, 751–759. [Google Scholar] [CrossRef]
- Tufariello, M.; Durante, M.; Veneziani, G.; Taticchi, A.; Servili, M.; Bleve, G.; Mita, G. Patè Olive Cake: Possible Exploitation of a By-Product for Food Applications. Front. Nutr. 2019, 6, 1–13. [Google Scholar] [CrossRef]
- Giuliani, C.; Marzorati, M.; Innocenti, M.; Vilchez-Vargas, R.; Vital, M.; Pieper, D.H.; Van De Wiele, T.; Mulinacci, N. Dietary supplement based on stilbenes: A focus on gut microbial metabolism by the in vitro simulator M-SHIME®. Food Funct. 2016, 7, 4564–4575. [Google Scholar] [CrossRef]
- Chi, C.; Cho, S. Improvement of bioactivity of soybean meal by solid-state fermentation with Bacillus amyloliquefaciens versus Lactobacillus spp. and Saccharomyces cerevisiae. LWT—Food Sci. Technol. 2016, 68, 619–625. [Google Scholar] [CrossRef]
- Oloyede, O.O.; James, S.; Ocheme, O.B.; Chinma, C.E.; Akpa, V.E. Effects of fermentation time on the functional and pasting properties of defatted Moringa oleifera seed flour. Food Sci. Nutr. 2015, 4, 89–95. [Google Scholar] [CrossRef]
- Singh, H. Functional Properties of Milk Proteins. Ref. Modul. Food Sci. 2015. [Google Scholar] [CrossRef]
- Kim, S.S.; Park, K.J.; An, H.J.; Choi, Y.H. Phytochemical, antioxidant, and antibacterial activities of fermented Citrus unshiu byproduct. Food Sci. Biotechnol. 2017, 26, 461–466. [Google Scholar] [CrossRef]
- Martí-Quijal, F.J.; Tornos, A.; Príncep, A.; Luz, C.; Meca, G.; Tedeschi, P.; Ruiz, M.J.; Barba, F.J. Impact of Fermentation on the Recovery of Antioxidant Bioactive Compounds from Sea Bass Byproducts. Antioxidants 2020, 9, 239. [Google Scholar] [CrossRef]
- Ricci, A.; Bertani, G.; Maoloni, A.; Bernini, V.; Levante, A.; Neviani, E.; Lazzi, C. Antimicrobial Activity of Fermented Vegetable Byproduct Extracts for Food Applications. Foods 2021, 10, 1092. [Google Scholar] [CrossRef]
- Lindsay, M.A.; Granucci, N.; Greenwood, D.R.; Villas-Boas, S.G. Identification of New Natural Sources of Flavour and Aroma Metabolites from Solid-State Fermentation of Agro-Industrial By-Products. Metabolites 2022, 12, 157. [Google Scholar] [CrossRef] [PubMed]
- Spaggiari, M.; Ricci, A.; Calani, L.; Bresciani, L.; Neviani, E.; Dall’Asta, C.; Lazzi, C.; Galaverna, G. Solid state lactic acid fermentation: A strategy to improve wheat bran functionality. LWT—Food Sci. Technol. 2020, 118, 108668. [Google Scholar] [CrossRef]
- Ricci, A.; Cirlini, M.; Guido, A.; Liberatore, C.M.; Ganino, T.; Lazzi, C.; Chiancone, B. From Byproduct to Resource: Fermented Apple Pomace as Beer Flavoring. Foods 2019, 8, 309. [Google Scholar] [CrossRef]
- Ricci, A.; Marrella, M.; Hadj Saadoun, J.; Bernini, V.; Godani, F.; Dameno, F.; Neviani, E.; Lazzi, C. Development of Lactic Acid-Fermented Tomato Products. Microorganisms 2020, 8, 1192. [Google Scholar] [CrossRef] [PubMed]
- Rossi, R.C.; Vandenberghe, L.; Pereira, B.; Gago, F.; Rizzolo, J.; Pandey, A.; Soccol, C.; Medeiros, A. Improving fruity aroma production by fungi in SSF using citric pulp. Food Res. Int. 2009, 42, 484–486. [Google Scholar] [CrossRef]
- Medeiros, A.B.P.; Pandey, A.; Vandenberghe, L.P.S.; Pastore, G.M.; Soccol, C.R. Production and recovery of aroma compounds produced by solid-state fermentation using different adsorbents. Food Technol. Biotechnol. 2006, 44, 47–51. [Google Scholar]
- Christen, P.; Meza, J.C.; Revah, S. Fruity aroma production in solid state fermentation by Ceratocystis fimbriata: Influence of the substrate type and the presence of precursors. Mycol. Res. 1997, 101, 911–919. [Google Scholar] [CrossRef]
- De Aráujo, Á.A.; Pastore, G.M.; Berger, R.G. Production of Coconut Aroma by Fungi Cultivation in Solid-State Fermentation | SpringerLink. Appl. Biochem. Biotechnol. 2002, 98, 747–751. [Google Scholar] [CrossRef]
- da Penha, M.; Rocha-Leão, M.; Leite, S. Sugarcane bagasse as support for the production of coconut aroma by solid state fermentation (SSF). Bioresources 2012, 7, 2366–2375. [Google Scholar] [CrossRef]
- Rodríguez Madrera, R.; Pando Bedriñana, R.; Suárez Valles, B. Production and characterization of aroma compounds from apple pomace by solid-state fermentation with selected yeasts. LWT—Food Sci. Technol. 2015, 64, 1342–1353. [Google Scholar] [CrossRef]
- Mantzouridou, F.T.; Paraskevopoulou, A.; Lalou, S. Yeast flavour production by solid state fermentation of orange peel waste. Biochem. Eng. J. 2015, 101, 1–8. [Google Scholar] [CrossRef]
Compounds | Levels |
---|---|
Total fat (g/100 g) | 4.6–10.5 |
Fatty acids (relative %) | |
C16:0 (Palmitic) | 11.6–14.3 |
C16:1 (Palmitoleic) | 0.6–1.3 |
C17:0 (Heptadecanoic) | 0.12–0.19 |
C18:0 (Stearic) | 2.3–3.6 |
C18:1n9cis (Oleic) | 71.1–72.9 |
C18:2n6cis (Linoleic) | 8.4–10.5 |
C20:0 (Arachidic) | 0.43–0.47 |
C18:3n3 (-Linoleic) | 0.72–0.9 |
C20:1n9 (cis-11-Eicosenoic) | 0.22–0.3 |
C22:0 (Behenic) | 0.15–0.21 |
C24:0 (Lignoceic) | 0.06–0.08 |
Total vitamin E (mg/100 g) | 0.87–2.25 |
-Tocopherol | 0.77–1.96 |
-Tocotrienol | 0.04–0.21 |
-Tocopherol | 0.02–0.05 |
-Tocopherol | 0.04–0.07 |
Total protein (g/100 g) | 0.9–4.4 |
Ash (g/100 g) | 9.9–16.7 |
pH | 5.2–5.6 |
Phenolic Compounds | References |
---|---|
Phenolic acids | |
4-hydroxyphenyl acetic acid | [37] |
Caffeic acid | [38,39,40,41] |
Cinnamic acid | [39,41] |
Ferulic acid | [39,40,41] |
Gallic acid | [41] |
Homovanillic acid | [40] |
p-coumaric acid | [37,40,41] |
Sinapic acid | [37,41] |
Syringic acid | [37,40,41] |
Vanillic acid | [40,41] |
Seroidoids and derivatives | |
D3,4-Dihydroxyphenylethanol-elenolic acid dialdehyde | [37,38] |
Demethyloleuropein | [38] |
Hydroxytyrosol | [42] |
Ligstroside | [40] |
Oleuropein | [38,42,43] |
Tyrosol | [40,42] |
Verbascoside | [38,40,43] |
Flavonoids | |
Apigenin | [42] |
Apigenin 7-O-glucoside | [43] |
Apigenin 7-O-rutinoside | [42] |
Cyanidin 3-O-glucoside | [39,43] |
Cyanidin 3-O-rutinoside | [39,43] |
Hesperidin | [39,41] |
Luteolin | [42] |
Luteolin 4′-O-glucoside | [42,44] |
Luteolin 7-O-glucoside | [42,43] |
Luteolin 7-O-rutinoside | [42] |
Quercetin | [41,44] |
Quercetin 3-O-glucoside | [42] |
Quercetin 3-O-rhamnoside | [40] |
Quercetin 3-O-rutinoside | [43] |
Rutin | [42,43,44] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dantas Palmeira, J.; Araújo, D.; C. Mota, C.; Alves, R.C.; P. P. Oliveira, M.B.; Ferreira, H.M.N. Fermentation as a Strategy to Valorize Olive Pomace, a By-Product of the Olive Oil Industry. Fermentation 2023, 9, 442. https://doi.org/10.3390/fermentation9050442
Dantas Palmeira J, Araújo D, C. Mota C, Alves RC, P. P. Oliveira MB, Ferreira HMN. Fermentation as a Strategy to Valorize Olive Pomace, a By-Product of the Olive Oil Industry. Fermentation. 2023; 9(5):442. https://doi.org/10.3390/fermentation9050442
Chicago/Turabian StyleDantas Palmeira, Josman, Débora Araújo, Catarina C. Mota, Rita C. Alves, M. Beatriz P. P. Oliveira, and Helena M. N. Ferreira. 2023. "Fermentation as a Strategy to Valorize Olive Pomace, a By-Product of the Olive Oil Industry" Fermentation 9, no. 5: 442. https://doi.org/10.3390/fermentation9050442
APA StyleDantas Palmeira, J., Araújo, D., C. Mota, C., Alves, R. C., P. P. Oliveira, M. B., & Ferreira, H. M. N. (2023). Fermentation as a Strategy to Valorize Olive Pomace, a By-Product of the Olive Oil Industry. Fermentation, 9(5), 442. https://doi.org/10.3390/fermentation9050442