In Vivo Digestibility and In Vitro Fermentation of High Dietary Fiber Forages in Growing Pigs’ Diets
Abstract
:1. Introduction
2. Materials and Methods
2.1. Brassica Meal Elaboration and Animal Housing
2.2. Experiment 1: In Vivo Digestibility
2.3. Experiment 2: In Vitro Fermentation
2.4. Statistical Analyses
3. Results
3.1. Experiment 1: In Vivo Digestibility
3.2. Experiment 2: In Vitro Fermentation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bach Knudsen, K.E.; Hedemann, M.S.; Lærke, H.N. The role of carbohydrates in intestinal health of pigs. Anim. Feed Sci. Technol. 2012, 173, 41–53. [Google Scholar] [CrossRef]
- Nelson, D.L.; Cox, M.M. Chapter 14 Glycolysis, gluconeogenesis, and the pentose phosphate pathway. In Lehninger. Principles of Biochemestry, 5th ed.; W. H. Freeman and Company: New York, NY, USA, 2008; p. 1302. [Google Scholar]
- Johnston, L.J.; Pettigrew, J.E.; Baidoo, S.K.; Shurson, G.C.; Walker, R.D. Efficacy of sucrose and milk chocolate product or dried porcine solubles to increase feed intake and improve performance of lactating sows. J. Anim. Sci. 2003, 81, 2475–2481. [Google Scholar] [CrossRef]
- Noblet, J.; Le Goff, G. Effect of dietary fibre on the energy value of feeds for pigs. Anim. Feed Sci. Technol. 2001, 90, 35–52. [Google Scholar] [CrossRef]
- Jarrett, S.; Ashworth, C.J. The role of dietary fibre in pig production, with a particular emphasis on reproduction. J. Anim. Sci. Biotechnol. 2018, 9, 59. [Google Scholar] [CrossRef]
- Jha, R.; Berrocoso, J.D. Review: Dietary fiber utilization and its effects on physiological functions and gut health of swine. Animal 2015, 9, 1441–1452. [Google Scholar] [CrossRef]
- Barry, T.N. The feeding value of forage brassica plants for grazing ruminant livestock. Anim. Feed Sci. Technol. 2013, 181, 15–25. [Google Scholar] [CrossRef]
- Daza, J.; Benavides, D.; Pulido, R.; Balocchi, O.; Bertrand, A.; Keim, J.P. Rumen In Vitro Fermentation and In Situ Degradation Kinetics of Winter Forage Brassicas Crops. Animals 2019, 9, 904. [Google Scholar] [CrossRef]
- Keim, J.; Gandarillas, M.; Benavides, D.; Cabanilla, J.; Pulido, R.G.; Balocchi, O.A.; Bertrand, A. Concentrations of nutrients and profile of non-structural carbohydrates vary among different Brassica forages. Anim. Prod. Sci. 2020, 60, 1503–1513. [Google Scholar] [CrossRef]
- Sun, X.Z.; Waghorn, G.C.; Hoskin, S.O.; Harrison, S.J.; Muetzel, S.; Pacheco, D. Methane emissions from sheep fed fresh brassicas (Brassica spp.) compared to perennial ryegrass (Lolium perenne). Anim. Feed Sci. Technol. 2012, 176, 107–116. [Google Scholar] [CrossRef]
- McCartney, D.; Fraser, J.; Ohama, A. Potential of warm-season annual forages and Brassica crops for grazing: A Canadian Review. Can. J. Anim. Sci. 2009, 89, 431–440. [Google Scholar] [CrossRef]
- Figueroa, J.; del Río, K.; Romero, F.; Keim, J.P.; Gandarillas, M. Acceptability, Preferences, and Palatability of Diets Containing Summer and Winter Brassica Forage in Growing Pigs: A Pilot Study. Animals 2020, 10, 1080. [Google Scholar] [CrossRef]
- Graham, A.B.; Goodband, R.D.; Tokach, M.D.; Dritz, S.S.; DeRouchey, J.M.; Nitikanchana, S. The interactive effects of high-fat, high-fiber diets and ractopamine HCl on finishing pig growth performance, carcass characteristics, and carcass fat quality. J. Anim. Sci. 2014, 92, 4585–4597. [Google Scholar] [CrossRef]
- Jha, R.; Fouhse, J.M.; Tiwari, U.P.; Li, L.; Willing, B.P. Dietary Fiber and Intestinal Health of Monogastric Animals. Front. Vet. Sci. 2019, 6, 48. [Google Scholar] [CrossRef]
- Gaire, T.N.; Noyes, N.R.; Scott, H.M.; Ericsson, A.C.; Dunmire, K.; Tokach, M.D.; Paulk, C.B.; Vinasco, J.; Roenne, B.; Nagaraja, T.G.; et al. A longitudinal investigation of the effects of age, dietary fiber type and level, and injectable antimicrobials on the fecal microbiome and antimicrobial resistance of finisher pigs. J. Anim. Sci. 2022, 100, skac217. [Google Scholar] [CrossRef]
- Le Goff, G.; Noblet, J. Comparative total tract digestibility of dietary energy and nutrients in growing pigs and adult sows. J. Anim. Sci. 2001, 79, 2418–2427. [Google Scholar] [CrossRef]
- Navarro, D.; Abelilla, J.J.; Stein, H.H. Structures and characteristics of carbohydrates in diets fed to pigs: A review. J. Anim. Sci. Biotechnol. 2019, 10, 39. [Google Scholar] [CrossRef]
- Parra, J.; Goméz, A. Importancia de la utilización de diferents técnicas de digestibilidad en la nutrición y formulacion procina. Rev. MVZ Córdoba 2009, 14, 1633–1641. [Google Scholar] [CrossRef]
- Theodorou, M.K.; Williams, B.A.; Dhanoa, M.S.; McAllan, A.B.; France, J. A simple gas production method using a pressure transducer to determine the fermentation kinetics of ruminant feeds. Anim. Feed Sci. Technol. 1994, 48, 185–197. [Google Scholar] [CrossRef]
- Williams, B.A.; Bosch, M.W.; Boer, H.; Verstegen, M.W.A.; Tamminga, S. An in vitro batch culture method to assess potential fermentability of feed ingredients for monogastric diets. Anim. Feed Sci. Technol. 2005, 123, 445–462. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis, 16th ed.; Association of Official Analytical Chemists: Washington, DC, USA, 1996. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Frias, D.; Tadich, T.; Franco-Rossello, R.; Dwyer, D.M.; Figueroa, J. Consumption patterns: A proposed model for measurement of solution palatability in pigs. J. Anim. Sci. 2016, 94, 103–105. [Google Scholar] [CrossRef]
- Bateman, J.V. Nutrición Animal. Manual de Métodos Analíticos; Herrero Hermanos Sucesores: Mexico City, Mexico, 1970. [Google Scholar]
- Van Keulen, J.; Young, B.A. Evaluation of Acid-Insoluble Ash as a Natural Marker in Ruminant Digestibility Studies. J. Anim. Sci. 1977, 44, 282–287. [Google Scholar] [CrossRef]
- Adeola, O. Digestion and balance techniques in pigs. In Swine Nutrition, 2nd ed.; Lewis, A.J., Southern, L.L., Eds.; CRC Press: Boca Raton, FL, USA, 2000; pp. 895–907. [Google Scholar]
- Bauer, E.; Williams, B.; Voigt, C.; Mosenthin, R.; Verstegen, M. Impact of mammalian enzyme pretreatment on the fermentability of carbohydrate-rich feedstuffs. J. Sci. Food Agric. 2003, 83, 207–214. [Google Scholar] [CrossRef]
- Sappok, M.; Peréz, O.; Smidt, H.; Pellikaan, W.; Verstegen, M.; Bosch, G.; Hendriks, W. Adaptation of faecal microbiota in sows after diet changes and consequences for in vitro fermentation capacity. Anim. Consort. 2015, 9, 1453–1464. [Google Scholar] [CrossRef]
- France, J.; Dhanoa, M.S.; Theodorou, M.K.; Lister, S.J.; Davies, D.R.; Isac, D. A model to interpret gas accumulation profiles associated with in vitro degradation of ruminant feeds. J. Theor. Biol. 1993, 163, 99–111. [Google Scholar] [CrossRef]
- Jang, J.C.; Zeng, Z.; Shurson, G.; Urriola, P. Effects of Gas Production Recording System and Pig Fecal Inoculum Volume on Kinetics and Variation of In Vitro Fermentation using Corn Distiller’s Dried Grains with Solubles and Soybean Hulls. Animals 2019, 9, 773. [Google Scholar] [CrossRef]
- Weatherburn, M. Phenol-hypochlorite reaction for determination of ammonia. Anal. Chem. 1967, 39, 971–974. [Google Scholar] [CrossRef]
- Flis, M.; Sobotka, W.; Antoszkiewicz, Z. Fiber substrates in the nutrition of weaned piglets—A review. Ann. Anim. Sci. 2017, 17, 627–644. [Google Scholar] [CrossRef]
- Kerr, B.; Shurson, G. Strategies to improve fiber utilization in swine. J. Anim. Sci. Biotechnol. 2013, 4, 11. [Google Scholar] [CrossRef]
- Zhang, W.; Li, D.; Liu, L.; Zang, J.; Duan, Q.; Yang, W.; Zhang, L. The effects of dietary fiber level on nutrient digestibility in growing pigs. J. Anim. Sci. Biotechnol. 2013, 4, 17. [Google Scholar] [CrossRef]
- Jha, R.; Leterme, P. Feed ingredients differing in fermentable fibre and indigestible protein content affect fermentation metabolites and faecal nitrogen excretion in growing pigs. Anim. J. 2012, 6, 603–611. [Google Scholar] [CrossRef]
- Chen, L.; Gao, L.; Zhang, H. Effect of Graded Levels of Fiber from Alfalfa Meal on Nutrient Digestibility and Flow of Fattening Pigs. J. Integr. Agric. 2014, 13, 1746–1752. [Google Scholar] [CrossRef]
- Huang, Q.; Su, B.; Li, D.; Liu, L.; Huang, C.; Zhu, Z.; Lai, C. Effects of Inclusion Levels of Wheat Bran and Body Weight on Ileal and Fecal Digestibility in Growing Pigs. Asian-Australas. J. Anim. Sci. 2015, 28, 847–854. [Google Scholar] [CrossRef]
- Hansen, M.; Chwalibog, A.; Tauson, A.-N.; Sawosz, E. Influence of different fibre sources on digestibility and nitrogen and energy balances in growing pigs. Arch. Anim. Nutr. 2006, 60, 390–401. [Google Scholar] [CrossRef]
- Lyu, Z.; Huang, C.; Li, Y.; Li, P.; Liu, H.; Chen, Y.; Li, D.; Lai, C. Adaptation duration for net energy determination of high fiber diets in growing pigs. Anim. Feed. Sci. Technol. 2018, 241, 15–26. [Google Scholar] [CrossRef]
- Renteria-Flores, J.; Johnston, L.; Shurson, G.; Gallaher, D. Effect of soluble and insoluble fiber on energy digestibility, nitrogen retention, and fiber digestibility of diets fed to gestating sows. J. Anim. Sci. 2008, 86, 2568–2575. [Google Scholar] [CrossRef]
- Bach Knudsen, K.E.; Laerke, H.N.; Ingerslev, A.K.; Hedemann, M.S.; Nielsen, T.S.; Theil, P.K. Carbohydrates in pig nutrition—Recent advances. J. Anim. Sci. 2016, 94, 1–11. [Google Scholar] [CrossRef]
- Lindberg, J.E. Fiber effects in nutrition and gut health in pigs. J. Anim. Sci. Biotechnol. 2014, 5, 15. [Google Scholar] [CrossRef] [PubMed]
- Dégen, L.; Halas, V.; Babinszky, L. Effect of dietary fibre on protein and fat digestibility and its consequences on diet formulation for growing and fattening pigs: A review. Acta Agric. Scand. Sect. A Anim. Sci. 2007, 57, 1–9. [Google Scholar] [CrossRef]
- Hall, M.B.; Lewis, B.A.; VanSoest, P.J.; Chase, L.E. A simple method for estimation of neutral detergent-soluble fibre. J. Sci. Food Agric. 1997, 74, 441–449. [Google Scholar] [CrossRef]
- Valenzuela, A.; Maiz, A. El rol de la fibra dietética en la nutrición enteral. Rev. Chil. De Nutr. 2006, 32, 342–351. [Google Scholar] [CrossRef]
- Betancur-Murillo, C.L.; Aguilar-Marin, S.B.; Jovel, J. Prevotella: A Key Player in Ruminal Metabolism. Microorganisms 2023, 11, 1. [Google Scholar] [CrossRef]
- Getachew, G.; Robinson, P.H.; DePeters, E.J.; Taylor, S.J. Relationships between chemical composition, dry matter degradation and in vitro gas production of several ruminant feeds. Anim. Feed Sci. Technol. 2004, 111, 57–71. [Google Scholar] [CrossRef]
- Yen, J.T. Anatomy of the Digestive System and Nutritional Physiology. In Swine Nutrition, 2nd ed.; Lewis, A.J., Southern, L.L., Eds.; CRC Press: Boca Raton, FL, USA, 2000; pp. 45–77. [Google Scholar]
- Pryde, S.E.; Duncan, S.H.; Hold, G.L.; Stewart, C.S.; Flint, H.J. The microbiology of butyrate formation in the human colon. FEMS Microbiol. Lett. 2002, 217, 133–139. [Google Scholar] [CrossRef]
- Williams, B.; Verstegen, M.; Tamminga, S. Fermentation in the large intestine of single-stomached animals and its relationship to animal health. Nutr. Res. Rev. 2001, 14, 207–227. [Google Scholar] [CrossRef]
- Brody, T. Chapter 3: Nutrients that resist or escape digestion. In Nutritional Biochemistry, 2nd ed.; Academic Press: San Diego, CA, USA, 1999; p. 1029. [Google Scholar]
Control | Turnip | Rape | |
---|---|---|---|
Ingredients | |||
Corn (%) | 42.1 | 42.1 | 42.1 |
Soybean meal (%) | 33.5 | 33.5 | 33.5 |
Soybean oil (%) | 5.5 | 5.5 | 5.5 |
Wheat middlings (%) | 15 | 0 | 0 |
Turnip meal (%) | 0 | 15 | 0 |
Forage rape meal (%) | 0 | 0 | 15 |
Calcium carbonate (%) | 0.4 | 0.4 | 0.4 |
Salt (%) | 0.35 | 0.35 | 0.35 |
Calcium biphosphate (%) | 1.15 | 1.15 | 1.15 |
Premix vit-min (%) | 1.5 | 1.5 | 1.5 |
Celite (%) | 0.5 | 0.5 | 0.5 |
Overall (%) | 100 | 100 | 100 |
Nutrient Concentration | |||
Dry matter (%) | 88.4 | 89.29 | 89.23 |
Ash (%) | 6.68 | 8.17 | 7.04 |
Crude protein (%) | 20.93 | 20.91 | 20.58 |
Ether extract (%) | 8.21 | 7.5 | 7.72 |
Crude fiber (%) | 3.96 | 2.49 | 2.49 |
NDF (%) | 13.16 | 10.46 | 10.72 |
ADF (%) | 4.91 | 5.15 | 5.51 |
Starch (%) 1 | 31.14 | 29.76 | 28.27 |
Sugars (%) 1 | 4.38 | 7.67 | 3.97 |
GE (kcal/kg) 1 | 4123 | 4122 | 4117 |
DE (kcal/kg) 1 | 3442 | 3559 | 3543 |
ME (kcal/kg) 1 | 3284 | 3401 | 3384 |
NE (kcal/kg) 1 | 2502 | 2521 | 2511 |
Nutrient | Fecal Apparent Digestibility (In Vivo) (%) 1 | p-Value | ||
---|---|---|---|---|
Control | Turnip | Rape | ||
Dry matter | 94.8 ± 1.0 | 93.4 ± 1.0 | 93.6 ± 1.3 | 0.594 |
Organic matter | 97.6 ± 0.2 | 98.2 ± 0.2 | 97.4 ± 0.3 | 0.159 |
Gross energy | 80.6 ± 1.1 b | 85.3 ± 1.1 a | 80.6 ± 1.4 b | 0.020 |
Crude protein | 82.5 ± 1.0 | 81.4 ± 1.0 | 81.2 ± 1.3 | 0.501 |
Ether extract | 81.5 ± 1.7 | 82.1 ± 1.7 | 79.2 ± 2.2 | 0.495 |
Ash | 53.8 ± 2.0 c | 61.5 ± 2.0 b | 68.8 ± 2.6 a | 0.003 |
aNDFom | 58.4 ± 3.1 | 59.1 ± 3.1 | 60.4 ± 4.1 | 0.904 |
ADFom | 49.4 ± 3.2 | 58.4 ± 3.2 | 53.8 ± 4.2 | 0.152 |
Diets | SEM | p-Value | Ingredients | SEM | p-Value | ||||
---|---|---|---|---|---|---|---|---|---|
Control | Rape | Turnip | Turnip | Rape | |||||
GP72 | 213 | 193 | 201 | 5.4 | 0.209 | 267 a | 171 b | 19.9 | 0.040 |
A | 238 | 207 | 238 | 11.5 | 0.184 | 262 | 221 | 19.2 | 0.345 |
A⅟₂ | 119 | 104 | 119 | 5.8 | 0.184 | 131 | 111 | 9.6 | 0.345 |
L | 1.37 | 2.46 | 2.35 | 0.5 | 0.453 | 1.4 | 1.73 | 0.8 | 0.482 |
t⅟₂ | 29.4 | 30.4 | 26.6 | 4.2 | 0.851 | 15.6 | 29.0 | 5.2 | 0.285 |
u | 0.07 | 0.09 | 0.04 | 0.02 | 0.503 | 0.11 | 0.04 | 0.02 | 0.601 |
Diet | SEM | p-Value | Ingredients | SEM | p-Value | ||||
---|---|---|---|---|---|---|---|---|---|
Control | Rape | Turnip | Rape | Turnip | |||||
NH3 | 197.2 | 280.0 | 233.0 | 35.5 | 0.353 | 268.9 | 294.4 | 36.4 | 0.622 |
VFA (mmol/L) | 41.6 | 43.5 | 44.2 | 2.1 | 0.719 | 46.2 b | 55.2 a | 1.0 | 0.01 |
Relative proportion of total VFA (mmol 100 mmol−1) | |||||||||
Acetic | 44.4 | 46.6 | 47.1 | 1.9 | 0.690 | 60.7 x | 53.9 y | 1.5 | 0.077 |
Propionic | 30.2 y | 30.5 y | 34.3 x | 1.0 | 0.067 | 24.4 b | 30.9 a | 1.4 | 0.045 |
Butyric | 24.7 | 22.9 | 18.9 | 1.6 | 0.109 | 14.9 | 15.2 | 0.5 | 0.703 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gandarillas, M.; Valenzuela, M.I.; Molina, J.; Arias, R.; Keim, J. In Vivo Digestibility and In Vitro Fermentation of High Dietary Fiber Forages in Growing Pigs’ Diets. Fermentation 2023, 9, 448. https://doi.org/10.3390/fermentation9050448
Gandarillas M, Valenzuela MI, Molina J, Arias R, Keim J. In Vivo Digestibility and In Vitro Fermentation of High Dietary Fiber Forages in Growing Pigs’ Diets. Fermentation. 2023; 9(5):448. https://doi.org/10.3390/fermentation9050448
Chicago/Turabian StyleGandarillas, Mónica, María Isidora Valenzuela, Jorge Molina, Rodrigo Arias, and Juan Keim. 2023. "In Vivo Digestibility and In Vitro Fermentation of High Dietary Fiber Forages in Growing Pigs’ Diets" Fermentation 9, no. 5: 448. https://doi.org/10.3390/fermentation9050448
APA StyleGandarillas, M., Valenzuela, M. I., Molina, J., Arias, R., & Keim, J. (2023). In Vivo Digestibility and In Vitro Fermentation of High Dietary Fiber Forages in Growing Pigs’ Diets. Fermentation, 9(5), 448. https://doi.org/10.3390/fermentation9050448