Impact of Hydrothermal Pretreatment Parameters on Mesophilic and Thermophilic Fermentation and Anaerobic Digestion of Municipal Sludge
Abstract
:1. Introduction
2. Materials and Methods
2.1. Substrate and Inoculum
2.2. Experimental Design and Sample Preparation
2.3. Hydrothermal Pretreatment
2.4. Batch Fermentation
2.5. Biochemical Methane Potential (BMP) Test
2.6. Solubilization, Biodegradability, and Kinetics
2.7. Analytical Methods
2.8. Statistical Analysis
3. Results and Discussion
3.1. Sludge Disintegration
3.1.1. Sludge Disintegration Due to HTP
3.1.2. Solubilization Due to Fermentation
3.2. Volatile Fatty Acid Production
3.3. Methane Production
3.3.1. Methane Yield
3.3.2. Methane Production Rate
3.3.3. Modeling
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
List of Abbreviations
AD | anaerobic digestion |
WWTP | wastewater treatment plant |
TWAS | thickened waste-activated sludge |
WAS | waste activated sludge |
HTP | hydrothermal pretreatment |
SC | solid content |
RT | retention time |
COD | chemical oxygen demand |
TCOD | total chemical oxygen demand |
SCOD | soluble chemical oxygen demand |
TSS | total suspended solids |
VSS | volatile suspended solids |
VFA | volatile fatty acid |
BMP | biochemical methane production |
ANOVA | analysis of variance |
References
- Elbeshbishy, E.; Aldin, S.; Hafez, H.; Nakhla, G.; Ray, M. Impact of Ultrasonication of Hog Manure on Anaerobic Digestability. Ultrason. Sonochem. 2011, 18, 164–171. [Google Scholar] [CrossRef] [PubMed]
- Chu, L.; Yan, S.; Xing, X.H.; Sun, X.; Jurcik, B. Progress and Perspectives of Sludge Ozonation as a Powerful Pretreatment Method for Minimization of Excess Sludge Production. Water Res. 2009, 43, 1811–1822. [Google Scholar] [CrossRef] [PubMed]
- Di Hao, X.; Wang, Q.L.; Zhu, J.Y.; Van Loosdrecht, M.C.M. Microbiological Endogenous Processes in Biological Wastewater Treatment Systems. Crit. Rev. Environ. Sci. Technol. 2010, 40, 239–265. [Google Scholar] [CrossRef]
- Piekutin, J.; Puchlik, M.; Haczykowski, M.; Dyczewska, K. The Efficiency of the Biogas Plant Operation Depending on the Substrate Used. Energies 2021, 14, 3157. [Google Scholar] [CrossRef]
- Masłon, A.; Czarnota, J.; Szaja, A.; Szulzyk-Cieplak, J.; Łagód, G. The Enhancement of Energy Efficiency in a Wastewater Treatment Plant through Sustainable Biogas Use: Case Study from Poland. Energies 2020, 13, 6056. [Google Scholar] [CrossRef]
- Ma, W.; Chen, K.; Li, Y.; Hao, N.; Wang, X.; Ouyang, P. Advances in Cadaverine Bacterial Production and Its Applications. Engineering 2017, 3, 308–317. [Google Scholar] [CrossRef]
- Park, J.H.; Kang, H.J.; Park, K.H.; Park, H.D. Direct Interspecies Electron Transfer via Conductive Materials: A Perspective for Anaerobic Digestion Applications. Bioresour. Technol. 2018, 254, 300–311. [Google Scholar] [CrossRef]
- Rusmanis, D.; O’Shea, R.; Wall, D.M.; Murphy, J.D. Biological Hydrogen Methanation Systems–an Overview of Design and Efficiency. Bioengineered 2019, 10, 604–634. [Google Scholar] [CrossRef]
- Eskicioglu, C.; Kennedy, K.J.; Droste, R.L. Characterization of Soluble Organic Matter of Waste Activated Sludge before and after Thermal Pretreatment. Water Res. 2006, 40, 3725–3736. [Google Scholar] [CrossRef]
- Appels, L.; Baeyens, J.; Degrève, J.; Dewil, R. Principles and Potential of the Anaerobic Digestion of Waste-Activated Sludge. Prog. Energy Combust. Sci. 2008, 34, 755–781. [Google Scholar] [CrossRef]
- Cesaro, A.; Belgiorno, V. Pretreatment Methods to Improve Anaerobic Biodegradability of Organic Municipal Solid Waste Fractions. Chem. Eng. J. 2014, 240, 24–37. [Google Scholar] [CrossRef]
- Donoso-Bravo, A.; Pérez-Elvira, S.; Aymerich, E.; Fdz-Polanco, F. Assessment of the Influence of Thermal Pre-Treatment Time on the Macromolecular Composition and Anaerobic Biodegradability of Sewage Sludge. Bioresour. Technol. 2011, 102, 660–666. [Google Scholar] [CrossRef] [PubMed]
- Bougrier, C.; Delgenès, J.P.; Carrère, H. Effects of Thermal Treatments on Five Different Waste Activated Sludge Samples Solubilisation, Physical Properties and Anaerobic Digestion. Chem. Eng. J. 2008, 139, 236–244. [Google Scholar] [CrossRef]
- Xiao, B.; Liu, J. Effects of Various Pretreatments on Biohydrogen Production from Sewage Sludge. Chin. Sci. Bull. 2009, 54, 2038–2044. [Google Scholar] [CrossRef]
- Liu, X.; Xu, Q.; Wang, D.; Yang, Q.; Wu, Y.; Li, Y.; Fu, Q.; Yang, F.; Liu, Y.; Ni, B.J.; et al. Thermal-Alkaline Pretreatment of Polyacrylamide Flocculated Waste Activated Sludge: Process Optimization and Effects on Anaerobic Digestion and Polyacrylamide Degradation. Bioresour. Technol. 2019, 281, 158–167. [Google Scholar] [CrossRef]
- Li, C.; Wang, X.; Zhang, G.; Yu, G.; Lin, J.; Wang, Y. Hydrothermal and Alkaline Hydrothermal Pretreatments plus Anaerobic Digestion of Sewage Sludge for Dewatering and Biogas Production: Bench-Scale Research and Pilot-Scale Verification. Water Res. 2017, 117, 49–57. [Google Scholar] [CrossRef]
- Gong, L.; Yang, X.; Wang, Z.; Zhou, J.; You, X. Impact of Hydrothermal Pre-Treatment on the Anaerobic Digestion of Different Solid-Liquid Ratio Sludges and Kinetic Analysis. RSC Adv. 2019, 9, 19104–19113. [Google Scholar] [CrossRef]
- City of Toronto Ashbridges Bay Wastewater Treatment Plant 2018 Annual Report. 2019, pp. 1–65. Available online: https://www.toronto.ca/wp-content/uploads/2019/05/8f0f-2018-TAB-Annual-Report-FINAL-ecopy.pdf (accessed on 20 May 2023).
- Yuan, T.; Cheng, Y.; Zhang, Z.; Lei, Z.; Shimizu, K. Comparative Study on Hydrothermal Treatment as Pre- and Post-Treatment of Anaerobic Digestion of Primary Sludge: Focus on Energy Balance, Resources Transformation and Sludge Dewaterability. Appl. Energy 2019, 239, 171–180. [Google Scholar] [CrossRef]
- Kakar, F.L.; Koupaie, E.H.; Razavi, A.S.; Hafez, H.; Elbeshbishy, E. Effect of Hydrothermal Pretreatment on Volatile Fatty Acids Production from Thickened Waste Activated Sludge. Bioenergy Res. 2019, 13, 591–604. [Google Scholar] [CrossRef]
- Ryue, J.; Lin, L.; Kakar, F.L.; Elbeshbishy, E.; Al-Mamun, A.; Dhar, B.R. A Critical Review of Conventional and Emerging Methods for Improving Process Stability in Thermophilic Anaerobic Digestion. Energy Sustain. Dev. 2020, 54, 72–84. [Google Scholar] [CrossRef]
- Lin, L.; Koupaie, E.H.; Azizi, A.; Abbas, A.; Lakeh, B. Hydrothermal Treatment and Acidogenic. Molecules 2019, 24, 1466. [Google Scholar] [CrossRef] [PubMed]
- Rajput, A.A.; Zeshan; Visvanathan, C. Effect of Thermal Pretreatment on Chemical Composition, Physical Structure and Biogas Production Kinetics of Wheat Straw. J. Environ. Manage. 2018, 221, 45–52. [Google Scholar] [CrossRef] [PubMed]
- Kakar, F.L.; Purohit, N.; Okoye, F.; Liss, S.N.; Elbeshbishy, E. Combined Hydrothermal and Free Nitrous Acid, Alkali and Acid Pretreatment for Biomethane Recovery from Municipal Sludge. Waste Manag. 2021, 131, 376–385. [Google Scholar] [CrossRef]
- Barber, W.P.F. Thermal Hydrolysis for Sewage Treatment: A Critical Review. Water Res. 2016, 104, 53–71. [Google Scholar] [CrossRef] [PubMed]
- Park, M.; Kim, N.; Jung, S.; Jeong, T.Y.; Park, D. Optimization and Comparison of Methane Production and Residual Characteristics in Mesophilic Anaerobic Digestion of Sewage Sludge by Hydrothermal Treatment. Chemosphere 2021, 264, 128516. [Google Scholar] [CrossRef]
- Gameiro, T.; Lopes, M.; Marinho, R.; Vergine, P.; Nadais, H.; Capela, I. Hydrolytic-Acidogenic Fermentation of Organic Solid Waste for Volatile Fatty Acids Production at Different Solids Concentrations and Alkalinity Addition. Water Air Soil. Pollut. 2016, 227, 1–16. [Google Scholar] [CrossRef]
- Pecchi, M.; Baratieri, M. Coupling Anaerobic Digestion with Gasification, Pyrolysis or Hydrothermal Carbonization: A Review. Renew. Sustain. Energy Rev. 2019, 105, 462–475. [Google Scholar] [CrossRef]
- Kim, D.; Lee, K.; Park, K.Y. Enhancement of Biogas Production from Anaerobic Digestion of Waste Activated Sludge by Hydrothermal Pre-Treatment. Int. Biodeterior. Biodegrad. 2015, 101, 42–46. [Google Scholar] [CrossRef]
- Wang, L.; Li, A. Hydrothermal Treatment Coupled with Mechanical Expression at Increased Temperature for Excess Sludge Dewatering: The Dewatering Performance and the Characteristics of Products. Water Res. 2015, 68, 291–303. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, S.; Lang, S.; Xian, P.; Xie, T. Kinetics of Combined Thermal Pretreatment and Anaerobic Digestion of Waste Activated Sludge from Sugar and Pulp Industry. Chem. Eng. J. 2016, 295, 131–138. [Google Scholar] [CrossRef]
- Liu, X.; Wang, W.; Gao, X.; Zhou, Y.; Shen, R. Effect of Thermal Pretreatment on the Physical and Chemical Properties of Municipal Biomass Waste. Waste Manag. 2012, 32, 249–255. [Google Scholar] [CrossRef]
- Xu, C.C.; Lancaster, J. Treatment of Secondary Sludge for Energy Recovery. In Energy Recovery (E-book); Nova Science Publisher: New York, NY, USA, 2009; pp. 187–212. ISBN 9781617284021. [Google Scholar]
- Li, C.; Zhang, G.; Zhang, Z.; Ma, D.; Xu, G. Alkaline Thermal Pretreatment at Mild Temperatures for Biogas Production from Anaerobic Digestion of Antibiotic Mycelial Residue. Bioresour. Technol. 2016, 208, 49–57. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Li, C.; Liu, W.; Zou, S. Optimized Alkaline Pretreatment of Sludge before Anaerobic Digestion. Bioresour. Technol. 2012, 123, 189–194. [Google Scholar] [CrossRef] [PubMed]
- Perendeci, N.A.; Ciggin, A.S.; Kökdemir Ünşar, E.; Orhon, D. Optimization of Alkaline Hydrothermal Pretreatment of Biological Sludge for Enhanced Methane Generation under Anaerobic Conditions. Waste Manag. 2020, 107, 9–19. [Google Scholar] [CrossRef] [PubMed]
- Kakar, F.L.; El Sayed, A.; Purohit, N.; Elbeshbishy, E. Volatile Fatty Acids and Biomethane Recovery from Thickened Waste Activated Sludge: Hydrothermal Pretreatment’s Retention Time Impact. Processes 2020, 8, 1580. [Google Scholar] [CrossRef]
- Kim, H.J.; Choi, Y.G.; Kim, G.D.; Kim, S.H.; Chung, T.H. Effect of Enzymatic Pretreatment on Solubilization and VFAs Production in Fermentation of Food Waste. Methods 2002, 52, 51–59. [Google Scholar]
- Zhang, P.; Chen, Y.; Zhou, Q. Waste Activated Sludge Hydrolysis and Short-Chain Fatty Acids Accumulation under Mesophilic and Thermophilic Conditions: Effect of PH. Water Res. 2009, 43, 3735–3742. [Google Scholar] [CrossRef]
- Lee, W.S.; Chua, A.S.M.; Yeoh, H.K.; Ngoh, G.C. A Review of the Production and Applications of Waste-Derived Volatile Fatty Acids. Chem. Eng. J. 2014, 235, 83–99. [Google Scholar] [CrossRef]
- Zinatizadeh, A.A.; Mirghorayshi, M.; Birgani, P.M.; Mohammadi, P.; Ibrahim, S. Influence of Thermal and Chemical Pretreatment on Structural Stability of Granular Sludge for High-Rate Hydrogen Production in an UASB Bioreactor. Int. J. Hydrog. Energy 2017, 42, 20512–20519. [Google Scholar] [CrossRef]
- Carlsson, M.; Lagerkvist, A.; Morgan-Sagastume, F. The Effects of Substrate Pre-Treatment on Anaerobic Digestion Systems: A Review. Waste Manag. 2012, 32, 1634–1650. [Google Scholar] [CrossRef]
- Liu, X.L.; Liu, H.; Du, G.C.; Chen, J. Improved Bioconversion of Volatile Fatty Acids from Waste Activated Sludge by Pretreatment. Water Environ. Res. 2009, 81, 13–20. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Liu, H.; Chen, J.; Du, G.; Chen, J. Enhancement of Solubilization and Acidification of Waste Activated Sludge by Pretreatment. Waste Manag. 2008, 28, 2614–2622. [Google Scholar] [CrossRef] [PubMed]
- Yin, J.; Liu, J.; Chen, T.; Long, Y.; Shen, D. Influence of Melanoidins on Acidogenic Fermentation of Food Waste to Produce Volatility Fatty Acids. Bioresour. Technol. 2019, 284, 121–127. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Guo, J.; Cheng, H.; Wang, W.; Dong, R. Two-Phase Anaerobic Digestion of Municipal Solid Wastes Enhanced by Hydrothermal Pretreatment: Viability, Performance and Microbial Community Evaluation. Appl. Energy 2017, 189, 613–622. [Google Scholar] [CrossRef]
Sample and Pretreatment Conditions | Gompertz Model | First-Order Kinetics | Biodegradability | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Run Order | Temp. | Retention Time | pH | Solid Content | P | Rm | λ | R2 | k | R2 | |
°C | min | - | % | mL CH4/g COD Added | mL CH4/g COD Added.d | d | - | d−1 | - | % | |
1 | 170 | 30 | 4 | 16% | 246 | 22 | 1.2 | 0.930 | 0.18 | 0.971 | 65 |
2 | 170 | 10 | 4 | 4% | 189 | 25 | 0.6 | 0.978 | 0.17 | 0.979 | 49 |
3 (control) | 180 | 20 | 7 | 10% | 231 | 23 | 0.8 | 0.958 | 0.20 | 0.984 | 59 |
4 | 190 | 10 | 10 | 4% | 199 | 19 | 0.7 | 0.897 | 0.16 | 0.993 | 52 |
5 | 190 | 10 | 4 | 16% | 257 | 25 | 1.5 | 0.911 | 0.22 | 0.962 | 63 |
6 | 170 | 10 | 10 | 16% | 272 | 28 | 2.0 | 0.944 | 0.22 | 0.961 | 67 |
7 | 190 | 30 | 4 | 4% | 223 | 24 | 0.6 | 0.962 | 0.11 | 0.985 | 57 |
8 | 170 | 30 | 10 | 4% | 237 | 24 | 0.1 | 0.985 | 0.12 | 0.994 | 60 |
9 | 190 | 30 | 10 | 16% | 270 | 25 | 1.5 | 0.919 | 0.19 | 0.963 | 66 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kakar, F.L.; Aqeel, H.; Liss, S.N.; Elbeshbishy, E. Impact of Hydrothermal Pretreatment Parameters on Mesophilic and Thermophilic Fermentation and Anaerobic Digestion of Municipal Sludge. Fermentation 2023, 9, 508. https://doi.org/10.3390/fermentation9060508
Kakar FL, Aqeel H, Liss SN, Elbeshbishy E. Impact of Hydrothermal Pretreatment Parameters on Mesophilic and Thermophilic Fermentation and Anaerobic Digestion of Municipal Sludge. Fermentation. 2023; 9(6):508. https://doi.org/10.3390/fermentation9060508
Chicago/Turabian StyleKakar, Farokh Laqa, Hussain Aqeel, Steven N. Liss, and Elsayed Elbeshbishy. 2023. "Impact of Hydrothermal Pretreatment Parameters on Mesophilic and Thermophilic Fermentation and Anaerobic Digestion of Municipal Sludge" Fermentation 9, no. 6: 508. https://doi.org/10.3390/fermentation9060508
APA StyleKakar, F. L., Aqeel, H., Liss, S. N., & Elbeshbishy, E. (2023). Impact of Hydrothermal Pretreatment Parameters on Mesophilic and Thermophilic Fermentation and Anaerobic Digestion of Municipal Sludge. Fermentation, 9(6), 508. https://doi.org/10.3390/fermentation9060508