Dichlororesorcinols Produced by a Rhizospheric Fungi of Panax notoginseng as Potential ERK2 Inhibitors
Abstract
:1. Introduction
2. Materials and Methods
2.1. General Experimental Procedures
2.2. Fungal Material and Fermentation
2.3. Isolation of Secondary Metabolites
2.4. ECD Calculations
2.5. Optical Rotation Calculations
2.6. Cytotoxic Assay
2.7. Molecular Docking
3. Results and Discussion
3.1. Structure Elucidation of Secondary Metabolites
3.2. Activities Assay
3.3. Molecular Docking
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Uzayisenga, R.; Ayeka, P.A.; Wang, Y. Anti-diabetic potential of Panax notoginseng saponins (PNS): A review. Phytother. Res. 2014, 28, 510–516. [Google Scholar] [CrossRef]
- He, N.W.; Zhao, Y.; Guo, L.; Shang, J.; Yang, X.B. Antioxidant, antiproliferative, and pro-apoptotic activities of a saponin extract derived from the roots of Panax notoginseng (Burk.) F.H. Chen. J. Med. Food 2012, 15, 350–359. [Google Scholar] [CrossRef]
- Wang, P.; Cui, J.; Du, X.; Yang, Q.; Jia, C.; Xiong, M.; Yang, Q.; Yu, X. Panax notoginseng saponins (pns) inhibits breast cancer metastasis. J. Ethnopharmacol. 2014, 154, 663–671. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.W.; Song, Y.C.; Tan, R.X. Biology and chemistry of endophytes. Nat. Prod. Rep. 2006, 23, 753–771. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Li, D.; Yan, Q.; An, Y.; Huo, X.; Zhang, T.; Zhang, M.W.C.; Xia, M.; Ma, X.; Zhang, Y. α-pyrones, secondary metabolites from fungus cephalotrichum microsporum and their bioactivities-sciencedirect. Bioorg. Chem. 2019, 83, 129–134. [Google Scholar] [CrossRef]
- Ma, G.L.; Xi, N.G.; Wang, X.L.; Li, J.; Jin, Z.X.; Han, Y.; Su, Z.D.; Jin, J.X.; Hu, J.F. Cytotoxic secondary metabolites from the vulnerable conifer cephalotaxus oliveri and its associated endophytic fungus alternaria alternate y-4-2. Bioorg. Chem. 2020, 105, 104445. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.; Nian, Y.; Chen, H.; Liang, S.; Sun, M.; Pei, Y.; Wang, H. Pyranone Derivatives With Antitumor Activities, From the Endophytic Fungus Phoma sp. YN02-P-3. Front. Chem. 2022, 10, 950726. [Google Scholar] [CrossRef]
- Xie, J.; Wu, Y.Y.; Zhang, T.Y.; Zhang, M.Y. New and bioactive natural products from an endophyte of Panax notoginseng. RSC Adv. 2017, 7, 38100–38109. [Google Scholar] [CrossRef]
- Zhao, J.C.; Wang, Y.L.; Zhang, T.Y. Indole diterpenoids from the endophytic fungus Drechmeria sp. as natural antimicrobial agents. Phytochemistry 2018, 148, 21–28. [Google Scholar] [CrossRef] [PubMed]
- Boulton, T.G.; Yancopoulos, G.D.; Gregory, J.S.; Slaughter, C.; Moomaw, C.; Hsu, J.; Cobb, M.H. An insulin-stmulated Protein kinade similar to yeast kinases involved in cell cycle control. Science 1990, 249, 64–67. [Google Scholar] [CrossRef] [PubMed]
- Samatar, A.A. Extracellular signal-regulated kinase (ERK1 and ERK2) Inhibitors. In Conquering RAS; Elsevier: Amsterdam, The Netherlands, 2017; pp. 233–249. [Google Scholar] [CrossRef]
- Savoia, P.; Fava, P.; Casoni, F.; Cremona, O. Targeting the ERK signaling pathway in melanoma. Int. J. Mol. Sci. 2019, 20, 1483. [Google Scholar] [CrossRef]
- Marampon, F.; Ciccarelli, C.; Zani, B.M. Biological Rationale for Targeting MEK/ERK Pathways in Anti-Cancer Therapy and to Potentiate Tumour Responses to Radiation. Int. J. Mol. Sci. 2019, 20, 2530. [Google Scholar] [CrossRef]
- Pathania, S.; Singh, P.K.; Narang, R.K.; Rawal, R.K. Identifying novel putative erk1/2 inhibitors via hybrid scaffold hopping–fbdd approach. J. Biomol. Struct. Dyn. 2021, 40, 6771–6786. [Google Scholar] [CrossRef] [PubMed]
- Asati, V.; Mahapatra, D.K.; Bharti, S.K. PI3K/Akt/mTOR and Ras/Raf/MEK/ERK signaling pathways inhibitors as anticancer agents: Structural and pharmacological perspectives. Eur. J. Med. Chem. 2016, 109, 314–341. [Google Scholar] [CrossRef]
- Boulton, T.G.; Nye, S.H.; Robbins, D.J.; Ip, N.Y.; Yancopoulos, G.D. ERK: A family of Protein serine/threonine kinases that are activated and tyrosine PhosPhorylated in response to insulin and NGF. Cell 1991, 64, 663–675. [Google Scholar] [CrossRef] [PubMed]
- Lefloch, R.; Pouysségur, J.; Lenormand, P. Single and Combined Silencing of ERK1 and ERK2 Reveals Their Positive Contribution to Growth Signaling Depending on Their Expression Levels. Mol. Cell. Biol. 2008, 28, 511–527. [Google Scholar] [CrossRef]
- Qin, J.; Xin, H.; Nickoloff, B.J. Specifically targeting erk1 or erk2 kills melanoma cells. J. Transl. Med. 2012, 10, 15. [Google Scholar] [CrossRef]
- Shin, M.; Franks, C.E.; Hsu, K.L. Isoform-Selective Activity-Based Profiling of ERK Signaling. J. Chem. Sci. 2018, 9, 2419–2431. [Google Scholar] [CrossRef] [PubMed]
- Fatima, N.; Muhammad, S.A.; Khan, I.; Qazi, M.A.; Shahzadi, I.; Mumtaz, A.; Hashmi, M.A.; Khan, A.K.; Ismail, T. Chaetomium endophytes: A repository of pharmacologically active metabolites. Acta Physiol. Plant. 2016, 38, 136. [Google Scholar] [CrossRef]
- Shiono, Y.; Muslihah, N.I.; Suzuki, T.; Ariefta, N.R.; Anwar, C.; Nurjanto, H.H.; Aboshi, T.; Murayama, T.; Tawaraya, K.; Koseki, T.; et al. New eremophilane and dichlororesorcinol derivatives produced by endophytes isolated from ficus ampelas. J. Antibiot. 2017, 70, 1133–1137. [Google Scholar] [CrossRef]
- Li, H.Q.; Li, X.J.; Wang, Y.L.; Zhang, Q.; Zhang, A.L.; Gao, J.M.; Zhang, X.C. Antifungal metabolites from chaetomium globosum, an endophytic fungus in ginkgo biloba. Biochem. Syst. Ecol. 2011, 39, 876–879. [Google Scholar] [CrossRef]
- Wang, Y.X.; Zhou, L.; Lin, B.; Wang, X.B.; Huang, X.X.; Song, S.J. Anti-β-amyloid aggregation activity of enantiomeric furolactone-type lignans from Archidendron clypearia (Jack) I.C.N. Bioorg. Chem. 2018, 34, 1478–6419. [Google Scholar] [CrossRef]
- Dai, Y.H.; Wang, A.D.; Chen, Y.L.; Xia, M.Y.; Shao, X.Y.; Liu, D.C.; Wang, D. A new indole alkaloid from the traditional chinese medicine chansu. J. Asian Nat. Prod. Res. 2017, 20, 581–585. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.Y.; Zhang, T.Y.; Zhang, M.Y.; Cheng, J.; Zhang, Y.X. An endophytic fungi of Ginkgo Biloba L. produces antimicrobial metabolites as potential inhibitors of ftsz of staphylococcus aureus. Fitoterapia 2018, 128, 265–271. [Google Scholar] [CrossRef]
- Fritsche, E.; Humm, A.; Huber, R. The ligand-induced structural changes of humanl-arginine:glycine amidinotransferase a mutational and crystallographic study. J. Biol. Chem. 1999, 274, 3026–3032. [Google Scholar] [CrossRef] [PubMed]
- Nakadate, S.; Nozawa, K.; Horie, H.; Fujii, Y.; Nagai, M.; Komai, S.; Hosoe, T.; Kawai, K.; Yaguchi, T.; Fukushima, K. New dioxomorpholine derivatives, javanicunine a and b, from eupenicillium javanicum. Heterocycles 2006, 9, 1969–1972. [Google Scholar] [CrossRef]
- Casati, S.; Manzocchi, A.; Ottria, R.; Ciuffreda, P. 1H, 13C and 15N NMR assignments of adenosine derivatives with different amino substituents at C6-position. Magnetic Resonance in Chemistry. MRC Lett. 2011, 49, 279–283. [Google Scholar] [CrossRef]
- Lin, Z.; Phadke, S.; Lu, Z.; Beyhan, S.; Aziz, M.A.; Reilly, C.; Schmidt, E.W. Onydecalins, fungal polyketides with anti-histoplasma and anti-TRP activity. J. Nat. Prod. 2018, 81, 2605–2611. [Google Scholar] [CrossRef]
- Song, M.C.; Yang, H.J.; Jeong, T.S.; Kim, K.T.; Baek, N.I. Heterocyclic compounds from Chrysanthemum coronarium L. and their inhibitory activity on hACAT-1, hACAT-2, and LDL-oxidation. Arch. Pharmacal Res. 2008, 31, 573–578. [Google Scholar] [CrossRef] [PubMed]
- Shiono, Y.; Miyazaki, N.; Murayama, T.; Koseki, T.; Harizon; Katja, D.G.; Supratman, U.; Nakata, J.; Kakihara, Y.; Saeki, M.; et al. GSK-3β inhibitory activities of novel dichroloresorcinol derivatives from Cosmospora vilior isolated from a mangrove plant. Phytochem. Lett. 2016, 18, 122–127. [Google Scholar] [CrossRef]
- Dewick, P.M. Medicinal Natural Products: A Biosynthetic Approach, 2nd ed.; John Wiley Sons Ltd.: Chichester, UK, 2002; pp. 35–96. [Google Scholar]
No. | δH (J in Hz) | ||||
---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | |
1 | 6.84 s | 6.96 s | 6.89 s | 6.92 s | 6.90 s |
7 | - | - | - | - | - |
8 | 5.16 dd (4.0, 8.0) | 2.49 s | 3.52 s | 3.63 s | 3.94 s |
9 | 4.53 t (6.3) | - | 3.51 s | 3.6 s | - |
10 | 1.18 d (6.3) | - | - | - | 6.23 s |
11 | - | - | 5.49 dt (1.1, 8.4) | 6.25 s | - |
12 | - | - | 4.85 s | - | - |
13 | - | - | 1.48 s | 2.22 s | - |
1′ | 1.80 d (6.3) | - | 1.45 t (7.1) | 1.39 s | 1.43 s |
2′ | - | - | 1.81 s | 2.24 d (0.7) | 1.96 s |
2, 6-OMe | 3.90 d (0.9) | 3.94 s | 3.90 d (1.3) | 3.92 d (3.38) | 3.91 d (3.89) |
N-CH3 | - | - | 1.48 | 1.45 | - |
No. | δC | ||||
---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | |
1 | 98.0 | 98.7 | 97.8 | 98.0 | 97.9 |
2, 6 | 154.2 | 154.7 | 154.7, 154.0 | 154.1, 154.6 | 154.6, 154.0 |
3, 5 | 111.8, 112.1 | 107.2 | 113.5, 111.6 | 113.2, 111.5 | 113.2, 111.7 |
4 | 142.7 | 140.7 | 138.2 | 137.8 | 137.8 |
7 | 129.6 | 199.7 | - | - | 61.8 |
8 | 136.8 | 30.8 | 63.1 | 63.2 | 62.5 |
9 | 63.1 | - | 63.4 | 65.1 | 142.2 |
10 | 23.7 | - | 127.0 | 148.3 | 131.2 |
11 | - | - | 137.6 | 124.3 | 200.4 |
12 | - | - | 61.6 | 198.3 | - |
13 | - | - | 16.7 | 32.0 | - |
1′ | 16.3 | - | 24.5 | 15.5 | 16.7 |
2′ | - | - | 21.4 | 16.7 | 20.5 |
2, 6-OMe | 56.6 | 56.9 | 56.7 | 56.8 | 56.7 |
Compounds | H9 | HL-60 | K562 | THP-1 | CEM |
---|---|---|---|---|---|
1 | 7.9 | 13.0 | 27.2 | 13.6 | 9.0 |
2 | 8.5 | 30.0 | 80 | 26.0 | 7.9 |
3 | 86 | 93 | 79 | 72 | 83 |
4 | 64 | 87 | 76 | 70 | 88 |
5 | 79 | 94 | 82 | 74 | 89 |
6 | 68 | 73 | 87 | 89 | 92 |
7 | 93 | 87 | 96 | 82 | 79 |
8 | 89 | >100 | 68 | >100 | 81 |
9 | >100 | >100 | 88 | >100 | >100 |
10 | >100 | >100 | >100 | >100 | >100 |
AraC | 0.016 | 0.015 | 0.036 | 0.040 | 0.0048 |
Com. | PDB (ID) | Docking Score (Kcal/mol) | Residues | |
---|---|---|---|---|
Conventional Hydrogen Bond | Hydrophobic Bond | |||
1 | 6GDQ | −108 | LYS55, ALA35, ARG67, GLY169 | TYR36 |
2 | 6GDQ | −100 | TYR36, LYS55 | VAL39, LYS54 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Y.; Zhang, M.; Xue, J.; Cheng, J.; Xia, M.; Zhou, X.; Zhang, Y. Dichlororesorcinols Produced by a Rhizospheric Fungi of Panax notoginseng as Potential ERK2 Inhibitors. Fermentation 2023, 9, 517. https://doi.org/10.3390/fermentation9060517
Wu Y, Zhang M, Xue J, Cheng J, Xia M, Zhou X, Zhang Y. Dichlororesorcinols Produced by a Rhizospheric Fungi of Panax notoginseng as Potential ERK2 Inhibitors. Fermentation. 2023; 9(6):517. https://doi.org/10.3390/fermentation9060517
Chicago/Turabian StyleWu, Yingying, Mengyue Zhang, Jinyan Xue, Juan Cheng, Mingyu Xia, Xunyong Zhou, and Yixuan Zhang. 2023. "Dichlororesorcinols Produced by a Rhizospheric Fungi of Panax notoginseng as Potential ERK2 Inhibitors" Fermentation 9, no. 6: 517. https://doi.org/10.3390/fermentation9060517
APA StyleWu, Y., Zhang, M., Xue, J., Cheng, J., Xia, M., Zhou, X., & Zhang, Y. (2023). Dichlororesorcinols Produced by a Rhizospheric Fungi of Panax notoginseng as Potential ERK2 Inhibitors. Fermentation, 9(6), 517. https://doi.org/10.3390/fermentation9060517