Evaluation of Essential Oils as Additives during Fermentation of Feed Products: A Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Database Development
2.2. Data Analysis
3. Results
3.1. Nutritional Quality
3.2. Fermentative Product and Microbial Population
3.3. In Vitro Rumen Fermentability
3.4. Sub-Group and Meta-Regression Analysis
3.5. Publication Bias
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Steiner, T.; Syed, B. Phytogenic Feed Additives in Animal Nutrition. In Medicinal and Aromatic Plants of the World; Máthé, Á., Ed.; Springer: Dordrecht, The Netherlands, 2015; Volume 1. [Google Scholar]
- Burt, S. Essential oils: Their antibacterial properties and potential applications in foods: A review. Int. J. Food Microbiol. 2004, 94, 223–253. [Google Scholar] [CrossRef] [PubMed]
- Calsamiglia, S.; Busquet, M.; Cardozo, P.W.; Castillejos, L.; Ferret, A. Invited review: Essential oils as modifiers of rumen microbial fermentation. J. Dairy Sci. 2007, 90, 2580–2595. [Google Scholar] [CrossRef] [Green Version]
- Newbold, C.J.; McIntosh, F.M.; Williams, P.; Losa, R.; Wallace, R.J. Effects of a specific blend of essential oil com-pounds on rumen fermentation. Anim. Feed Sci. Technol. 2004, 114, 105–112. [Google Scholar] [CrossRef]
- Wallace, R.J. Antimicrobial properties of plant secondary metabolites. Symposium: Plants as animal foods: A case of catch 22. Proc. Nutr. Soc. 2004, 63, 621–629. [Google Scholar] [CrossRef]
- Orzuna-Orzuna, J.F.; Dorantes-Iturbide, G.; Lara-Bueno, A.; Miranda-Romero, L.A.; Mendoza-Martínez, G.D.; Santiago-Figueroa, I. A Meta-Analysis of Essential Oils Use for Beef Cattle Feed: Rumen Fermentation, Blood Metabolites, Meat Quality, Performance and, Environmental and Economic Impact. Fermentation 2022, 8, 254. [Google Scholar] [CrossRef]
- McIntosh, F.M.; Williams, P.; Losa, R.; Wallace, R.J.; Beever, D.A.; Newbold, C.J. Effects of essential oils on ruminal microorganisms and their protein metabolism. Appl. Environ. Microbiol. 2003, 69, 5011–5014. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kung, L., Jr.; Williams, P.; Schmidt, R.J.; Hu, W. A blend of essential plant oils used as an additive to alter silage fermentation or used as a feed additive for lactating dairy cows. J. Dairy Sci. 2008, 91, 4793–4800. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Foskolos, A.; Cavini, S.; Ferret, A.; Calsamiglia, S. Effects of essential oil compounds addition on ryegrass silage protein degradation. Can. J. Anim. Sci. 2016, 96, 100–103. [Google Scholar] [CrossRef]
- Kouazounde, J.B.; Jin, L.; Assogba, F.M.; Ayedoun, M.A.; Wang, Y.; Beauchemin, K.A.; Mcallister, T.A.; Gbenou, J.D. Effects of essential oils from medicinal plants acclimated to Benin on in vitro ruminal fermentation of Andropogon gayanus grass. J. Sci. Food Agric. 2015, 95, 1031–1038. [Google Scholar] [CrossRef]
- Roy, D.; Tomar, S.K.; Kumar, V. Rumen modulatory effect of thyme, clove and peppermint oils in vitro using buffalo rumen liquor. Vet. World 2015, 8, 203–207. [Google Scholar] [CrossRef] [Green Version]
- Chaves, A.V.; Baah, J.; Wang, Y.; Mcallister, T.A.; Benchaar, C. Effects of cinnamon leaf, oregano and sweet orange essential oils on fermentation and aerobic stability of barley silage. J. Sci. Food Agric. 2012, 92, 906–915. [Google Scholar] [CrossRef]
- Besharati, M.; Palangi, V.; Ghozalpour, V.; Nemati, Z.; Ayasan, T. Essential oil and apple pomace affect fermentation and aerobic stability of alfalfa silage. S. Afr. J. Anim. Sci. 2021, 51, 371–377. [Google Scholar] [CrossRef]
- Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gøtzsche, P.C.; Ioannidis, J.P.A.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: Explanation and elaboration. BMJ 2009, 339, b2700. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Termizkan, I.; Kamalak, A.; Canbolat, O. Effect of oregano oil on in vitro gas production, digestibility and metabolisable energy of some feedstuffs. J. Appl. Anim. Res. 2011, 39, 132–135. [Google Scholar] [CrossRef]
- Besharati, M.; Palangi, V.; Niazifar, M.; Nemati, Z. Optimization of dietary lemon seed essential oil to enhance alfafa silage chemical composition and in vitro degradability. Semin. Argrar. Londrina 2021, 42, 891–906. [Google Scholar]
- Besharati, M.; Palangi, V.; Niazifar, M.; Nemati, Z. Comparison study of flaxseed, cinnamon and lemon seed essential oils additives on quality and fermentation characteristics of lucerne silage. Acta Agric. Slov. 2020, 115, 423–430. [Google Scholar] [CrossRef]
- Salman, M.; Muruz, H.; Cetinkaya, N.; Selcul, Z.; Kaya, I. Effects of the addition of essential oils cumimaldehyde, eugenol, and thymol on the in vitro gas production and digestibility of alfalfa (Medicago sativa L.) silage. Turk. J. Vet. Anim. Sci. 2018, 42, 395–401. [Google Scholar] [CrossRef]
- Hodjatpanah-Montazery, A.; Mesgaran, M.D.; Vakili, A.; Tahmasebi, A.M. Effect of essential oil of various plants as microbial modifier to alter corn silage fermentation and in vitro methane production. Iran. J. Appl. Anim. Sci. 2016, 6, 269–276. [Google Scholar]
- Turan, A.; Soycan-Onenc, S. Effect of cumin essential oil usage on fermentation quality, aerobic stability and in vitro digetibility of alfalfa silage. Asian-Australas. J. Anim. Sci. 2018, 31, 1252–1258. [Google Scholar] [CrossRef] [PubMed]
- Akinci, Y.; Soycan-Onenc, S. The effect of cumin essential oil on the fermentation quality, aerobic stability, and in vitro digestibility of vetch-oat silages. Ege Univ. Ziraat Fak. Derg. 2021, 58, 217–228. [Google Scholar] [CrossRef]
- J’unior, R.C.; Capucho, E.; Garcia, T.M.; Del Valle, T.A.; Campana, M.; Zilio EM, C.; Azevedo, E.B.; Morais JP, G. Lemongrass essential oil in sugarcane silage: Fermentative profile, losses, chemical composition, and aerobic stability. Anim. Feed Sci. Technol. 2019, 260, 114371. [Google Scholar] [CrossRef]
- Duru, A.A. Effects of Lavender (Lavandula angustifolia) augmentation of alfalfa silages. South Afr. J. Anim. Sci. 2019, 49, 1008–1012. [Google Scholar] [CrossRef]
- Soycan-Onenc, S.; Koc, F.; Coskuntuna, L.; Ozduven, M.L.; Gumus, T. The Effect of Oregano and Cinnamon Essential Oils on Fermentation Quality and Aerobic Stability of Field Pea Silages. Asian Australas. J. Anim. Sci. 2015, 28, 1281–1287. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Fan, X.; Cheng, Q.; Chen, Y.; Long, J.; Lei, Y.; Li, P.; Chen, C. Effect of Amomum villosum essential oil as an additive on the chemical composition, fermentation quality, and bacterial community of paper mulberry silage. Front. Microbiol. 2022, 13, 951958. [Google Scholar] [CrossRef]
- Besharati, M.; Palangi, V.; Ayasan, T.; Abachi, S. Improving Ruminant Fermentation Characteristics with Addition of Apple Pulp and Essential Oil to Silage. Mindanao J. Sci. Technol. 2022, 20, 206–226. [Google Scholar]
- Vaičiulienė, G.; Bakutis, B.; Jovaišienė, J.; Falkauskas, R.; Gerulis, G.; Baliukonienė, V. Origanum vulgare and Thymus vulgaris Extract Usability to Improve Silage Hygienic Quality and Reduce Mycotoxin Concentrations. J. Microbiol. Biotechnol. 2020, 30, 1149–1155. [Google Scholar] [CrossRef] [PubMed]
- Hedges, L.V.; Olkin, I.B.T. (Eds.) Statistical Methods for Meta-Analysis; Academic Press: Cambridge, MA, USA, 1985. [Google Scholar]
- Palupi, E.; Jayanegara, A.; Ploeger, A.; Kahl, J. Comparison of nutritional quality between conventional and organic dairy products: A meta-analysis. J. Sci. Food Agric. 2012, 92, 2774–2781. [Google Scholar] [CrossRef]
- DerSimonian, R.; Laird, N. Meta-analysis in clinical trials. Control. Clin. Trials 1986, 7, 177–188. [Google Scholar] [CrossRef] [PubMed]
- Byron, C.W.; Lajeunesse, M.J.; Dietz, G.; Dahabreh, I.J.; Trikalinos, T.A.; Schmid, C.H.; Gurevitch, J. OpenMEE: Intuitive, open-source software for meta analysis in ecology and evolutionary biology. Methods Ecol. Evol. 2016, 8, 941–947. [Google Scholar]
- McDonald, P.; Henderson, A.R.; Heron, S.J.E. The Bio-Chemistry of Silage; Chalcombe Publications: Bucks, UK, 1991. [Google Scholar]
- Selwet, M. Effect of propionic and formic acid mixtures on the fermentation, fungi development and aerobic stability of maize silage. Pol. J. Agron. 2009, 1, 37–42. [Google Scholar]
- Raybaudi-Massilia, R.M.; Mosqueda-Melgar, J.; Martín-Belloso, O. Antimicrobial activity of essential oils on salmonella enteritidis, escherichia coli, and listeria innocua in fruit juices. J. Food Prot. 2006, 69, 1579–1586. [Google Scholar] [CrossRef]
- Muck, R.E. Silage microbiology and its control through additives. R. Bras. Zootec. 2010, 39, 183–191. [Google Scholar] [CrossRef] [Green Version]
- Jayanegara, A.; Sujarnoko, T.U.P.; Ridla, M.; Kondo, M.; Kreuzer, M. Silage quality as influenced by concentration and type of tannins present in the material ensiled: A meta-analysis. J. Anim. Physiol. Anim. Nut. 2019, 103, 456–465. [Google Scholar] [CrossRef]
- Tabacco, E.; Borreani, G.; Crovetto, G.M.; Galassi, G.; Colombo, D.; Cavallarin, L. Effect of chestnut tannin on fermentation quality, proteolysis, and protein rumen degradability of alfalfa silage. J. Dairy Sci. 2006, 89, 4736–4746. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Albrecht, K.A.; Muck, R.E. Proteolysis in ensiled forage legumes that vary in tannin concentration. Crop. Sci. 1991, 31, 464–469. [Google Scholar] [CrossRef]
- Niderkorn, V.; Jayanegara, A. Opportunities Offered by Plant Bioactive Compounds to Improve Silage Quality, Animal Health and Product Quality for Sustainable Ruminant Production: A Review. Agronomy 2021, 11, 86. [Google Scholar] [CrossRef]
- Knowles, J.; Roller, S. Efficacy of chitosan, carvacrol and a hydrogen peroxide-based biocide against foodborne mi-croorganisms in suspension and adhered to stainless steel. J. Food Prot. 2001, 64, 1542–1548. [Google Scholar] [CrossRef] [PubMed]
- Curtis, O.F.; Hetty, K.S.; Cassagnol, G.; Peleg, M. Com-parison of the inhibitory and lethal effects of synthetic ver-sions of plant metabolites (anethole, carvacrol, eugenol and thymol) on food spoilage yeast (Debaromyces hansenii). Food Biotechnol. 1996, 10, 55–73. [Google Scholar] [CrossRef]
- Kung, L., Jr.; Ranjit, N.K. The effect of Lactobacillus buchneri and other additives on the fermentation and aerobic stability of barley silage. J. Dairy Sci. 2001, 84, 1149–1155. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, G.; Li, Y.; Zhang, Y. Effects of high forage/concentrate diet on volatile fatty acid production and the microorganisms involved in vfa production in cow rumen. Animals 2020, 10, 223. [Google Scholar] [CrossRef] [Green Version]
- Şahan, Z.; Tel, A.Z.; Kutay, H. Effect of Cyclotrichium niveum essential oil on rumen microbial fermentation and in vitro digestibility of barley. J. Tekirdag Agric. 2021, 18, 138–145. [Google Scholar] [CrossRef]
- Susanto, I.; Jayanegara, A.; Wiryawan, K.G. Effects of Megasphaera elsdenii supplementation on fermentation and lactic acid concentration in the rumen: A meta-analysis of in vivo experiments. IOP Conf. Ser. Earth Environ. Sci. 2021, 902, 012022. [Google Scholar] [CrossRef]
- Pantaya, D.; Wiryawan, K.G.; Amirroenas, D.E.; Suryahadi. Mycotoxin detoxification through optimization the rumen function by yeast: A review. J. Vet. 2016, 17, 143–154. [Google Scholar]
- Joch, M.; Kudrna, V.; Hucko, B.; Marounek, M. Effect of geraniol and camphene on in vitro rumen fermentation and methane production. Sci. Agric. Bohem. 2017, 48, 63–69. [Google Scholar] [CrossRef] [Green Version]
- Susanto, I.; Wiryawan, K.G.; Suharti, S.; Retnani, Y.; Zahera, R.; Jayanegara, A. Evaluation of Megasphaera elsdenii supplementation on rumen fermentation, production performance, carcass traits and health of ruminants: A meta-analysis. Anim. Biosci. 2023, 36, 879–890. [Google Scholar] [CrossRef]
- Jayanegara, A.; Palupi, E. Condensed tannin effects on nitrogen digestion in ruminants: A meta-analysis from in vitro and in vivo studies. Media Peternak. 2010, 12, 176–181. [Google Scholar] [CrossRef] [Green Version]
- Azizabadi, J.H.; Durmic, Z.; Vadhanabhuti, J.; Vercoe, P.E. Effect of some Australian native shrubs essential oils on in vitro rumen microbial fermentation of a high-concentrate diet. J. Anim. Plant. Sci. 2019, 29, 8–15. [Google Scholar]
- Suharti, S.; Aliyah, D.N.; Suryahadi, S. Karakteristik fermentasi rumen in vitro dengan penambahan sabun kalsium minyak nabati pada buffer yang berbeda. J. Ilmu Nutr. Dan Teknol. Pakan 2018, 16, 56–64. [Google Scholar] [CrossRef]
- Alves, J.P.; Galeano, E.S.J.; Orrico Junior, M.A.P.; Fernandes, T.; Retore, M.; da Silva, M.S.J.; Orrico, A.C.A.; da Lopes, L.S. The influence of plant age and microbes-enzymatic additives on fermentation of total mixed ration silages of capiaçu grass (Pennisetum purpureum, Schum). Trop. Anim. Sci. J. 2022, 45, 56–63. [Google Scholar] [CrossRef]
- Patra, A.K.; Yu, Z. Effects of garlic oil, nitrate, saponin and their combinations supplemented to different substrates on in vitro fermentation, ruminal methanogenesis, and abundance and diversity of microbial populations. J. Appl. Microb. 2015, 119, 127–138. [Google Scholar] [CrossRef]
- Naseri, V.; Kafilzadeh, F.; Jahani-Azizabadi, H. Effects of Pistacia atlantica gum essential oil on ruminal methanogen, protozoa, selected bacteria species and fermentation characteristics in sheep. Small Rumin. Res. 2022, 209, 106650. [Google Scholar] [CrossRef]
- Brice, R.M.; Dele, P.A.; Ike, K.A.; Shaw, Y.A.; Olagunju, L.K.; Orimaye, O.E.; Subedi, K.; Anele, U.Y. Effects of Essential Oil Blends on In Vitro Apparent and Truly Degradable Dry Matter, Efficiency of Microbial Production, Total Short-Chain Fatty Acids and Greenhouse Gas Emissions of Two Dairy Cow Diets. Animals 2022, 12, 2185. [Google Scholar] [CrossRef] [PubMed]
- Dai, X.; Faciola, A.P. Evaluating strategies to reduce ruminal protozoa and their impacts on nutrient utilization and animal performance in ruminants—A metaanalysis. Front. Microbiol. 2019, 10, 2648. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patra, A.K.; Yu, Z. Effects of essential oils on methane production and fermentation by, and abundance and diversity of, rumen microbial populations. Appl. Environ. Microbiol. 2012, 78, 4271–4280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cetin, B.; Cakmakci, S.; Cakmakci, R. The investigation of antimicrobial activity of thyme and oregano essential oils. Turk. J. Agric. For. 2011, 5, 145–154. [Google Scholar]
- Cobellis, G.; Trabalza-Marinucci, M.; Marcotullioc, M.C.; Yu, Z. Evaluation of different essential oils in modulating methane and ammonia production, rumen fermentation, and rumen bacteria in vitro. Anim. Feed. Sci. Technol. 2016, 215, 25–36. [Google Scholar] [CrossRef] [Green Version]
- Sterne, J.A.; Sutton, A.J.; Ioannidis, J.P.; Terrin, N.; Jones, D.R.; Lau, J.; Carpenter, J.; Rücker, G.; Harbord, R.M.; Schmid, C.H.; et al. Recommendations for examining and interpreting funnel plot asymmetry in meta-analyses of randomised controlled trials. BMJ 2011, 22, 343, d4002. [Google Scholar] [CrossRef] [Green Version]
No | Reference | Year | Silage Ingredient | EOs Source | EOs Level (mg/kg) |
---|---|---|---|---|---|
1 | Kung Jr. et al. [8] | 2008 | Corn | Mix (thymol, eugenol, vanillin, and limonene) | 40–80 |
2 | Foskolos et al. [9] | 2015 | Ryegrass | Eugenol, Cinnamaldehyde, Thymol, Carvacrol | 50–2000 |
3 | Chaves et al. [12] | 2011 | Barley | Cinnamon, Oregano, Sweet orange | 37.5–120 |
4 | Besharati et al. [13] | 2021a | Alfalfa and apple pomace | Mix (ricinoleic acid, cardol, cardanol) | 500 |
5 | Termizkan et al. [15] | 2011 | Maize | Oregano | 500–2000 |
6 | Besharati et al. [16] | 2021b | Alfalfa | Lemon seed | 60–120 |
7 | Besharati et al. [17] | 2020 | Leucerne | Cinnamon, Flaxseed, Lemon seed, Mix (cinnamon, flaxseed, lemon seed) | 60–180 |
8 | Salman et al. [18] | 2018 | Alfalfa | Cumin, Eugenol, Thymol | 100–300 |
9 | Hodjatpanah-montazeri et al. [19] | 2016 | Corn | Cinnamon, Thymol, Mint, Oregano, Cumin | 120–240 |
10 | Turan and Onenc [20] | 2018 | Alfalfa | Cumin | 300–500 |
11 | Akinci and Onenc [21] | 2021 | Vetch-oat | Cumin | 200–500 |
12 | Junior et al. [22] | 2019 | Sugarcane | Lemongrass | 1000–3000 |
13 | Duru [23] | 2020 | Alfalfa | Lavender flower | 5–20 |
14 | Soycan-Onec et al. [24] | 2015 | Field pea | Origanum, Cinnamon, Mix (Origanum and Cinnamon) | 400 |
15 | Li et al. [25] | 2022 | Mulberry | Amomum villosum | 5 |
16 | Besharati et al. [26] | 2022 | Alfalfa and apple pulp | Mix (ricinoleic acid, cardol, cardanol) | 500 |
17 | Vaičiulienė et al. [27] | 2022 | Perennial ryegrass, Red clover, and Blue alfalfa | Oregano and Thymol | 20 |
Variable | Unit | NC | Mean | SD | Min | Max | ||||
---|---|---|---|---|---|---|---|---|---|---|
Control | Treatment | Control | Treatment | Control | Treatment | Control | Treatment | |||
Nutrient quality | ||||||||||
Dry matter | % | 52 | 29.0 | 29.7 | 1.09 | 1.08 | 22.2 | 22.6 | 34.9 | 35.1 |
pH | 52 | 4.53 | 4.51 | 0.193 | 0.188 | 3.75 | 3.61 | 5.81 | 6.57 | |
Crude protein | % DM | 40 | 12.6 | 13.7 | 0.564 | 0.579 | 7.47 | 7.17 | 23.1 | 26.1 |
Ether extract | % DM | 28 | 2.74 | 3.08 | 0.416 | 0.424 | 1.72 | 1.97 | 4.49 | 7.46 |
Crude fiber | % DM | 8 | 30.4 | 29.2 | 0.137 | 0.088 | 21.0 | 18.7 | 41.5 | 39.9 |
Crude ash | % DM | 16 | 10.5 | 9.97 | 0.484 | 0.311 | 3.88 | 5.37 | 15.6 | 13.5 |
NDF | % DM | 40 | 50.6 | 49.3 | 1.05 | 1.03 | 33.2 | 28.2 | 64.3 | 64.9 |
ADF | % DM | 30 | 31.3 | 30.3 | 1.06 | 1.05 | 21.0 | 15.3 | 53.3 | 47.5 |
ADL | % DM | 11 | 7.84 | 7.55 | 0.311 | 0.319 | 6.66 | 6.29 | 9.51 | 12.7 |
Fermentative product | ||||||||||
WSC | g/kg DM | 23 | 6.68 | 6.25 | 0.328 | 0.353 | 3.97 | 3.12 | 14.1 | 15.3 |
Lactic acid | g/kg DM | 33 | 50.7 | 51.6 | 6.86 | 6.81 | 23.3 | 3.10 | 69.8 | 83.1 |
Ethanol | g/kg DM | 12 | 28.8 | 9.12 | 3.30 | 3.30 | 4.70 | 4.80 | 101 | 33.3 |
Acetic acid | g/kg DM | 12 | 16.2 | 14.2 | 1.77 | 1.77 | 14.4 | 7.26 | 16.8 | 18.3 |
Propionic acid | g/kg DM | 12 | 0.915 | 0.927 | 0.066 | 0.066 | 0.058 | 0.097 | 1.20 | 1.20 |
Butyric acid | g/kg DM | 12 | 1.73 | 1.77 | 0.106 | 0.106 | 0.027 | 0.001 | 2.30 | 2.50 |
Succinic acid | g/kg DM | 9 | 5.90 | 4.22 | 0.50 | 0.50 | 5.90 | 2.90 | 5.90 | 5.40 |
NH3-N | g/kg N | 50 | 79.6 | 74.5 | 3.71 | 3.69 | 28.0 | 14.5 | 146 | 206 |
Weight loss | % | 8 | 1.36 | 1.30 | 0.093 | 0.046 | 1.14 | 0.940 | 1.52 | 1.82 |
Total N | g/kg DM | 12 | 42.1 | 41.0 | 2.35 | 2.35 | 38.6 | 37.0 | 48.9 | 49.8 |
NPN | g/kg DM | 12 | 22.7 | 22.69 | 2.95 | 2.95 | 21.8 | 18.4 | 23.4 | 26.2 |
Microbial population | ||||||||||
LAB | log10 CFU/g | 29 | 6.28 | 6.70 | 0.507 | 0.513 | 0.00 | 2.17 | 8.58 | 8.53 |
Clostridia | log10 CFU/g | 12 | 0.922 | 0.939 | 0.340 | 0.340 | 0.850 | 0.70 | 1.05 | 1.45 |
Yeast | log10 CFU/g | 29 | 2.24 | 1.66 | 0.525 | 0.510 | 0.330 | 0.00 | 4.86 | 4.60 |
Mold | log10 CFU/g | 29 | 1.49 | 1.01 | 0.555 | 0.538 | 0.300 | 0.00 | 4.87 | 5.05 |
In vitro rumen fermentability | ||||||||||
pH | 23 | 6.29 | 6.39 | 0.278 | 0.244 | 5.90 | 6.06 | 6.78 | 6.83 | |
Gas 24 h | mL/g DM | 32 | 172 | 167 | 27.4 | 34.2 | 103 | 88.7 | 194 | 220 |
CH4 | mL/g DM | 19 | 16.2 | 16.3 | 5.29 | 4.36 | 11.1 | 10.8 | 21.7 | 23.2 |
NH3 | mmol/L | 15 | 17.1 | 16.8 | 1.85 | 2.63 | 14.2 | 9.47 | 18.6 | 19.9 |
Total VFA | mmol/L | 20 | 101 | 87.7 | 21.9 | 36.7 | 61.0 | 30.0 | 122 | 129 |
C2 | mmol/L | 14 | 59.5 | 62.0 | 5.64 | 2.56 | 49.5 | 58.4 | 67.3 | 68.1 |
C3 | mmol/L | 14 | 22.8 | 21.4 | 1.24 | 2.87 | 22.0 | 14.6 | 25.10 | 27.1 |
C4 | mmol/L | 14 | 12.7 | 11.8 | 4.62 | 3.14 | 5.52 | 4.95 | 20.6 | 16.3 |
IsoC4 | mmol/L | 5 | 1.17 | 1.05 | 0.216 | 0.357 | 1.00 | 0.70 | 1.52 | 1.61 |
C5 | mmol/L | 14 | 1.92 | 1.73 | 0.267 | 0.432 | 1.27 | 1.00 | 2.10 | 2.20 |
IsoC5 | mmol/L | 5 | 1.52 | 1.18 | 0.103 | 0.164 | 1.39 | 0.990 | 1.60 | 1.40 |
C6 | mmol/L | 9 | 0.420 | 0.450 | 0.00 | 0.037 | 0.420 | 0.390 | 0.420 | 0.510 |
BCVFA | mmol/L | 9 | 2.90 | 2.93 | 0.00 | 0.169 | 2.90 | 2.70 | 2.90 | 3.30 |
C2:C3 | 9 | 2.80 | 2.74 | 0.00 | 0.069 | 2.80 | 2.60 | 2.80 | 2.80 | |
DMD | % | 22 | 58.3 | 55.2 | 16.9 | 17.6 | 24.0 | 23.0 | 74.4 | 79.0 |
OMD | % | 16 | 55.0 | 49.5 | 16.2 | 15.4 | 27.2 | 26.1 | 68.6 | 62.6 |
Variable | Unit | NC | Estimate | Lower Bound | Upper Bound | Std.Eror | p-Value | τ2 | Q | Het.p-Value | I2 |
---|---|---|---|---|---|---|---|---|---|---|---|
Dry matter | % | 52 | 0.638 | 0.102 | 1.17 | 0.273 | 0.020 | 2.04 | 151 | <0.001 | 74.2 |
pH | 52 | 0.01 | −0.472 | 0.49 | 0.246 | 0.967 | 2.15 | 208 | <0.001 | 75.5 | |
Crude protein | %DM | 40 | 2.21 | 1.54 | 2.88 | 0.343 | <0.001 | 3.00 | 169 | <0.001 | 77.0 |
Ether extract | %DM | 28 | 0.695 | 0.075 | 1.32 | 0.316 | 0.028 | 1.86 | 96.9 | <0.001 | 72.1 |
Crude fiber | %DM | 8 | −3.63 | −6.86 | −0.400 | 1.65 | 0.028 | 13.8 | 55.3 | <0.001 | 87.3 |
Crude ash | %DM | 16 | −0.452 | −1.36 | 0.455 | 0.463 | 0.329 | 2.16 | 50.2 | <0.001 | 70.1 |
NDF | %DM | 40 | 0.087 | −0.916 | 1.09 | 0.512 | 0.864 | 8.06 | 321 | <0.001 | 87.9 |
ADF | %DM | 30 | −0.196 | −1.05 | 0.656 | 0.435 | 0.652 | 3.97 | 165 | <0.001 | 82.5 |
ADL | %DM | 11 | −1.02 | −2.29 | 0.254 | 0.650 | 0.117 | 2.97 | 48.4 | <0.001 | 79.3 |
Variable | Unit | NC | Estimate | Lower Bound | Upper Bound | Std.Eror | p-Value | τ2 | Q | Het.p-Value | I2 |
---|---|---|---|---|---|---|---|---|---|---|---|
WSC | g/kg DM | 23 | 0.105 | −1.02 | 1.23 | 0.574 | 0.855 | 5.22 | 130 | <0.001 | 83.1 |
Lactic acid | g/kg DM | 33 | 0.360 | −0.334 | 1.05 | 0.354 | 0.309 | 2.83 | 160 | <0.001 | 80.1 |
Ethanol | g/kg DM | 12 | −0.823 | −2.29 | 0.639 | 0.746 | 0.270 | 5.80 | 101 | <0.001 | 89.2 |
Acetic acid | g/kg DM | 12 | −0.983 | −1.83 | −0.135 | 0.432 | 0.023 | 1.69 | 45.0 | <0.001 | 75.6 |
Propionic acid | g/kg DM | 12 | 0.636 | −0.022 | 1.29 | 0.336 | 0.058 | 0.868 | 30.7 | 0.001 | 64.2 |
Butyric acid | g/kg DM | 12 | −0.885 | −2.06 | 0.289 | 0.599 | 0.139 | 3.59 | 76.8 | <0.001 | 85.7 |
Succinic acid | g/kg DM | 9 | −2.54 | −3.39 | −1.69 | 0.435 | <0.001 | 0.694 | 13.8 | 0.086 | 42.1 |
NH3-N | g/kg N | 50 | −1.86 | −3.80 | 0.080 | 0.990 | 0.060 | 21.1 | 568 | <0.001 | 91.4 |
Weight Loss | % | 8 | −1.09 | −2.88 | 0.692 | 0.911 | 0.230 | 5.11 | 36.9 | <0.001 | 81.0 |
LAB | log10 CFU/g | 29 | −0.308 | −1.03 | 0.421 | 0.372 | 0.408 | 2.38 | 115 | <0.001 | 75.7 |
Clostridia | log10 CFU/g | 12 | 0.00 | −0.407 | 0.407 | 0.208 | 0.999 | 0.00 | 6.39 | 0.846 | 0.00 |
Yeast | log10 CFU/g | 29 | −3.01 | −4.67 | −1.35 | 0.847 | <0.001 | 11.0 | 221 | <0.001 | 87.4 |
Mold | log10 CFU/g | 29 | −2.09 | −3.42 | −0.775 | 0.674 | 0.002 | 7.18 | 214 | <0.001 | 86.9 |
Variable | Unit | NC | Estimate | Lower Bound | Upper Bound | Std.Eror | p-Value | τ2 | Q | Het.p-Value | I2 |
---|---|---|---|---|---|---|---|---|---|---|---|
pH | 23 | 0.926 | 0.180 | 1.67 | 0.381 | 0.015 | 2.19 | 83.9 | <0.001 | 73.8 | |
Gas 24 h | mL/g DM | 32 | −0.992 | −1.95 | −0.037 | 0.487 | 0.042 | 6.03 | 277 | <0.001 | 88.8 |
CH4 | mL/g DM | 19 | 1.02 | −1.01 | 3.05 | 1.04 | 0.329 | 9.70 | 166 | <0.001 | 89.1 |
NH3 | mmol/L | 15 | 0.596 | −0.992 | 2.18 | 0.810 | 0.462 | 5.99 | 107 | <0.001 | 87.0 |
Total VFA | mmol/L | 20 | −1.28 | −2.36 | −0.193 | 0.553 | 0.021 | 4.46 | 117 | <0.001 | 83.8 |
C2 | mmol/L | 14 | 0.091 | −0.634 | 0.815 | 0.370 | 0.806 | 1.17 | 36.5 | <0.001 | 64.4 |
C3 | mmol/L | 14 | −0.333 | −1.01 | 0.348 | 0.347 | 0.337 | 0.951 | 32.5 | 0.002 | 60.0 |
C4 | mmol/L | 14 | −0.161 | −0.933 | 0.610 | 0.394 | 0.682 | 1.44 | 41.3 | <0.001 | 68.5 |
IsoC4 | mmol/L | 5 | −1.89 | −3.75 | −0.0170 | 0.953 | 0.048 | 3.34 | 17.5 | 0.002 | 77.1 |
C5 | mmol/L | 14 | −0.423 | −1.29 | 0.447 | 0.444 | 0.341 | 1.79 | 46.8 | <0.001 | 72.2 |
IsoC5 | mmol/L | 5 | −1.41 | −2.26 | −0.557 | 0.435 | 0.001 | 0.148 | 4.73 | 0.316 | 15.4 |
C6 | mmol/L | 9 | 0.973 | −0.037 | 1.98 | 0.516 | 0.059 | 1.68 | 28.1 | <0.001 | 71.5 |
BCVFA | mmol/L | 9 | 0.121 | −0.460 | 0.702 | 0.296 | 0.683 | 0.244 | 11.6 | 0.171 | 30.9 |
A:P | 9 | −0.430 | −0.906 | 0.046 | 0.243 | 0.077 | 0.00 | 5.38 | 0.716 | 0.00 | |
DMD | % | 22 | 2.85 | −1.20 | 6.89 | 2.07 | 0.168 | 48.7 | 292.9 | <0.001 | 92.8 |
OMD | % | 16 | −3.27 | −4.35 | −2.20 | 0.547 | <0.001 | 3.37 | 86.9 | <0.001 | 82.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Susanto, I.; Rahmadani, M.; Wiryawan, K.G.; Laconi, E.B.; Jayanegara, A. Evaluation of Essential Oils as Additives during Fermentation of Feed Products: A Meta-Analysis. Fermentation 2023, 9, 583. https://doi.org/10.3390/fermentation9070583
Susanto I, Rahmadani M, Wiryawan KG, Laconi EB, Jayanegara A. Evaluation of Essential Oils as Additives during Fermentation of Feed Products: A Meta-Analysis. Fermentation. 2023; 9(7):583. https://doi.org/10.3390/fermentation9070583
Chicago/Turabian StyleSusanto, Irwan, Mardiah Rahmadani, Komang G. Wiryawan, Erika B. Laconi, and Anuraga Jayanegara. 2023. "Evaluation of Essential Oils as Additives during Fermentation of Feed Products: A Meta-Analysis" Fermentation 9, no. 7: 583. https://doi.org/10.3390/fermentation9070583
APA StyleSusanto, I., Rahmadani, M., Wiryawan, K. G., Laconi, E. B., & Jayanegara, A. (2023). Evaluation of Essential Oils as Additives during Fermentation of Feed Products: A Meta-Analysis. Fermentation, 9(7), 583. https://doi.org/10.3390/fermentation9070583