Straw Biochar-Facilitated Methanogenesis from Acetic Acid and Ethanol: Correlation with Electron Exchange Capacity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Straw Biochar
2.2. Experimental Design
2.3. Analytical Methods
3. Results
3.1. Methane Generation with Different Biochars
3.1.1. Methane Production from Acetate and Ethanol Mixture
3.1.2. Methane Production from Ethanol
3.1.3. Kinetics Studies for Methane Yield and Lag Time
3.2. Substrate Utilization Rate with Different Biochars
3.2.1. Degradation of Acetic Acid and Ethanol
3.2.2. Change in Hydrogen Content
3.3. The Correlation Analysis of Biochar EDC and Methane Production Indexes
3.4. Microbial Community Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sovacool, B.K.; Griffiths, S.; Kim, J.; Bazilian, M. Climate change and industrial F-gases: A critical and systematic review of developments, sociotechnical systems and policy options for reducing synthetic greenhouse gas emissions. Renew. Sustain. Energy Rev. 2021, 141, 110759. [Google Scholar] [CrossRef]
- Lu, Y.; Shao, M.; Zheng, C.; Ji, H.; Gao, X.; Wang, Q. Air pollutant emissions from fossil fuel consumption in China: Current status and future predictions. Atmos. Environ. 2020, 231, 117536. [Google Scholar] [CrossRef]
- Ren, J.; Zhu, L.; Zhang, X.; Luo, Y.; Zhong, X.; Li, B.; Zhang, K. Variation characteristics of acid rain in Zhuzhou, central China over the period 2011–2020. J. Environ. Sci. 2024, 138, 496–505. [Google Scholar] [CrossRef]
- Sun, N.; Gao, C.; Ding, Y.; Bi, Y.; Seglah, P.A.; Wang, Y. Five-dimensional straw utilization model and its impact on carbon emission reduction in China. Sustainability 2022, 14, 16722. [Google Scholar] [CrossRef]
- Cong, H.; Yao, Z.; Zhao, L.; Meng, H.; Wang, J.; Huo, L.; Yuan, Y.; Jia, J.; Xie, T.; Wu, Y. Distribution of crop straw resources and its industrial system and utilization path in China. Nongye Gongcheng Xuebao/Trans. Chin. Soc. Agric. Eng. 2019, 35, 132–140. [Google Scholar]
- Nunes, L.; Causer, T.; Ciolkosz, D. Biomass for energy: A review on supply chain management models. Renew. Sustain. Energy Rev. 2019, 120, 109658. [Google Scholar] [CrossRef]
- Li, J.; Zhang, B.; Liu, Q.; Han, Y. Research progress in enhancing direct interspecific electron transfer of microorganisms for methane production by conductive materials. Acta Microbiol. Sin. 2021, 61, 1507–1524. [Google Scholar]
- König, R.; Cuomo, M.; Pianta, E.; Buetti, A.; Mauri, F.; Tanadini, M.; Principi, P. Addition of Conductive Materials to Support Syntrophic Microorganisms in Anaerobic Digestion. Fermentation 2022, 8, 354. [Google Scholar] [CrossRef]
- Luo, L.; Xu, S.Y.; Liang, J.; Zhao, J.; Wong, J. Mechanistic study of the effect of leachate recirculation ratios on the carboxylic acid productions during a two-phase food waste anaerobic digestion. Chem. Eng. J. 2023, 453, 139800. [Google Scholar] [CrossRef]
- Li, S.; Shao, L.; Zhang, H.; He, P.; Lü, F. Quantifying the contributions of surface area and redox-active moieties to electron exchange capacities of biochar. J. Hazard. Mater. 2020, 394, 122541. [Google Scholar] [CrossRef]
- Jiang, Q.; Wu, P.; Zhang, X.; Zhang, Y.; Cui, M.; Liu, H.; Liu, H. Deciphering the effects of engineered bio-char on methane production and the mechanisms during anaerobic digestion: Surface functional groups and electron ex-change capacity. Energy Convers. Manag. 2022, 258, 115417. [Google Scholar] [CrossRef]
- Wang, G.; Gao, X.; Li, Q.; Zhao, H.; Liu, Y.; Wang, X.C.; Chen, R. Redox-based electron exchange capacity of biowaste-derived biochar accelerates syntrophic phenol oxidation for methanogenesis via direct interspecies electron transfer. J. Hazard. Mater. 2019, 390, 121726. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Xia, J.; Pu, J.; Cai, C.; Tyson, G.W.; Yuan, Z.; Hu, S. Biochar-Mediated Anaerobic Oxidation of Methane. Environ. Sci. Technol. 2019, 53, 6660–6668. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Wang, T.; Wang, J.; Zhang, Y.; Pan, W.-P. A novel modified method for the efficient removal of Pb and Cd from wastewater by biochar: Enhanced the ion exchange and precipitation capacity. Sci. Total. Environ. 2020, 754, 142150. [Google Scholar] [CrossRef]
- Chen, S.; Rotaru, A.E.; Shrestha, P.M.; Malvankar, N.S.; Liu, F.; Fan, W.; Nevin, K.P.; Lovley, D.R. Promoting interspecies electron transfer with biochar. Sci. Rep. 2014, 4, 5019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamada, C.; Kato, S.; Ueno, Y.; Ishii, M.; Igarashi, Y. Conductive iron oxides accelerate thermophilic methanogenesis from acetate and propionate. J. Biosci. Bioeng. 2015, 119, 678–682. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Tian, S.; Liu, J.; Guo, P.-Y.; Shen, J. Influence of animal/plant activated biochar properties on methane production from corn stalk by anaerobic fermentation. Fermentation 2022, 8, 397. [Google Scholar] [CrossRef]
- Greggio, N.; Carlini, C.; Vaccari, F.; Baronti, S.; Contin, A.; Marazza, D. Long Term Experiment Platform (LTEP) to establish the effectiveness of biochar applications: A case study in vineyards at Tebano, Ravenna, Italy. In Proceedings of the EGU General Assembly 2020, Online, 4–8 May 2020. [Google Scholar]
- Saif, I.; Thakur, N.; Zhang, P.; Zhang, L.; Xing, X.; Yue, J.; Song, Z.; Nan, L.; Yujun, S.; Usman, M.; et al. Biochar assisted anaerobic digestion for biomethane production: Microbial symbiosis and electron transfer. J. Environ. Chem. Eng. 2022, 10, 107960. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, J. Effect of ageing on biochar properties and pollutant management. Chemosphere 2022, 292, 133427. [Google Scholar] [CrossRef]
- Huang, X.; Lyu, P.; Li, L.; Xie, J.; Zhu, C. Effect of three aging processes on physicochemical and As(V) adsorption properties of Ce/Mn-modified biochar. Environ. Res. 2022, 214 Pt 1, 113839. [Google Scholar] [CrossRef]
- Xu, S.Y.; Han, R.Q.; Zhang, Y.C.; He, C.Q.; Liu, H.B. Differentiated stimulating effects of activated carbon on methanogenic degradation of acetate, propionate and butyrate. Waste Manag. 2018, 76, 394–403. [Google Scholar] [CrossRef] [PubMed]
- Klupfel, L.; Keiluweit, M.; Kleber, M.; Sander, M. Redox properties of plant biomass-derived black carbon (biochar). Environ. Sci. Technol. 2014, 48, 5601–5611. [Google Scholar] [CrossRef]
- Xu, S.; Wang, C.; Duan, Y.; Wong, J.W.-C. Impact of pyrochar and hydrochar derived from digestate on the co-digestion of sewage sludge and swine manure. Bioresour. Technol. 2020, 314, 123730. [Google Scholar] [CrossRef] [PubMed]
- Lovley, D.R. Live wires: Direct extracellular electron exchange for bioenergy and the bioremediation of energy-related contamination. Energy Environ. Sci. 2011, 4, 4896–4906. [Google Scholar] [CrossRef] [Green Version]
- Lovley, D.R.; Ueki, T.; Zhang, T.; Malvankar, N.S.; Shrestha, P.M.; Flanagan, K.A.; Aklujkar, M.; Butler, J.E.; Giloteaux, L.; Rotaru, A.-E.; et al. Geobacter: The Microbe Electric’s Physiology, Ecology, and Practical Applications. In Advances in Microbial Physiology; Elsevier: Amsterdam, The Netherlands, 2011; Volume 59, pp. 1–100. [Google Scholar] [CrossRef]
- Cheng, Q.; Call, D.F. Hardwiring microbes via direct interspecies electron transfer: Mechanisms and applications. Environ. Sci. Process. Impacts 2016, 18, 968–980. [Google Scholar] [CrossRef] [PubMed]
- Freguia, S.; Teh, E.H.; Boon, N.; Leung, K.M.; Keller, J.; Rabaey, K. Microbial fuel cells operating on mixed fatty acids. Bioresour. Technol. 2010, 101, 1233–1238. [Google Scholar] [CrossRef] [PubMed]
- Rotaru, A.-E.; Shrestha, P.M.; Liu, F.; Markovaite, B.; Chen, S.; Nevin, K.P.; Lovley, D.R. Direct Interspecies Electron Transfer between Geobacter metallireducens and Methanosarcina barkeri. Appl. Environ. Microbiol. 2014, 80, 4599–4605. [Google Scholar] [CrossRef] [Green Version]
- Reguera, G.; McCarthy, K.D.; Mehta, T.; Nicoll, J.S.; Tuominen, M.T.; Lovley, D.R. Extracellular electron transfer via microbial nanowires. Nature 2005, 435, 1098–1101. [Google Scholar] [CrossRef]
Biochar Types | Sampling Method | Name |
---|---|---|
Pyrochar (New) | Attached biofilm | Py-N |
Modified (New) | Attached biofilm | Mo-N |
Hydrochar (New) | Attached biofilm | Hy-N |
Pyrochar (New) | Suspended sludge | Py-NS |
Modified (New) | Suspended sludge | Mo-NS |
Hydrochar (New) | Suspended sludge | Hy-NS |
Pyrochar (Bio-aged) | Attached biofilm | Py-B |
Modified (Bio-aged) | Attached biofilm | Mo-B |
Hydrochar (Bio-aged) | Attached biofilm | Hy-B |
Pyrochar (Bio-aged) | Suspended sludge | Py-BS |
Modified (Bio-aged) | Suspended sludge | Mo-BS |
Hydrochar (Bio-aged) | Suspended sludge | Hy-BS |
The Experimental Group | B0 (mL/g vs.) | Rm (mL/g vs. d) | λ (d) | R2 | |
---|---|---|---|---|---|
AE0.6 | Blank | 377.03 | 71.31 | 0.48 | 0.9203 |
Py-N | 424.84 | 65.66 | 0.44 | 0.9811 | |
Py-B | 452.66 | 65.13 | 0.42 | 0.9416 | |
Mo-N | 529.27 | 54.07 | 0.38 | 0.9760 | |
Mo-B | 527.67 | 56.16 | 0.34 | 0.9797 | |
Hy-N | 561.38 | 60.85 | 0.29 | 0.9641 | |
Hy-B | 568.30 | 84.20 | 0.26 | 0.9696 | |
AE1.2 | Blank | 416.94 | 43.45 | 0.53 | 0.9308 |
Py-N | 409.92 | 62.74 | 0.45 | 0.9837 | |
Py-B | 442.90 | 64.07 | 0.41 | 0.9811 | |
Mo-N | 452.40 | 69.46 | 0.40 | 0.9876 | |
Mo-B | 467.96 | 75.28 | 0.39 | 0.9876 | |
Hy-N | 487.45 | 69.58 | 0.38 | 0.9887 | |
Hy-B | 520.04 | 111.45 | 0.32 | 0.9744 | |
E1.2 | Blank | 577.22 | 168.30 | 0.77 | 0.9987 |
Py-N | 660.53 | 188.78 | 0.83 | 0.9921 | |
Py-B | 693.71 | 188.04 | 0.76 | 0.9943 | |
Mo-N | 710.38 | 191.94 | 0.66 | 0.9936 | |
Mo-B | 716.06 | 199.72 | 0.54 | 0.9907 | |
Hy-N | 729.08 | 204.26 | 0.44 | 0.9886 | |
Hy-B | 745.37 | 216.32 | 0.32 | 0.9868 | |
E2.4 | Blank | 522.69 | 150.96 | 0.76 | 0.9992 |
Py-N | 627.55 | 170.18 | 0.90 | 0.9923 | |
Py-B | 629.41 | 169.48 | 0.74 | 0.9937 | |
Mo-N | 643.59 | 177.49 | 0.65 | 0.9878 | |
Mo-B | 649.14 | 177.75 | 0.53 | 0.9897 | |
Hy-N | 679.40 | 182.44 | 0.47 | 0.9884 | |
Hy-B | 676.58 | 194.32 | 0.31 | 0.9882 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruan, Y.; Jiang, Y.; Li, M.; Xu, S.; Zhang, J.; Zhu, X.; Liu, H. Straw Biochar-Facilitated Methanogenesis from Acetic Acid and Ethanol: Correlation with Electron Exchange Capacity. Fermentation 2023, 9, 584. https://doi.org/10.3390/fermentation9070584
Ruan Y, Jiang Y, Li M, Xu S, Zhang J, Zhu X, Liu H. Straw Biochar-Facilitated Methanogenesis from Acetic Acid and Ethanol: Correlation with Electron Exchange Capacity. Fermentation. 2023; 9(7):584. https://doi.org/10.3390/fermentation9070584
Chicago/Turabian StyleRuan, Yannan, Yuze Jiang, Moting Li, Suyun Xu, Jining Zhang, Xuefeng Zhu, and Hongbo Liu. 2023. "Straw Biochar-Facilitated Methanogenesis from Acetic Acid and Ethanol: Correlation with Electron Exchange Capacity" Fermentation 9, no. 7: 584. https://doi.org/10.3390/fermentation9070584
APA StyleRuan, Y., Jiang, Y., Li, M., Xu, S., Zhang, J., Zhu, X., & Liu, H. (2023). Straw Biochar-Facilitated Methanogenesis from Acetic Acid and Ethanol: Correlation with Electron Exchange Capacity. Fermentation, 9(7), 584. https://doi.org/10.3390/fermentation9070584