Electrode Material Optimization of Nitrous Oxide Recovery from Incineration Leachate in a ΔnosZ Pseudomonas aeruginosa/MEC System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Configuration of the ΔnosZ P. Aeruginosa/MEC System
2.2. Experimental Set-Up
2.3. RNA Extraction and Quantitative Reverse Transcription PCR (qRT-PCR)
2.4. DNA Extraction and Sequence Analysis
2.5. Analytical Methods
3. Results
3.1. Performance of ΔnosZ P. aeruginosa/MEC Reactors with Carbon Felt Electrodes and Graphite Electrodes
3.2. Effect of Electrode Materials on Denitrification, Electroactivity, and Biomass of ΔnosZ P. aeruginosa
3.3. Bacterial Community Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, X.Y.; Shu, Z.F.; Sun, D.Z.; Dang, Y.; Holmes, D.E. Heterotrophic Nitrifiers Dominate Reactors Treating Incineration Leachate with High Free Ammonia Concentrations. ACS Sustain. Chem. Eng. 2018, 6, 15040–15049. [Google Scholar] [CrossRef]
- Chen, W.M.; He, C.; Zhuo, X.C.; Wang, F.; Li, Q.B. Comprehensive evaluation of dissolved organic matter molecular transformation in municipal solid waste incineration leachate. Chem. Eng. J. 2020, 400, 126003. [Google Scholar] [CrossRef]
- Liu, C.Q.; Sun, D.Z.; Zhao, Z.Q.; Dang, Y.; Holmes, D.E. Methanothrix enhances biogas upgrading in microbial electrolysis cell via direct electron transfer. Bioresour. Technol. 2019, 291, 121877. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.A.Q.; Xiao, J.W.; Li, H.Y.; Chen, Q.; Sun, D.Z.; Cheng, X.; Li, P.S.; Dang, Y.; Smith, J.A.; Holmes, D.E. High efficiency in-situ biogas upgrading in a bioelectrochemical system with low energy input. Water Res. 2021, 197, 117055. [Google Scholar] [CrossRef] [PubMed]
- Scherson, Y.D.; Wells, G.F.; Woo, S.G.; Lee, J.; Park, J.; Cantwell, B.J.; Criddle, C.S. Nitrogen removal with energy recovery through N2O decomposition. Energy Environ. Sci. 2013, 6, 241–248. [Google Scholar] [CrossRef]
- Castellano-Hinojosa, A.; Maza-Marquez, P.; Melero-Rubio, Y.; Gonzalez-Lopez, J.; Rodelas, B. Linking nitrous oxide emissions to population dynamics of nitrifying and denitrifying prokaryotes in four full-scale wastewater treatment plants. Chemosphere 2018, 200, 57–66. [Google Scholar] [CrossRef]
- Daelman, M.R.J.; De Baets, B.; van Loosdrecht, M.C.M.; Volcke, E.I.P. Influence of sampling strategies on the estimated nitrous oxide emission from wastewater treatment plants. Water Res. 2013, 47, 3120–3130. [Google Scholar] [CrossRef]
- Duan, H.R.; van den Akker, B.; Thwaites, B.J.; Peng, L.; Herman, C.; Pan, Y.T.; Ni, B.J.; Watt, S.; Yuan, Z.G.; Ye, L. Mitigating nitrous oxide emissions at a full-scale wastewater treatment plant. Water Res. 2020, 185, 116196. [Google Scholar] [CrossRef]
- Hwang, K.L.; Bang, C.H.; Zoh, K.D. Characteristics of methane and nitrous oxide emissions from the wastewater treatment plant. Bioresour. Technol. 2016, 214, 881–884. [Google Scholar] [CrossRef]
- Kosonen, H.; Heinonen, M.; Mikola, A.; Haimi, H.; Mulas, M.; Corona, F.; Vahala, R. Nitrous Oxide Production at a Fully Covered Wastewater Treatment Plant: Results of a Long-Term Online Monitoring Campaign. Environ. Sci. Technol. 2016, 50, 5547–5554. [Google Scholar] [CrossRef]
- Wang, Z.Y.; Woo, S.G.; Yao, Y.; Cheng, H.H.; Wu, Y.J.; Criddle, C.S. Nitrogen removal as nitrous oxide for energy recovery: Increased process stability and high nitrous yields at short hydraulic residence times. Water Res. 2020, 173, 115575. [Google Scholar] [CrossRef]
- Chen, M.; Zhou, X.F.; Yu, Y.Q.; Liu, X.; Zeng, R.J.X.; Zhou, S.G.; He, Z. Light-driven nitrous oxide production via autotrophic denitrification by self-photosensitized Thiobacillus denitrificans. Environ. Int. 2019, 127, 353–360. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Wang, L.K.; Wei, W.; Song, L.; Ni, B.J. Sulfur-driven autotrophic denitrification of nitric oxide for efficient nitrous oxide recovery. Biotechnol. Bioeng. 2022, 119, 257–267. [Google Scholar] [CrossRef]
- Lin, Z.Y.; Sun, D.Z.; Dang, Y.; Holmes, D.E. Significant enhancement of nitrous oxide energy yields from wastewater achieved by bioaugmentation with a recombinant strain of Pseudomonas aeruginosa. Sci. Rep. 2018, 8, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nie, H.B.; Liu, X.Y.; Dang, Y.; Ji, Y.N.; Sun, D.Z.; Smith, J.A.; Holmes, D.E. Efficient nitrous oxide recovery from incineration leachate by a nosZ-deficient strain of Pseudomonas aeruginosa. Bioresour. Technol. 2020, 297, 122371. [Google Scholar] [CrossRef] [PubMed]
- Nie, H.B.; Dang, Y.; Yan, H.K.; Sun, D.Z.; Holmes, D.E. Enhanced recovery of nitrous oxide from incineration leachate in a microbial electrolysis cell inoculated with a nosZ-deficient strain of Pseudomonas aeruginosa. Bioresour. Technol. 2021, 333, 125082. [Google Scholar] [CrossRef]
- Guan, F.; Yuan, X.C.; Duan, J.Z.; Zhai, X.F.; Hou, B.R. Phenazine enables the anaerobic respiration of Pseudomonas aeruginosa via electron transfer with a polarised graphite electrode. Int. Biodeterior. Biodegrad. 2019, 137, 8–13. [Google Scholar] [CrossRef]
- Slate, A.J.; Hickey, N.A.; Butler, J.A.; Wilson, D.; Liauw, C.M.; Banks, C.E.; Whitehead, K.A. Additive manufactured graphene-based electrodes exhibit beneficial performances in Pseudomonas aeruginosa microbial fuel cells. J. Power Sources 2021, 499, 229938. [Google Scholar] [CrossRef]
- Nie, H.B.; Liu, X.Y.; Dang, Y.; Sun, D.Z. Early activated quorum sensing enhanced a nosZ-deficient strain of Pseudomonas aeruginosa for stably recovering nitrous oxide from incineration leachate in microbial electrolysis cell. Bioresour. Technol. 2022, 360, 127394. [Google Scholar] [CrossRef]
- Cui, Q.N.; Lv, H.N.; Qi, Z.Z.; Jiang, B.; Xiao, B.; Liu, L.D.; Ge, Y.H.; Hu, X.M. Cross-Regulation between the phz1 and phz2 Operons Maintain a Balanced Level of Phenazine Biosynthesis in Pseudomonas aeruginosa PAO1. PLoS ONE 2016, 11, e0144447. [Google Scholar] [CrossRef]
- Liang, H.H.; Li, L.L.; Dong, Z.L.; Surette, M.G.; Duan, K.M. The YebC family protein PA0964 negatively regulates the Pseudomonas aeruginosa quinolone signal system and pyocyanin production. J. Bacteriol. 2008, 190, 6217–6227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thorup, C.; Schramm, A.; Findlay, A.J.; Finster, K.W.; Schreiber, L. Disguised as a Sulfate Reducer: Growth of the Deltaproteobacterium Desulfurivibrio alkaliphilus by Sulfide Oxidation with Nitrate. Mbio 2017, 8, e00671-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vijay, A.; Chhabra, M.; Vincent, T. Microbial community modulates electrochemical performance and denitrification rate in a biocathodic autotrophic and heterotrophic denitrifying microbial fuel cell. Bioresour. Technol. 2019, 272, 217–225. [Google Scholar] [CrossRef] [PubMed]
- Lukas, F.; Gorenc, G.; Kopecny, J. Detection of possible AI-2-mediated quorum sensing system in commensal intestinal bacteria. Folia Microbiol. 2008, 53, 221–224. [Google Scholar] [CrossRef]
- Mitsumori, M.; Xu, L.M.; Kajikawa, H.; Kurihara, M.; Tajima, K.; Hai, J.; Takenaka, A. Possible quorum sensing in the rumen microbial community: Detection of quorum-sensing signal molecules from rumen bacteria. Fems Microbiol. Lett. 2003, 219, 47–52. [Google Scholar] [CrossRef] [Green Version]
- Ghali, I.; Shinkai, T.; Mitsumori, M. Mining of luxS genes from rumen microbial consortia by metagenomic and metatranscriptomic approaches. Anim. Sci. J. 2016, 87, 666–673. [Google Scholar] [CrossRef]
- Price-Whelan, A.; Dietrich, L.E.P.; Newman, D.K. Rethinking ‘secondary’ metabolism: Physiological roles for phenazine antibiotics. Nat. Chem. Biol. 2006, 2, 221. [Google Scholar] [CrossRef]
- Ramos, I.; Dietrich, L.E.P.; Price-Whelan, A.; Newman, D.K. Phenazines affect biofilm formation by Pseudomonas aeruginosa in similar ways at various scales. Res. Microbiol. 2010, 161, 187–191. [Google Scholar] [CrossRef] [Green Version]
- Bosire, E.M.; Rosenbaum, M.A. Electrochemical Potential Influences Phenazine Production, Electron Transfer and Consequently Electric Current Generation by Pseudomonas aeruginosa. Front. Microbiol. 2017, 8, 892. [Google Scholar] [CrossRef] [Green Version]
- Rabaey, K.; Boon, N.; Hofte, M.; Verstraete, W. Microbial phenazine production enhances electron transfer in biofuel cells. Environ. Sci. Technol. 2005, 39, 3401–3408. [Google Scholar] [CrossRef]
- Firn, R.D.; Jones, C.G. Natural products—A simple model to explain chemical diversity. Nat. Prod. Rep. 2003, 20, 382–391. [Google Scholar] [CrossRef] [PubMed]
- Jin, Z.J.; Zhou, L.; Sun, S.; Cui, Y.; Song, K.; Zhang, X.H.; He, Y.W. Identification of a Strong Quorum Sensing- and Thermo-Regulated Promoter for the Biosynthesis of a New Metabolite Pesticide Phenazine-1-carboxamide in Pseudomonas strain PA1201. ACS Synth. Biol. 2020, 9, 1802–1812. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.W.; Xu, Y.; Chen, L.; Jin, X.M.; Ni, H. The salt-tolerant phenazine-1-carboxamide-producing bacterium Pseudomonas aeruginosa NF011 isolated from wheat rhizosphere soil in dry farmland with antagonism against Fusarium graminearum. Microbiol. Res. 2021, 245, 126673. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Kern, S.E.; Newman, D.K. Endogenous Phenazine Antibiotics Promote Anaerobic Survival of Pseudomonas aeruginosa via Extracellular Electron Transfer. J. Bacteriol. 2010, 192, 365–369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Item | COD (mg/L) | BOD5 (mg/L) | NH4+-N (mg/L) | NO3−-N (mg/L) | NO2−-N (mg/L) | pH |
---|---|---|---|---|---|---|
Raw leachate | 57,686–75,480 | 23,858–33,710 | 968 ± 1368 | N/A | N/A | 6.01–6.37 |
Anaerobically treated leachate | 1820–4625 | 879–3182 | 1029–1458 | N/A | N/A | 7.95–8.45 |
Partial nitrification-treated leachate | 1524–2123 | 97–334 | 178–204 | 21.78–35.53 | 945–1125 | 7.27–7.93 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Yan, B.; Xia, S.; Gui, S.; Jiang, H.; Nie, H.; Sun, D. Electrode Material Optimization of Nitrous Oxide Recovery from Incineration Leachate in a ΔnosZ Pseudomonas aeruginosa/MEC System. Fermentation 2023, 9, 607. https://doi.org/10.3390/fermentation9070607
Liu Y, Yan B, Xia S, Gui S, Jiang H, Nie H, Sun D. Electrode Material Optimization of Nitrous Oxide Recovery from Incineration Leachate in a ΔnosZ Pseudomonas aeruginosa/MEC System. Fermentation. 2023; 9(7):607. https://doi.org/10.3390/fermentation9070607
Chicago/Turabian StyleLiu, Yong, Bing Yan, Song Xia, Shuanglin Gui, Haiwei Jiang, Hanbing Nie, and Dezhi Sun. 2023. "Electrode Material Optimization of Nitrous Oxide Recovery from Incineration Leachate in a ΔnosZ Pseudomonas aeruginosa/MEC System" Fermentation 9, no. 7: 607. https://doi.org/10.3390/fermentation9070607
APA StyleLiu, Y., Yan, B., Xia, S., Gui, S., Jiang, H., Nie, H., & Sun, D. (2023). Electrode Material Optimization of Nitrous Oxide Recovery from Incineration Leachate in a ΔnosZ Pseudomonas aeruginosa/MEC System. Fermentation, 9(7), 607. https://doi.org/10.3390/fermentation9070607