A Rapid Method for Testing Filtration Performance of Malt and the Optimization of the Method
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Determination of Filtration Behavior
2.3. Experimental Design and Statistical Analysis
2.4. Optimization of Reaction Conditions and Experimental Verification
3. Results and Discussion
3.1. Assessment of the Rapid Detection of Malt Filtration Performance Test
3.2. Influence of Various Parameters on Method
3.2.1. Influence of Reaction Temperature
3.2.2. Influence of Residence Time
3.2.3. Influence of Enzyme Ratio
3.3. RSM Results
3.3.1. Model Fitting
3.3.2. Response Surface/Contour Plots
3.3.3. Optimization of Test Conditions and Experimental Verification
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Correction Statement
References
- Kupetz, M.; Rott, M.; Kleinlein, K.; Gastl, M.; Becker, T. A new approach to assessing the crossflow membrane filtration of beer at laboratory scale. J. Inst. Brew. 2018, 124, 450–456. [Google Scholar] [CrossRef]
- Cristea, S.P.; Mazaeda, R.; Prada, C.D. Optimal control of beer filtration process. IFAC Proc. Vol. 2013, 46, 762–767. [Google Scholar] [CrossRef]
- Bamforth, C. Beer: Tap into the Art and Science of Brewing, 2nd ed.; Oxford University Press: New York, NY, USA, 2003. [Google Scholar]
- Dennis, E.; Chris, A.B.; Peter, A.B.; Brookes, R.S. Beer maturation and treatments. Brewing 2004, 15, 543–588. [Google Scholar]
- Benítez, E.I.; Amezaga, N.M.J.M.; Sosa, G.L.; Peruchena, N.M.; Lozano, J.E. Turbidimetric Behavior of Colloidal Particles in Beer before Filtration Process. Food Bioprocess Technol. 2012, 6, 1082–1090. [Google Scholar] [CrossRef]
- Malcorps, P.; Haselaars, P.; Dupire, S. Glycogen released by the yeast as a cause of unfilterable haze in the beer. Tech. Q. 2001, 38, 95–98. [Google Scholar]
- Cyran, M.; Izydorczyk, M.S.; Macgregor, A.W. Structural Characteristics of Water-Extractable Nonstarch Polysaccharides from Barley Malt 1. Cereal Chem. 2002, 79, 359–366. [Google Scholar] [CrossRef]
- Balet, S.; Gous, P.; Fox, G.; Lloyd, J.; Manley, M. Characterisation of starch from malting barley grown in South Africa. Int. J. Food Sci. Technol. 2016, 55, 443–452. [Google Scholar] [CrossRef]
- Julia, W.; Martina, G.; Thomas, B. Phenolic Substances in Beer: Structural Diversity, Reactive Potential and Relevance for Brewing Process and Beer Quality. Compr. Rev. Food Sci. Food Saf. 2018, 17, 953–988. [Google Scholar]
- Schimpf, F.-W.; Rinke, W.; Ehrke, H.-F. Untersuchungen über die Filtrierbarkeit des Bieres. Monatsschrift Brau. 1969, 22, 353–361. [Google Scholar]
- Raible, K.; Bantleon, H. Über die Filtration seigenschaftenvon Bier. Monatsschrift Brau. 1968, 21, 277. [Google Scholar]
- Raible, K.; Heinrich, T.; Niemsch, K. A new simple techniquefor assesing beer filtration characteristics. Monatsschrift Brau. 1990, 2, 60–65. [Google Scholar]
- Esser, K.D. Zur Messung der Filtrierbarkeit. Monatsschrift Brau. 1972, 25, 145–151. [Google Scholar]
- Annemüller, G.; Manger, H.J. Gärung und Reifung desBieres-Grundlagen, Technologie, Anlagentechnik; VLB Fachbücher: Berlin, Germany, 2009. [Google Scholar]
- Stewart, B.D.; Freeman, G.; Evans, E. Development and Assessment of a Small-Scale Wort Filtration Test for the Prediction of Beer Filtration Efficiency. J. Inst. Brew. 2000, 106, 361–366. [Google Scholar] [CrossRef]
- Van der Maarel, M.J.E.C.; van der Veen, B.; Uitdehaag, J.C.M.; Leemhuis, H.; Dijkhuizen, L. Properties and applications of starch-converting enzymes of the α-amylase family. J. Biotechnol. 2002, 94, 137–155. [Google Scholar] [CrossRef] [PubMed]
- Derde, L.J.; Gomand, S.V.; Courtin, C.M.; Delcour, J.A. Characterisation of three starch degrading enzymes: Thermostable β-amylase, maltotetraogenic and maltogenic α-amylases. Food Chem. 2012, 135, 713–721. [Google Scholar] [CrossRef]
- Farooq, M.A.; Ali, S.; Hassan, A.; Tahir, H.M.; Mumtaz, S.; Mumtaz, S. Biosynthesis and industrial applications of α-amylase: A review. Arch. Microbiol. 2021, 203, 1281–1292. [Google Scholar] [CrossRef]
- Savic, S.; Savic, S.; Petrovic, S.; Petronijevic, Z. Activity and Stability of Dextranase from New Penicillium Funiculosum TFZ.91: Optimization by Response Surface Methods. Iran. J. Sci. Technol. Trans. A Sci. 2022, 46, 747–760. [Google Scholar] [CrossRef]
- Tribst, A.; Augusto, P.; Cristianini, M. Multi-pass high pressure homogenization of commercial enzymes: Effect on the activities of glucose oxidase, neutral protease and amyloglucosidase at different temperatures. Innov. Food Sci. Emerg. Technol. 2013, 18, 83–88. [Google Scholar] [CrossRef]
- Mishra, A.; Speers, R.A. Wort Boil Time and Trub Effects on Fermentability. J. Am. Soc. Brew. Chem. 2020, 79, 46–52. [Google Scholar] [CrossRef]
- De Schepper, C.F.; Buvé, C.; Van Loey, A.M.; Courtin, C.M. A kinetic study on the thermal inactivation of barley malt α-amylase and β-amylase during the mashing process. Food Res. Int. 2022, 157, 111201. [Google Scholar] [CrossRef]
- Home, S.; Pietilä, K.; Sjoholm, K. Control of glucanolysis in mashing. J. Am. Soc. Brew. Chem. 1993, 51, 108–113. [Google Scholar] [CrossRef]
- Home, S.; Stenholm, K.; Wilhelmson, A.; Autio, K. Properties of Starch and Cell Wall Components and Their Effects on Processing; Cirql Pty Ltd.: Avoca Beach, NSW, Australia, 1999. [Google Scholar]
- Narziss, L. Beta-Glucan and Filterability; Brauwelt International: Schierling, Germany, 1992. [Google Scholar]
- Bamforth, C.W.; Martin, H.L.; Wainwright, T. A role for carboxypeptidase in the solubilization of barley β-glucan. J. Inst. Brew. 2013, 85, 334–338. [Google Scholar] [CrossRef]
- Mcclear, B.V.; Glennieholmes, M. Enzymic quantification of (1 to 3) (1 to 4)-beta-D-glucan in barley and malt. J. Inst. Brew. 1985, 91, 285–295. [Google Scholar] [CrossRef]
- Peng, Z.; Jin, Y. Effect of an endo-1,4-β-xylanase from wheat malt on water-unextractable arabinoxylan derived from wheat. J. Sci. Food Agric. 2022, 102, 1912–1918. [Google Scholar] [CrossRef] [PubMed]
- Ao, X.L.; Yu, X.; Wu, D.T.; Li, C.; Zhang, T.; Liu, S.L.; Zou, L.K. Purification and characterization of neutral protease from Aspergillus oryzae Y1 isolated from naturally fermented broad beans. AMB Express 2018, 8, 96. [Google Scholar] [CrossRef] [PubMed]
- Huismann, M.; Gormley, F.; Dzait, D.; Speers, R.A.; Maskell, D.L. Unfilterable Beer Haze Part I: The Investigation of an India Pale Ale Haze. J. Am. Soc. Brew. Chem. 2022, 80, 17–25. [Google Scholar] [CrossRef]
Malt Sample | Viscosity (mPa·s) | β-Glucan (mg/L) | Arabinoxylan (mg/L) | Protein (mg/L) | Polyphenol (mg/L) |
---|---|---|---|---|---|
Wheat malt | 1.56 | 87.56 | 419.17 | 578.23 | 135 |
Pearl malt 1 | 1.46 | 72.94 | 983.25 | 755.46 | 169 |
Pearl malt 2 | 1.48 | 38.3 | 909.92 | 714.06 | 171 |
Copeland | 1.40 | 25.81 | 684.05 | 594.32 | 163 |
Planet | 1.43 | 29.56 | 863.57 | 743.64 | 202 |
Synergy | 1.45 | 48.45 | 879.34 | 627.48 | 175 |
Malt Sample | β-Glucan (%) | Arabinoxylan (%) | Protein (%) |
---|---|---|---|
Wheat malt | 0.05 | 0.32 | 1.66 |
Pearl malt 1 | 0.18 | 0.59 | 1.46 |
Pearl malt 2 | 0.16 | 0.45 | 1.39 |
Copeland | 0.12 | 0.43 | 1.36 |
Planet | 0.13 | 0.44 | 1.43 |
Synergy | 0.13 | 0.47 | 1.42 |
Variables | Ranges and Levels | |||
---|---|---|---|---|
Low (−1) | Middle (0) | High (+1) | ||
X1 | Residence time (min) | 22 | 30 | 38 |
X2 | Reaction temperature (°C) | 38 | 44 | 50 |
X3 | Enzyme ratio | 0.5 | 1 | 1.5 |
Sources | Sum of Squares | Degree of Freedom | Mean Square | F-Value | p-Value | Remarks |
---|---|---|---|---|---|---|
Model | 9977.19 | 9 | 1108.58 | 16.19 | 0.0007 | *** |
A | 2074.32 | 1 | 2074.32 | 30.29 | 0.0009 | *** |
B | 499.60 | 1 | 499.60 | 7.29 | 0.0306 | * |
C | 1110.15 | 1 | 1110.15 | 16.21 | 0.0050 | ** |
AB | 458.17 | 1 | 458.17 | 6.69 | 0.0361 | * |
AC | 438.69 | 1 | 438.69 | 6.41 | 0.0392 | * |
BC | 4.14 | 1 | 4.14 | 0.0605 | 0.8128 | |
A2 | 4947.94 | 1 | 4947.94 | 72.24 | 0.0001 | *** |
B2 | 297.11 | 1 | 297.11 | 4.34 | 0.0758 | |
C2 | 7.56 | 1 | 7.56 | 0.1103 | 0.7495 | |
Residual | 479.42 | 7 | 68.49 | |||
Lack of Fit | 49.03 | 3 | 16.34 | 0.1519 | 0.9232 | |
Pure Error | 430.39 | 4 | 107.60 | |||
Cor Total | 10,456.60 | 16 |
Run | X1 Residence Time (min) | X2 Reaction Temperature (°C) | X3 Enzyme Ratio | F-Value |
---|---|---|---|---|
1 | −1 | 0 | 1 | 83.25 |
2 | 0 | −1 | 1 | 129.46 |
3 | 0 | 0 | 0 | 125.65 |
4 | 0 | 1 | 1 | 110.36 |
5 | 0 | 0 | 0 | 127.45 |
6 | 0 | 1 | −1 | 131.25 |
7 | 1 | −1 | 0 | 127.35 |
8 | −1 | 1 | 0 | 81.49 |
9 | 1 | 1 | 0 | 91.4 |
10 | −1 | −1 | 0 | 74.63 |
11 | 0 | 0 | 0 | 147.34 |
12 | 0 | −1 | −1 | 146.28 |
13 | −1 | 0 | −1 | 90.57 |
14 | 0 | 0 | 0 | 134.58 |
15 | 0 | 0 | 0 | 146.97 |
16 | 1 | 0 | −1 | 144.61 |
17 | 1 | 0 | 1 | 95.4 |
Optimum Operating Conditions | Predicted | Experimental | Error (%) | ||
---|---|---|---|---|---|
Residence Time (min) | Reaction Temperature (°C) | Enzyme Ratio | F-Value | F-Value | F-Value |
38 | 44 | 0.5 | 141.81 | 147.00 | 3.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, H.; Zhang, Y.; Hao, J.; Wang, D.; Li, T.; Wang, M.; Guo, Q. A Rapid Method for Testing Filtration Performance of Malt and the Optimization of the Method. Fermentation 2023, 9, 613. https://doi.org/10.3390/fermentation9070613
Sun H, Zhang Y, Hao J, Wang D, Li T, Wang M, Guo Q. A Rapid Method for Testing Filtration Performance of Malt and the Optimization of the Method. Fermentation. 2023; 9(7):613. https://doi.org/10.3390/fermentation9070613
Chicago/Turabian StyleSun, Hairong, Yanqing Zhang, Jianqin Hao, Deliang Wang, Tao Li, Minghao Wang, and Qi Guo. 2023. "A Rapid Method for Testing Filtration Performance of Malt and the Optimization of the Method" Fermentation 9, no. 7: 613. https://doi.org/10.3390/fermentation9070613
APA StyleSun, H., Zhang, Y., Hao, J., Wang, D., Li, T., Wang, M., & Guo, Q. (2023). A Rapid Method for Testing Filtration Performance of Malt and the Optimization of the Method. Fermentation, 9(7), 613. https://doi.org/10.3390/fermentation9070613