Effects of Temperature and Moisture Levels on Vitamin A in Total Mixed Ration Silage
Abstract
:1. Introduction
2. Material and Methods
2.1. TMR Preparation
2.2. Chemical Analysis
2.3. Microbial Analysis
2.4. Vitamin Analysis
2.5. Statistical Analysis
3. Results
3.1. TMR before Ensiling
3.2. Fermentation Quality and Chemical Composition of TMR Silage
3.3. Change of Microbial Composition in TMR Silage
3.4. Vitamins’ Changes of TMR Silage
3.5. Correlation between Vitamin A and Other Various Variables
4. Discussion
4.1. Fermentation Quality of TMR Silage
4.2. Vitamin A Change of TMR Silage
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Huang, Z.; Liu, Y.; Qi, G.; Brand, D.; Zheng, S.G. Role of Vitamin A in the Immune System. J. Clin. Med. 2018, 7, 258. [Google Scholar] [CrossRef] [Green Version]
- Vellozo, N.S.; Pereiramarques, S.T.; Cabralpiccin, M.P.; Filardy, A.A.; Ribeirogomes, F.L.; Rigoni, T.S.; Dosreis, G.A.; Lopes, M.F. All-trans retinoic acid promotes an m1- to m2-phenotype shift and inhibits macrophage-mediated immunity to leishmania major. Front. Immunol. 2017, 8, 1560. [Google Scholar] [CrossRef] [Green Version]
- Hon, S.L. Vitamin A. In Encyclopedia of Toxicology, 3rd ed.; Grady Health System: Atlanta, GA, USA, 2014; pp. 960–961. [Google Scholar]
- Wang, F.; Nishino, N. Ensiling of soybean curd residue and wet brewers grains with or without other feeds as a total mixed ration. J. Dairy Sci. 2008, 91, 2380–2387. [Google Scholar] [CrossRef] [Green Version]
- Weinberg, Z.G.; Chen, Y.; Miron, D.; Raviv, Y.; Nahim, E.; Bloch, A.; Yosef, E.; Nikbahat, M.; Miron, J. Preservation of total mixed rations for dairy cows in bales wrapped with polyethylene stretch film—A commercial scale experiment. Anim. Feed. Sci. Technol. 2011, 164, 125–129. [Google Scholar] [CrossRef]
- Cao, Y.; Takahashi, T.; Horiguchi, K.I.; Yoshida, N.; Cai, Y. Methane emissions from sheep fed fermented or non-fermented total mixed ration containing whole-crop rice and rice bran. Anim. Feed. Sci. Technol. 2010, 157, 72–78. [Google Scholar] [CrossRef]
- Miyaji, M.; Matsuyama, H.; Hosoda, K.; Kazuhisa, N. Milk production, nutrient digestibility and nitrogen balance in lactating cows fed total mixed ration silages containing steam-flaked brown rice as substitute for steam-flaked corn, and wet food by-products. Anim. Sci. J. 2013, 84, 483–488. [Google Scholar] [CrossRef]
- Tian, P.; Niu, D.; Zuo, S.; Jiang, D.; Li, R.; Xu, C. Vitamin A and E in the total mixed ration as influenced by ensiling and the type of herbage. Sci. Total Environ. 2020, 746, 141239. [Google Scholar] [CrossRef]
- Hao, W.; Tian, P.; Zheng, M.; Wang, H.; Xu, C. Characteristics of proteolytic microorganisms and their effects on proteolysis in total mixed ration silages of soybean curd residue. Asian Australas. J. Anim. Sci. 2020, 33, 100–110. [Google Scholar] [CrossRef] [Green Version]
- Ning, T.; Wang, H.; Zheng, M.; Niu, D.; Zuo, S. Effects of microbial enzymes on starch and hemicellulose degradation in total mixed ration silages. Asian Australas. J. Anim. Sci. 2017, 30, 171–180. [Google Scholar] [CrossRef] [Green Version]
- Oldham, E.R.; Eberhart, R.J.; Muller, L.D. Effects of supplemental vitamin A or β-carotene during the dry period and early lactation on udder health. J. Dairy Sci. 1991, 74, 3775–3781. [Google Scholar] [CrossRef]
- Tjoelker, L.W.; Chew, B.P.; Tanaka, T.S.; Daniel, L.R. Effects of vitamin A and β-carotene on phagocytosis and killing by bovine mammary neutrophils in vitro. J. Dairy Sci. 1986, 69 (Suppl. l), 103. [Google Scholar]
- Collier, R.J.; Doelger, S.G.; Head, H.H.; Thatcher, W.W.; Wilcox, C.J. Effects of heat stress during pregnancy on maternal hormone concentrations, calf birth weight and postpartum milk yield of Holstein cows. J. Anim. Sci. 1982, 54, 309–319. [Google Scholar] [CrossRef] [PubMed]
- Gaylord, A.M.; Warthesen, J.J.; Smith, D.E. Influence of milk fat, milk solids, and light intensity on the light stability of vitamin A and riboflavin in low-fat milk. J. Dairy Sci. 1986, 69, 2779–2784. [Google Scholar] [CrossRef]
- Suyama, K.; Yeow, T.; Nakai, S. Vitamin A oxidation products responsible for haylike flavor production in nonfat dry milk. J. Agric. Food Chem. 1983, 31, 22. [Google Scholar] [CrossRef] [PubMed]
- Soledad, A.H.; Teresa, V.N.M.; Enrique, R.V.; Abel, M.F.; Carmen, V.C.M. Stability of vitamins during the storage of liquid infant milks. J. Dairy Res. 2000, 67, 225–231. [Google Scholar]
- Concepcion, V.V.; Raquel, R.; Angeles, M. Stability of retinol in milk during frozen and other storage conditions. Z. Lebensm. Unters. Forsch. 1992, 195, 562–565. [Google Scholar]
- Christian, M.S. Postnatal Alterations of Gastrointestinal Physiology, Hematology, Clinical Chemistry, and Other Non-CNS Parameters; Springer: Berlin/Heidelberg, Germany, 1983. [Google Scholar]
- AOAC. Official Methods of Analysis, 16th ed.; Association of Official Analytical Chemists: Washington, DC, USA, 1995; Volume 1. [Google Scholar]
- Thomas, T.A. An automated procedure for the determination of soluble carbohydrates in herbage. J. Sci. Food Agric. 2010, 28, 639–642. [Google Scholar] [CrossRef]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Broderick, G.A.; Kang, J.H. Automated simultaneous determination of ammonia and total amino acids in ruminal fluid and in vitro media. J. Dairy Sci. 1980, 63, 64–75. [Google Scholar] [CrossRef]
- Niu, D.; Zheng, M.; Zuo, S.; Jiang, D.; Xu, C. Effects of maize meal and limestone on the fermentation profile and aerobic stability of smooth bromegrass (Bromus inermis leyss) silage. Grass Forage Sci. 2018, 73, 622–629. [Google Scholar] [CrossRef]
- Ahmadi, F.; Lee, Y.H.; Lee, W.H.; Oh, Y.K.; Park, K.; Kwak, W.S. Long-term anaerobic conservation of fruit and vegetable discards without or with moisture adjustment after aerobic preservation with sodium metabisulfite. Waste Manag. 2019, 87, 258–267. [Google Scholar] [CrossRef] [PubMed]
- He, L.; Wang, C.; Xing, Y.; Zhou, W.; Zhang, Q. Ensiling characteristics, proteolysis and bacterial community of high-moisture corn stalk and stylo silage prepared with Bauhinia variegate flower. Bioresour. Technol. 2019, 296, 122336. [Google Scholar] [CrossRef] [PubMed]
- Hao, W.; Wang, H.; Ning, T.; Yang, F.; Xu, C. Aerobic stability and effects of yeasts during deterioration of non-fermented and fermented total mixed ration with different moisture levels. Asian Australas. J. Anim. Sci. 2015, 28, 816–826. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, Y.; Drouin, P.; Lafrenière, C. Effect of temperature (5–25 °C) on epiphytic lactic acid bacteria populations and fermentation of whole-plant corn silage. J. Appl. Microbiol. 2016, 121, 657–671. [Google Scholar] [CrossRef]
- Gulfam, A.; Guo, G.; Desta, S.T.; Chen, L.; Liu, Q.H.; Yuan, X.J.; Bai, Y.F.; Shao, T. Characteristics of lactic acid bacteria isolates and their effect on the fermentation quality of Napier grass silage at three high temperatures. J. Sci. Food Agric. 2017, 97, 1931–1938. [Google Scholar] [CrossRef]
- Li, F.; Ding, Z.; Ke, W.; Xu, D.; Zhang, P.; Bai, J.; Mudassar, S.; Muhammad, I.; Guo, X. Ferulic acid esterase-producing lactic acid bacteria and cellulase pretreatments of corn stalk silage at two different temperatures: Ensiling characteristics, carbohydrates composition and enzymatic saccharification. Bioresour. Technol. 2019, 282, 211–221. [Google Scholar] [CrossRef]
- Liu, Q.H.; Shao, T.; Bai, Y.F. The effect of fibrolytic enzyme, Lactobacillus plantarum and two food antioxidants on the fermentation quality, alpha-tocopherol and beta-carotene of high moisture napier grass silage ensiled at different temperatures. Anim. Feed. Sci. Technol. 2016, 221, 1–11. [Google Scholar] [CrossRef]
- Kondo, M.; Shimizu, K.; Jayanegara, A.; Mishima, T.; Matsui, H.; Karita, S.; Goto, M.; Fujihara, T. Changes in nutrient composition and in vitro ruminal fermentation of total mixed ration silage stored at different temperatures and periods. J. Sci. Food Agric. 2016, 96, 1175–1180. [Google Scholar] [CrossRef]
- Erdman, J., Jr.; Poor, C.; Dietz, J. Factors affecting the bioavailability of vitamin A, carotenoids, and vitamin E. J. Food Technol. 1988, 42, 214–221. [Google Scholar]
- Panfili, G.; Fratianni, A.; Criscio, T.D.; Gammariello, D.; Sorrentino, E. Influence of microorganisms on retinol isomerization in milk. J. Dairy Res. 2008, 75, 37–43. [Google Scholar] [CrossRef]
- Rutkowski, K.; Diosady, L.L. Vitamin A stability in triple fortified salt. Food Res. Int. 2007, 40, 147–152. [Google Scholar] [CrossRef]
- Frias, J.; Vidal-Valverde, C. Stability of thiamine and vitamins E and A during storage of enteral feeding formula. J. Agric. Food Chem. 2001, 49, 2313–2317. [Google Scholar] [CrossRef] [PubMed]
- Parrish, D.B.; Karen, P. Effects of grinding and storage for one month on retention of vitamin A in premixes and mineral supplements. J. Assoc. Off. Anal. Chem. 1983, 66, 1306–1308. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Nishino, N. Effects of storage temperature and ensiling period on fermentation products, aerobic stability and microbial communities of total mixed ration silage. J. Appl. Microbiol. 2013, 114, 1687–1695. [Google Scholar] [CrossRef] [PubMed]
- Borreani, G.; Tabacco, E. The relationship of silage temperature with the microbiological status of the face of corn silage bunkers. J. Dairy Sci. 2010, 93, 2620–2629. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Items | Moisture Level | SEM | p-Value | ||
---|---|---|---|---|---|
M1 | M2 | M3 | |||
Chemical composition (g/kg DM) | |||||
pH | 6.48 b | 6.61 ab | 6.69 a | 0.039 | 0.047 |
DM (g/kg FW) | 548 a | 475 b | 423 c | 18.200 | <0.001 |
CP | 183 | 183 | 178 | 1.600 | 0.278 |
WSC | 154 | 136 | 143 | 0.390 | 0.182 |
NDF | 267 | 264 | 260 | 2.575 | 0.617 |
ADF | 176 | 173 | 173 | 0.837 | 0.129 |
Microbial composition (log10 cfu/g FW) | |||||
LAB | 5.9 | 5.4 | 5.2 | 0.146 | 0.154 |
Aerobic bacteria | 5.4 | 5.0 | 4.4 | 0.215 | 0.097 |
Yeasts Vitamin content (mg/kg DM) | 5.9 | 5.8 | 6.0 | 0.104 | 0.884 |
Vitamin A | 3.77 | 3.75 | 3.88 | 0.032 | 0.188 |
Items | Moisture | Temperature | SEM | p-Value | |||||
---|---|---|---|---|---|---|---|---|---|
15 °C | 30 °C | 40 °C | Moisture Mean | T | M | TxM | |||
pH | M1 | 4.22 | 4.05 | 4.19 | 4.15 a | 0.022 | <0.001 | <0.001 | 0.042 |
M2 | 4.07 | 3.87 | 4.13 | 4.02 b | |||||
M3 | 4.05 | 3.92 | 4.03 | 4.00 b | |||||
Temperature mean | 4.11 x | 3.95 y | 4.12 x | ||||||
Lactic acid (g/kg DM) | M1 | 62.4 | 74.8 | 64.5 | 67.2 b | 0.199 | <0.001 | <0.001 | <0.001 |
M2 | 65.1 | 89.8 | 82.0 | 79.0 a | |||||
M3 | 65.1 | 83.9 | 83.6 | 77.5 a | |||||
Temperature mean | 64.2 z | 82.8 x | 76.7 y | ||||||
Acetic acid (g/kg DM) | M1 | 4.7 | 4.8 | 4.8 | 4.8 c | 0.019 | 0.002 | <0.001 | 0.023 |
M2 | 5.9 | 6.3 | 5.6 | 5.9 b | |||||
M3 | 7.3 | 7.2 | 6.1 | 6.9 a | |||||
Temperature mean | 6.0 x | 6.1 x | 5.5 y | ||||||
Ammonia-N (% of total N) | M1 | 1.88 | 1.92 | 2.22 | 2.01 c | 0.104 | <0.001 | <0.001 | 0.010 |
M2 | 2.02 | 2.42 | 2.43 | 2.29 b | |||||
M3 | 2.59 | 3.50 | 3.06 | 3.05 a | |||||
Temperature mean | 2.16 y | 2.61 x | 2.57 x | ||||||
LAB (log10 cfu/g FW) | M1 | 8.6 | 6.5 | 6.9 | 7.3 ab | 0.157 | <0.001 | 0.048 | 0.174 |
M2 | 8.0 | 6.5 | 6.7 | 7.1 b | |||||
M3 | 8.2 | 7.1 | 7.1 | 7.5 a | |||||
Temperature mean | 8.3 x | 6.7 y | 6.9 y | ||||||
Aerobic bacteria (log10 cfu/g FW) | M1 | 3.1 | 3.0 | 2.4 | 2.8 | 0.311 | 0.033 | 0.077 | 0.291 |
M2 | 2.6 | 2.6 | 2.4 | 2.5 | |||||
M3 | 2.5 | 2.7 | 2.5 | 2.6 | |||||
Temperature mean | 2.7 x | 2.8 x | 2.4 y | ||||||
Yeast (log10 cfu/g FW) | M1 | ND | ND | ND | - | - | - | - | - |
M2 | ND | ND | ND | - | |||||
M3 | ND | ND | ND | - | |||||
Temperature mean | - | - | - | - |
Items | Moisture | Temperature | SEM | p-Value | |||||
---|---|---|---|---|---|---|---|---|---|
15 °C | 30 °C | 40 °C | Moisture Mean | T | M | TxM | |||
DM (g/kg FW) | M1 | 539 | 536 | 536 | 537 a | 10.162 | 0.512 | <0.001 | 0.962 |
M2 | 464 | 462 | 464 | 463 b | |||||
M3 | 411 | 410 | 412 | 411 c | |||||
Temperature mean | 471 | 469 | 471 | ||||||
WSC (g/kg DM) | M1 | 46.4 | 45.1 | 48.5 | 46.7 a | 0.130 | 0.003 | <0.001 | 0.031 |
M2 | 47.4 | 32.8 | 41.2 | 40.5 b | |||||
M3 | 35.2 | 33.3 | 40.6 | 36.4 b | |||||
Temperature mean | 43.0 x | 37.0 y | 43.5 x | ||||||
CP (g/kg DM) | M1 | 191 | 188 | 187 | 189 a | 0.783 | 0.148 | 0.013 | 0.963 |
M2 | 187 | 185 | 184 | 185 ab | |||||
M3 | 184 | 184 | 181 | 183 b | |||||
Temperature mean | 187 | 186 | 184 | ||||||
NDF (g/kg DM) | M1 | 268 | 274 | 267 | 270 | 1.832 | 0.939 | 0.993 | 0.892 |
M2 | 270 | 268 | 272 | 270 | |||||
M3 | 269 | 268 | 273 | 270 | |||||
Temperature mean | 269 | 270 | 271 | ||||||
ADF (g/kg DM) | M1 | 191 | 191 | 196 | 193 | 0.814 | 0.600 | 0.988 | 0825 |
M2 | 193 | 192 | 194 | 193 | |||||
M3 | 194 | 162 | 159 | 193 | |||||
Temperature mean | 193 | 192 | 192 |
Variable | M1-Vitamin A (mg/kg DM) | M2-Vitamin A (mg/kg DM) | M3-Vitamin A (mg/kg DM) | |||
---|---|---|---|---|---|---|
0–7 day | 14–56 day | 0–7 day | 14–56 day | 0–7 day | 14–56 day | |
DM (g/kg FW) | 0.334 | 0.545 | 0.350 | −0.079 | 0.338 | 0.039 |
CP (g/kg DM) | 0.109 | −0.445 | 0.002 | 0.228 | 0.025 | −0.126 |
NDF (g/kg DM) | −0.460 | −0.396 | −0.491 | 0.136 | −0.440 | −0.252 |
ADF (g/kg DM) | −0.286 | −0.165 | −0.257 | −0.198 | −0.287 | −0.274 |
WSC (g/kg DM) | 0.999 ** | 0.751 * | 0.970 ** | 0.651 | 0.997 ** | 0.465 |
pH | 0.998 ** | 0.790 * | 0.988 ** | 0.740 * | 0.988 ** | 0.711 * |
Lactic acid (g/kg DM) | −0.988 ** | −0.826 ** | −0.996 ** | −0.769 * | −0.986 ** | −0.748 * |
Acetic acid (g/kg DM) | −0.998 ** | −0.426 | −0.981 ** | −0.174 | −0.952 ** | 0.617 |
LAB (log10 cfu/g FW) | −0.970 ** | 0.740 * | −0.901 * | 0.920 ** | −0.899 * | 0.943 ** |
Aerobic bacteria (log10 cfu/g FW) | −0.878 ** | 0.309 | −0.947 ** | 0.274 | −0.976 ** | 0.500 |
Yeasts (log10 cfu/g FW) | 0.969 ** | 0.764 * | 0.945 ** | 0.528 | 0.803 * | 0.524 |
Variable | 15 °C-Vitamin A (mg/kg DM) | 30 °C-Vitamin A (mg/kg DM) | 40 °C-Vitamin A (mg/kg DM) | |||
---|---|---|---|---|---|---|
0–7 day | 14–56 day | 0–7 day | 14–56 day | 0–7 day | 14–56 day | |
DM (g/kg FW) | 0.026 | 0.363 | 0.096 | 0.131 | 0.088 | 0.350 |
CP (g/kg DM) | 0.512 | −0.500 | −0.023 | 0.081 | −0.372 | 0.441 |
NDF (g/kg DM) | −0.578 | −0.423 | −0.537 | 0.304 | −0.550 | −0.166 |
ADF (g/kg DM) | −0.309 | −0.472 | −0.429 | −0.441 | −0.374 | −0.407 |
WSC (g/kg DM) | 0.984 ** | 0.199 | 0.988 ** | 0.184 | 0.984 ** | 0.269 |
pH | 0.999 ** | 0.939 ** | 0.998 ** | 0.859 ** | 0.993 ** | 0.918 ** |
Lactic acid (g/kg DM) | −0.994 ** | −0.941 ** | −0.996 ** | −0.868 ** | −0.996 ** | −0.953 ** |
Acetic acid (g/kg DM) | −0.956 ** | −0.525 | −0.960 ** | −0.221 | −0.944 ** | 0.333 |
LAB (log10 cfu/g FW) | −0.996 ** | 0.729 * | −0.967 ** | 0.681 * | −0.945 ** | 0.669 * |
Aerobic bacteria (log10 cfu/g FW) | −0.871 * | −0.013 | −0.915 * | −0.201 | −0.966 ** | 0.750 * |
Yeasts (log10 cfu/g FW) | 0.945 ** | 0.868 ** | 0.990 ** | 0.686 * | 0.987 ** | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, P.; Hu, H.; Zhang, X.; Chen, M.; Wang, X. Effects of Temperature and Moisture Levels on Vitamin A in Total Mixed Ration Silage. Fermentation 2023, 9, 614. https://doi.org/10.3390/fermentation9070614
Tian P, Hu H, Zhang X, Chen M, Wang X. Effects of Temperature and Moisture Levels on Vitamin A in Total Mixed Ration Silage. Fermentation. 2023; 9(7):614. https://doi.org/10.3390/fermentation9070614
Chicago/Turabian StyleTian, Pengjiao, Huiying Hu, Xiya Zhang, Mingqing Chen, and Xiqing Wang. 2023. "Effects of Temperature and Moisture Levels on Vitamin A in Total Mixed Ration Silage" Fermentation 9, no. 7: 614. https://doi.org/10.3390/fermentation9070614
APA StyleTian, P., Hu, H., Zhang, X., Chen, M., & Wang, X. (2023). Effects of Temperature and Moisture Levels on Vitamin A in Total Mixed Ration Silage. Fermentation, 9(7), 614. https://doi.org/10.3390/fermentation9070614