Development of Gluten-Free Functional Bread Adapted to the Nutritional Requirements of Celiac Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Extracts
2.2. Preparation of the Bread
2.3. Physical-Chemical Analysis
2.3.1. Macronutrient Determination
Moisture Determination
Determination of Inorganic Matter
Determination of Total Nitrogen and Protein
Determination of Total Fat
Determination of Dietary Fiber
Determination of Carbohydrates
Determination of the Energy Value
Determination of Folate
2.3.2. Mineral Determination
2.4. Shelf-Life Study
2.4.1. Determination of Antioxidant Capacity
Absobality of Oxygen Radicals (ORAC)
Iron Reducing Antioxidant Power (FRAP)
DPPH Technique
ABTS Technique
2.4.2. Microbiological Analysis
2.5. Sensory Analysis
2.6. Statistical Analysis
3. Results and Discussion
3.1. Proximal Composition
3.1.1. Macronutrients of Flaxseed and Spinach Powder
3.1.2. Macronutrients of the Samples
3.2. Folate Content
3.3. Minerals
3.4. pH and Color during Different Days of Storage
3.5. Antioxidant Capacity
3.5.1. Characterisation of Preservative Extracts
3.5.2. Antioxidant Capacity during the Shelf-Life Study
3.6. Microbiological Analysis
3.7. Sensory Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
AAPH | 2:2′-azobis(2-amidinopropane)-dihydrochloride |
ABTS | 2:2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid |
C | Control |
CBC | Citrus extract |
Com | Commercial |
DPPH | 2:2-difenil-1-picrilhidrazilo |
FA | Folic acid |
FRAP | Ferric Reducing Antioxidant Power |
5-FTHF | 5-formyltetrahydrofolate |
GAE | gallic acid equivalents |
HXTS | hydroxytyrosol synthetic |
HXTO | hydroxytyrosol natural origin |
5-MTHF | 5-methyltetrahydrofolate |
OGYE | oxytetracycline-glucose yeast extract |
ORAC | oxygen radical absorbance capacity |
PCA | Plate Count Agar |
RDI | Reference Daily Intakes |
SAX | Strong anion-exchange |
SPSS | Statistical Package for the Social Science |
THF | Tetrahydrofolate |
TPC | Total phenolic content |
TPTZ | 2:4,6-tripyridyl-s-triazine |
References
- Lebwohl, B.; Sanders, D.S.; Green, P.H.R. Coeliac Disease. Lancet 2018, 391, 70–81. [Google Scholar] [CrossRef] [PubMed]
- Leonard, M.M.; Cureton, P.A.; Fasano, A. Managing Coeliac Disease in Patients with Diabetes. Diabetes Obes. Metab. 2015, 17, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Trott, N.; Kurien, M.; Branchi, F.; Sanders, D. PTH-148 Comparing Dietitian-Led Group Clinics to Individual Appointments for Newly Diagnosed Patients with Coeliac Disease (CD). Gut 2016, 65, A292. [Google Scholar] [CrossRef] [Green Version]
- Shewry, P. What Is Gluten—Why Is It Special? Front. Nutr. 2019, 6, 101. [Google Scholar] [CrossRef] [PubMed]
- Gobbetti, M.; Pontonio, E.; Filannino, P.; Rizzello, C.G.; De Angelis, M.; Di Cagno, R. How to Improve the Gluten-Free Diet: The State of the Art from a Food Science Perspective. Food Res. Int. 2018, 110, 22–32. [Google Scholar] [CrossRef]
- Žilić, S.; Barać, M.; Pešić, M.; Dodig, D.; Ignjatović-Micić, D. Characterization of Proteins from Grain of Different Bread and Durum Wheat Genotypes. Int. J. Mol. Sci. 2011, 12, 5878–5894. [Google Scholar] [CrossRef]
- Jnawali, P.; Kumar, V.; Tanwar, B. Celiac Disease: Overview and Considerations for Development of Gluten-Free Foods. Food Sci. Hum. Wellness 2016, 5, 169–176. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.; Lu, F.; Li, Z.; Zhao, L.; Han, C. Recent Developments in Gluten-Free Bread Baking Approaches: A Review. Food Sci. Technol. 2017, 37, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Breshears, K.L.; Crowe, K.M. Sensory and Textural Evaluation of Gluten-Free Bread Substituted with Amaranth and MontinaTM Flour. J. Food Res. 2013, 2, 1. [Google Scholar] [CrossRef] [Green Version]
- Petch, S.; McAuliffe, F.; O’Reilly, S.; Murphy, C.; Coulter-Smith, S.; de Campos, D.A.; Khattak, H.; Mahmood, T. Folic Acid Fortification of Flour to Prevent Neural Tube Defects in Europe—A Position Statement by the European Board and College of Obstetrics and Gynaecology (EBCOG). Eur. J. Obstet. Gynecol. Reprod. Biol. 2022, 279, 109–111. [Google Scholar] [CrossRef]
- Cawley, S.; Mullaney, L.; McKeating, A.; Farren, M.; McCartney, D.; Turner, M.J. A Review of European Guidelines on Periconceptional Folic Acid Supplementation. Eur. J. Clin. Nutr. 2016, 70, 143–154. [Google Scholar] [CrossRef]
- Bearak, J.M.; Popinchalk, A.; Beavin, C.; Ganatra, B.; Moller, A.B.; Tunçalp, Ö.; Alkema, L. Country-Specific Estimates of Unintended Pregnancy and Abortion Incidence: A Global Comparative Analysis of Levels in 2015-2019. BMJ Glob. Health 2022, 7, e007151. [Google Scholar] [CrossRef]
- De Wals, P.; Tairou, F.; Van Allen, M.I.; Uh, S.-H.; Lowry, R.B.; Sibbald, B.; Evans, J.A.; Van den Hof, M.C.; Zimmer, P.; Crowley, M.; et al. Reduction in Neural-Tube Defects after Folic Acid Fortification in Canada. N. Engl. J. Med. 2007, 357, 135–142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Williams, L.J.; Mai, C.T.; Edmonds, L.D.; Shaw, G.M.; Kirby, R.S.; Hobbs, C.A.; Sever, L.E.; Miller, L.A.; John Meaney, F.; Levitt, M. Prevalence of Spina Bifida and Anencephaly during the Transition to Mandatory Folic Acid Fortification in the United States. Teratology 2002, 66, 33–39. [Google Scholar] [CrossRef]
- Patring, J.; Wandel, M.; Jägerstad, M.; Frølich, W. Folate Content of Norwegian and Swedish Flours and Bread Analysed by Use of Liquid Chromatography-Mass Spectrometry. J. Food Compos. Anal. 2009, 22, 649–656. [Google Scholar] [CrossRef]
- Salinas, M.V.; Puppo, M.C. Optimization of the Formulation of Nutritional Breads Based on Calcium Carbonate and Inulin. LWT—Food Sci. Technol. 2015, 60, 95–101. [Google Scholar] [CrossRef]
- Hurrell, R.F. Efficacy and Safety of Iron Fortification. In Food Fortification in a Globalized World; Academic Press: Cambridge, MA, USA, 2018; pp. 195–212. [Google Scholar]
- Cook, J.D.; Minnich, V.; Moore, C.V.; Rasmussen, A.; Bradley, W.B.; Finch, C.A. Absorption of Fortification Iron in Bread. Am. J. Clin. Nutr. 1973, 26, 861–872. [Google Scholar] [CrossRef] [PubMed]
- Lopez De Romaña, D.; Brown, K.H.; Guinard, J.X. Sensory Trial to Assess the Acceptability of Zinc Fortificants Added to Iron-Fortified Wheat Products. J. Food Sci. 2002, 67, 461–465. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis of Official Analytical Chemist; AOAC International: Rockville, MD, USA, 1995; p. 684. [Google Scholar]
- Prosky, L.; Asp, N.G.; Furda, I.; DeVries, J.W.; Schweizer, T.F.; Harland, B.F. Determination of Total Dietary Fiber in Food and Food Products: Collaborative Study. J. Assoc. Off. Anal. Chem. 1985, 68, 677–679. [Google Scholar] [CrossRef]
- FAO/OMS. Carbohydrates in Human Nutrition: Report of a Joint FAO/OMS Expert Consultation, Roma, 14–18 April 1997; Estudio FAO Alimentación y Nutrición 66; FAO: Roma, Italy, 1998. [Google Scholar]
- Greenfield, H. Datos de Composición de Alimentos; FAO: Roma, Italy, 2006; ISBN 9789253049493. [Google Scholar]
- Konings, E.J.M. A Validated Liquid Chromatographic Method for Determining Folates in Vegetables, Milk Powder, Liver, and Flour. J. AOAC Int. 1999, 82, 119–127. [Google Scholar] [CrossRef] [Green Version]
- Pfeiffer, C.M.; Rogers, L.M.; Gregory, J.F. Determination of Folate in Cereal-Grain Food Products Using Trienzyme Extraction and Combined Affinity and Reversed-Phase Liquid Chromatography. J. Agric. Food Chem. 1997, 45, 407–413. [Google Scholar] [CrossRef]
- Vahteristo, L.T.; Ollilainen, V.; Koivistoinen, P.E.; Varo, P. Improvements in the Analysis of Reduced Folate Monoglutamates and Folic Acid in Food by High-Performance Liquid Chromatography. J. Agric. Food Chem. 1996, 44, 477–482. [Google Scholar] [CrossRef]
- Gregory, J.F.; Sartain, D.B.; Day, B.P.F. Fluorometric Determination of Folacin in Biological Materials Using High Performance Liquid Chromatography. J. Nutr. 1984, 114, 341–353. [Google Scholar] [CrossRef]
- Brewer, M.S. Natural Antioxidants: Sources, Compounds, Mechanisms of Action, and Potential Applications. Compr. Rev. Food Sci. Food Saf. 2011, 10, 221–247. [Google Scholar] [CrossRef]
- Pérez-Jiménez, J.; Serrano, J.; Tabernero, M.; Arranz, S.; Díaz-Rubio, M.E.; García-Diz, L.; Goñi, I.; Saura-Calixto, F. Effects of Grape Antioxidant Dietary Fiber in Cardiovascular Disease Risk Factors. Nutrition 2008, 24, 646–653. [Google Scholar] [CrossRef] [PubMed]
- Song, G.; Liu, J.; Wang, Q.; Wang, D.; Chu, B.; Li, L.; Xiao, G.; Gong, J.; Zheng, F. Layer-by-Layer Self-Assembly of Hollow Dextran Sulfate/Chitosan-Coated Zein Nanoparticles Loaded with Crocin: Fabrication, Structural Characterization and Potential Biological Fate. Food Hydrocoll. 2022, 125, 107420. [Google Scholar] [CrossRef]
- Niki, E. Assessment of Antioxidant Capacity in Vitro and in Vivo. Free Radic. Biol. Med. 2010, 49, 503–515. [Google Scholar] [CrossRef]
- Shahidi, F.; Zhong, Y. Measurement of Antioxidant Activity. J. Funct. Foods 2015, 18, 757–781. [Google Scholar] [CrossRef]
- Ehlenfeldt, M.K.; Prior, R.L. Oxygen Radical Absorbance Capacity (ORAC) and Phenolic and Anthocyanin Concentrations in Fruit and Leaf Tissues of Highbush Blueberry. J. Agric. Food Chem. 2001, 49, 2222–2227. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. Ferric Reducing/Antioxidant Power Assay: Direct Measure of Total Antioxidant Activity of Biological Fluids and Modified Version for Simultaneous Measurement of Total Antioxidant Power and Ascorbic Acid Concentration. Methods Enzymol. 1999, 299, 15–27. [Google Scholar] [CrossRef]
- Nimse, S.B.; Pal, D. Free Radicals, Natural Antioxidants, and Their Reaction Mechanisms. RSC Adv. 2015, 5, 27986–28006. [Google Scholar] [CrossRef] [Green Version]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a Free Radical Method to Evaluate Antioxidant Activity. LWT—Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Sánchez-Moreno, C.; Larrauri, J.A.; Saura-Calixto, F. A Procedure to Measure the Antiradical Efficiency of Polyphenols. J. Sci. Food Agric. 1998, 76, 270–276. [Google Scholar] [CrossRef]
- Shahidi, F.; Zhong, Y. Measurement of Antioxidant Activity in Food and Biological Systems; ACS Symposium Series; ACS Publications: Washington, DC, USA, 2007; Volume 956, pp. 36–66. [Google Scholar]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant Activity Applying an Improved ABTS Radical Cation Decolorization Assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef] [PubMed]
- Junejo, S.A.; Rashid, A.; Yang, L.; Xu, Y.; Kraithong, S.; Zhou, Y. Effects of Spinach Powder on the Physicochemical and Antioxidant Properties of Durum Wheat Bread. LWT 2021, 150, 112058. [Google Scholar] [CrossRef]
- Galla, N.R.; Pamidighantam, P.R.; Karakala, B.; Gurusiddaiah, M.R.; Akula, S. Nutritional, Textural and Sensory Quality of Biscuits Supplemented with Spinach (Spinacia oleracea L.). Int. J. Gastron. Food Sci. 2017, 7, 20–26. [Google Scholar] [CrossRef]
- Adam Omer Ishag, O.; Khalid, A.A.; Abdi, A.; Yaagoub Erwa, I.; Babiker Omer, A.; Nour, A.H. Proximate Composition, Physicochemical Properties and Antioxidant Activity of Flaxseed. Annu. Res. Rev. Biol. 2020, 34, 1–10. [Google Scholar] [CrossRef]
- Beheshti Moghadam, M.H.; Rezaei, M.; Behgar, M.; Kermanshahi, H. Effects of Gamma and Electron Radiation on Chemical Composition and Some Phyto-Chemical Properties of Whole Flaxseed. J. Radioanal. Nucl. Chem. 2019, 321, 1019–1025. [Google Scholar] [CrossRef]
- Sibiya, H.; Bhagwat, P.; Amobonye, A.; Pillai, S. Effects of Flaxseed and Soybean Supplementation on the Nutritional and Antioxidant Properties of Mahewu—A South African Beverage. S. Afr. J. Bot. 2022, 150, 275–284. [Google Scholar] [CrossRef]
- Khemiri, S.; Khelifi, N.; Nunes, M.C.; Ferreira, A.; Gouveia, L.; Smaali, I.; Raymundo, A. Microalgae Biomass as an Additional Ingredient of Gluten-Free Bread: Dough Rheology, Texture Quality and Nutritional Properties. Algal Res. 2020, 50, 101998. [Google Scholar] [CrossRef]
- Krupa-Kozak, U.; Drabińska, N.; Baczek, N.; Šimková, K.; Starowicz, M.; Jeliński, T. Application of Broccoli Leaf Powder in Gluten-Free Bread: An Innovative Approach to Improve Its Bioactive Potential and Technological Quality. Foods 2021, 10, 819. [Google Scholar] [CrossRef] [PubMed]
- Bernacchia, R.; Preti, R.; Vinci, G. Chemical Composition and Health Benefits of Flaxseed. Austin J. Nutr. Food Sci. 2014, 2, 1045. [Google Scholar]
- Cunnane, S.C.; Ganguli, S.; Menard, C.; Liede, A.C.; Hamadeh, M.J.; Chen, Z.-Y.; Wolever, T.M.S.; Jenkins, D.J.A. High α-Linolenic Acid Flaxseed (Linum usitatissimum): Some Nutritional Properties in Humans. Br. J. Nutr. 1993, 69, 443–453. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dur, S.; Allai, F.M.; Ganai, S.; Gul, K.; Majeed, D.; Jabeen, A. Effect of Fortification on Textural, Microbiological and Physico-Chemical Properties of Bread. Carpathian J. Food Sci. Technol. 2019, 11, 41–51. [Google Scholar]
- Martínez-Zamora, L.; Ros, G.; Nieto, G. Designing a Clean Label Fish Patty with Olive, Citric, Pomegranate, or Rosemary Extracts. Plants 2020, 9, 659. [Google Scholar] [CrossRef]
- Filip, S.; Vidrih, R. Amino Acid Composition of Protein-Enriched Dried Pasta: Is It Suitable for a Low-Carbohydrate Diet? Food Technol. Biotechnol. 2015, 53, 298–306. [Google Scholar] [CrossRef]
- do Carmo, J.S.; Nazareno, L.S.Q.; Rufino, M.D.S.M. Characterization of the Acerola Industrial Residues and Prospection of Their Potential Application as Antioxidant Dietary Fiber Source. Food Sci. Technol. 2018, 38, 236–241. [Google Scholar] [CrossRef] [Green Version]
- Bekhit, A.E.D.A.; Shavandi, A.; Jodjaja, T.; Birch, J.; Teh, S.; Mohamed Ahmed, I.A.; Al-Juhaimi, F.Y.; Saeedi, P.; Bekhit, A.A. Flaxseed: Composition, Detoxification, Utilization, and Opportunities. Biocatal. Agric. Biotechnol. 2018, 13, 129–152. [Google Scholar] [CrossRef]
- El-Sayed, S.M. Use of Spinach Powder as Functional Ingredient in the Manufacture of UF-Soft Cheese. Heliyon 2020, 6, e03278. [Google Scholar] [CrossRef]
- Collar, C. Gluten-Free Dough-Based Foods and Technologies. In Sorghum and Millets: Chemistry, Technology, and Nutritional Attributes; AACC International Press: Washington, DC, USA, 2018; pp. 331–354. ISBN 9780128115275. [Google Scholar]
- Salmerón, J.; Ascherio, A.; Rimm, E.B.; Colditz, G.A.; Spiegelman, D.; Jenkins, D.J.; Stampfer, M.J.; Wing, A.L.; Willett, W.C. Dietary Fiber, Glycemic Load, and Risk of NIDDM in Men. Diabetes Care 1997, 20, 545–550. [Google Scholar] [CrossRef]
- Schulze, M.B.; Liu, S.; Rimm, E.B.; Manson, J.A.E.; Willett, W.C.; Hu, F.B. Glycemic Index, Glycemic Load, and Dietary Fiber Intake and Incidence of Type 2 Diabetes in Younger and Middle-Aged Women. Am. J. Clin. Nutr. 2004, 80, 348–356. [Google Scholar] [CrossRef] [Green Version]
- McLaren, D.S. Glycemic Index of Foods: A Physiological Basis for Carbohydrate Exchange—Not Fade Away—The Glycemic Index. Nutrition 2000, 16, 151–152. [Google Scholar] [CrossRef] [PubMed]
- Jha, A.B.; Ashokkumar, K.; Diapari, M.; Ambrose, S.J.; Zhang, H.; Tar’an, B.; Bett, K.E.; Vandenberg, A.; Warkentin, T.D.; Purves, R.W. Genetic Diversity of Folate Profiles in Seeds of Common Bean, Lentil, Chickpea and Pea. J. Food Compos. Anal. 2015, 42, 134–140. [Google Scholar] [CrossRef]
- López-Nicolás, R.; Frontela-Saseta, C.; González-Abellán, R.; Barado-Piqueras, A.; Perez-Conesa, D.; Ros-Berruezo, G. Folate Fortification of White and Whole-Grain Bread by Adding Swiss Chard and Spinach. Acceptability by Consumers. LWT—Food Sci. Technol. 2014, 59, 263–269. [Google Scholar] [CrossRef]
- AECOC. Crece El Consumo de Productos Sin Gluten En España. Available online: https://www.aecoc.es/noticias/crece-el-consumo-de-productos-sin-gluten-en-espana/ (accessed on 9 March 2022).
- MAGRAMA. Informe Del Consumo Alimentario En España 2020; Ministerio de Agricultura, Pesca y Alimentación: Madrid, India, 2021. [Google Scholar]
- Brevik, A.; Vollset, S.E.; Tell, G.S.; Refsum, H.; Ueland, P.M.; Loeken, E.B.; Drevon, C.A.; Andersen, L.F. Plasma Concentration of Folate as a Biomarker for the Intake of Fruit and Vegetables: The Hordaland Homocysteine Study. Am. J. Clin. Nutr. 2005, 81, 434–439. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Nardo, G.; Villa, M.P.; Conti, L.; Ranucci, G.; Pacchiarotti, C.; Principessa, L.; Raucci, U.; Parisi, P. Nutritional Deficiencies in Children with Celiac Disease Resulting from a Gluten-Free Diet: A Systematic Review. Nutrients 2019, 11, 1588. [Google Scholar] [CrossRef] [Green Version]
- Vici, G.; Belli, L.; Biondi, M.; Polzonetti, V. Gluten Free Diet and Nutrient Deficiencies: A Review. Clin. Nutr. 2016, 35, 1236–1241. [Google Scholar] [CrossRef]
- Pennington, J.A.T.; Schoen, S.A. Estimates of Dietary Exposure to Aluminium. Food Addit. Contam. 1995, 12, 119–128. [Google Scholar] [CrossRef]
- Soni, M.G.; White, S.M.; Flamm, W.G.; Burdock, G.A. Safety Evaluation of Dietary Aluminum. Regul. Toxicol. Pharmacol. 2001, 33, 66–79. [Google Scholar] [CrossRef]
- Jenkins, D.J.A.; Wolever, T.M.S.; Taylor, R.H.; Barker, H.; Fielden, H.; Baldwin, J.M.; Bowling, A.C.; Newman, H.C.; Goff, D.V. Glycemic Index of Foods: A Physiological Basis for Carbohydrate Exchange. Am. J. Clin. Nutr. 1981, 34, 362–366. [Google Scholar] [CrossRef] [Green Version]
- Schoof, R.A.; Yost, L.J.; Eickhoff, J.; Crecelius, E.A.; Cragin, D.W.; Meacher, D.M.; Menzel, D.B. A Market Basket Survey of Inorganic Arsenic in Food. Food Chem. Toxicol. 1999, 37, 839–846. [Google Scholar] [CrossRef]
- Sherlock, J.C.; Smart, G.A. Thallium in Foods and the Diet. Food Addit. Contam. 1986, 3, 363–370. [Google Scholar] [CrossRef]
- Anderson, D.L.; Cunningham, W.C.; Mackey, E.A. Determination of Boron in Food and Biological Reference Materials by Neutron Capture Prompt-γ Activation. Fresenius’ J. Anal. Chem. 1990, 338, 554–558. [Google Scholar] [CrossRef]
- Salinas, F.; De La Peña, A.M.; Murillo, J.; Jiménez Sånchez, J.C. Spectrofluorimetric Determination of Boron in Plants with Quinizarin-2-Sulphonic Acid. Analyst 1987, 112, 913–915. [Google Scholar] [CrossRef]
- Anderson, R.A.; Bryden, N.A.; Polansky, M.M. Dietary Chromium Intake—Freely Chosen Diets, Institutional Diets, and Indidual Foods. Biol. Trace Elem. Res. 1992, 32, 117–121. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharjee, S.; Dasgupta, P.; Paul, A.R.; Ghosal, S.; Padhi, K.K.; Pandey, L.P. Mineral Element Composition of Spinach. J. Sci. Food Agric. 1998, 77, 456–458. [Google Scholar] [CrossRef]
- Rocchetti, G.; Lucini, L.; Rodriguez, J.M.L.; Barba, F.J.; Giuberti, G. Gluten-Free Flours from Cereals, Pseudocereals and Legumes: Phenolic Fingerprints and in Vitro Antioxidant Properties. Food Chem. 2019, 271, 157–164. [Google Scholar] [CrossRef] [PubMed]
- Di Cairano, M.; Galgano, F.; Tolve, R.; Caruso, M.C.; Condelli, N. Focus on Gluten Free Biscuits: Ingredients and Issues. Trends Food Sci. Technol. 2018, 81, 203–212. [Google Scholar] [CrossRef]
- Moore, M.M.; Dal Bello, F.; Arendt, E.K. Sourdough Fermented by Lactobacillus Plantarum FST 1.7 Improves the Quality and Shelf Life of Gluten-Free Bread. Eur. Food Res. Technol. 2008, 226, 1309–1316. [Google Scholar] [CrossRef]
- Wronkowska, M.; Haros, M.; Soral-Śmietana, M. Effect of Starch Substitution by Buckwheat Flour on Gluten-Free Bread Quality. Food Bioprocess Technol. 2013, 6, 1820–1827. [Google Scholar] [CrossRef] [Green Version]
- Lemonakis, N.; Poudyal, H.; Halabalaki, M.; Brown, L.; Tsarbopoulos, A.; Skaltsounis, A.L.; Gikas, E. The LC–MS-Based Metabolomics of Hydroxytyrosol Administration in Rats Reveals Amelioration of the Metabolic Syndrome. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2017, 1041–1042, 45–59. [Google Scholar] [CrossRef] [PubMed]
- Martínez-zamora, L.; Ros, G.; Nieto, G. Synthetic vs. Natural Hydroxytyrosol for Clean Label Lamb Burgers. Antioxidants 2020, 9, 851. [Google Scholar] [CrossRef] [PubMed]
- Drabińska, N.; Ciska, E.; Szmatowicz, B.; Krupa-Kozak, U. Broccoli By-Products Improve the Nutraceutical Potential of Gluten-Free Mini Sponge Cakes. Food Chem. 2018, 267, 170–177. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Zhou, W. Role of Quercetin in the Physicochemical Properties, Antioxidant and Antiglycation Activities of Bread. J. Funct. Foods 2018, 40, 299–306. [Google Scholar] [CrossRef]
- Frankel, E.N.; Meyer, A.S. The Problems of Using One-Dimensional Methods to Evaluate Multifunctional Food and Biological Antioxidants. J. Sci. Food Agric. 2000, 80, 1925–1941. [Google Scholar] [CrossRef]
- Duthie, G.; Campbell, F.; Bestwick, C.; Stephen, S.; Russell, W. Antioxidant Effectiveness of Vegetable Powders on the Lipid and Protein Oxidative Stability of Cooked Turkey Meat Patties: Implications for Health. Nutrients 2013, 5, 1241–1252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Branciari, R.; Galarini, R.; Giusepponi, D.; Trabalza-Marinucci, M.; Forte, C.; Roila, R.; Miraglia, D.; Servili, M.; Acuti, G.; Valiani, A. Oxidative Status and Presence of Bioactive Compounds in Meat from Chickens Fed Polyphenols Extracted from Olive Oil Industry Waste. Sustainability 2017, 9, 1566. [Google Scholar] [CrossRef] [Green Version]
- Warleta, F.; Quesada, C.S.; Campos, M.; Allouche, Y.; Beltrán, G.; Gaforio, J.J. Hydroxytyrosol Protects against Oxidative DNA Damage in Human Breast Cells. Nutrients 2011, 3, 839–857. [Google Scholar] [CrossRef] [Green Version]
- Paciulli, M.; Rinaldi, M.; Cirlini, M.; Scazzina, F.; Chiavaro, E. Chestnut Flour Addition in Commercial Gluten-Free Bread: A Shelf-Life Study. LWT 2016, 70, 88–95. [Google Scholar] [CrossRef]
- Jensen, S.; Oestdal, H.; Clausen, M.R.; Andersen, M.L.; Skibsted, L.H. Oxidative Stability of Whole Wheat Bread during Storage. LWT 2011, 44, 637–642. [Google Scholar] [CrossRef]
- Jensen, S.; Ostdal, H.; Skibsted, L.H.; Thybo, A.K. Antioxidants and Shelf Life of Whole Wheat Bread. J. Cereal Sci. 2011, 53, 291–297. [Google Scholar] [CrossRef]
- Martínez, L.; Castillo, J.; Ros, G.; Nieto, G. Antioxidant and Antimicrobial Activity of Rosemary, Pomegranate and Olive Extracts in Fish Patties. Antioxidants 2019, 8, 86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shapira, R.; Mimran, E. Isolation and Characterization of Escherichia Coli Mutants Exhibiting Altered Response to Thymol. Microb. Drug Resist. 2007, 13, 157–165. [Google Scholar] [CrossRef] [PubMed]
- Ranucci, D.; Roila, R.; Andoni, E.; Braconi, P.; Branciari, R. Punica Granatum and Citrus Spp. Extract Mix Affects Spoilage Microorganisms Growth Rate in Vacuum-Packaged Cooked Sausages Made from Pork Meat, Emmer Wheat (Triticum dicoccum Schübler), Almond (Prunus dulcis Mill.) and Hazelnut (Corylus avellana L.). Foods 2019, 8, 664. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Azaizeh, H.; Tafesh, A.; Najami, N.; Jadoun, J.; Halahlih, F.; Riepl, H. Synergistic Antibacterial Effects of Polyphenolic Compounds from Olive Mill Wastewater. Evid.-Based Complement. Altern. Med. 2011, 2011, 431021. [Google Scholar] [CrossRef] [Green Version]
- Munekata, P.E.S.; Nieto, G.; Pateiro, M.; Lorenzo, J.M. Phenolic compounds obtained from olea europaea by-products and their use to improve the quality and shelf life of meat and meat products—A review. Antioxidants 2020, 9, 1061. [Google Scholar] [CrossRef] [PubMed]
- Nieto, G.; Bañón, S.; Garrido, M. Administration of distillate thyme leaves into the diet of Segureña ewes: Effect on lamb meat quality. Animal 2012, 6, 2048–2056. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diario el Peruano. Norma Sanitaria Que Establece Los Criterios Microbiologicos de Calidad Sanitaria e Inocuidad Para Los Alimentos y Bebidas de Consumo Humano; Ministerio de Salud de la República del Perú: Lima, Peru, 2008. [Google Scholar]
- Zhou, Q.; Liang, W.; Wan, J.; Wang, M. Spinach (Spinacia oleracea) Microgreen Prevents the Formation of Advanced Glycation End Products in Model Systems and Breads. Curr. Res. Food Sci. 2023, 6, 100490. [Google Scholar] [CrossRef] [PubMed]
Sample | MixB Schär (g) | Water (mL) | Oil (g) | Dry Yeast (g) | Salt (g) | CBC (mg) | Acerola (mg) | CaCO3 (g) | Freeze-Dried Spinach (g) | Ground Flax (g) | HXT Org. (mg) | HXT Sint. (mg) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
C | 500 | 400 | 20 | 10 | 5 | - | - | - | - | - | - | - |
HXTO | 500 | 500 | 20 | 10 | 5 | 160 | 160 | 1.1 | 5 | 40 | 160 | - |
HXTS | 500 | 500 | 20 | 10 | 5 | 160 | 160 | 1.1 | 5 | 40 | - | 160 |
Parameters | Sample | |
---|---|---|
Flaxseed | Spinach Power | |
Proteins | 21.99 ± 0.12 a | 29.36 ± 0.06 b |
Moisture | 5.03 ± 0.09 a | 8.36 ± 0.36 b |
Ash | 6.96 ± 0.03 a | 16.98 ± 0.21 b |
Fat | 40.89 ± 0.74 a | 6.03 ± 0.14 b |
Fiber | 20.85 ± 0.49 a | 32.01 ± 0.69 b |
Carbohydrates | 28.89 ± 0.25 a | 32.36 ± 0.49 b |
Energy | 532.32 ± 3.15 a | 305.01 ± 2.01 b |
Parameters | Sample | |||
---|---|---|---|---|
Control | Com | HTXO | HTXs | |
Proteins | 1.78 ± 0.69 b | 3.03 ± 0.09 a | 2.98 ± 0.06 a | 3.28 ± 0.11 a |
Moisture | 47.10 ± 0.27 c | 37.73 ± 0.03 a | 45.41 ± 0.83 a | 44.70 ± 0.37 a |
Ash | 0.61 ± 0.09 a | 0.79 ± 0.19 a | 2.10 ± 0.05 b | 1.25 ± 0.01 c |
Fiber | 11.36 ± 1.53 a | 6.29 ± 0.43 b | 16.44 ± 1.7 c | 19.89 ± 0.55 d |
Fat | 2.40 ± 0.18 a | 3.16 ± 0.11 a | 5.94 ± 0.09 b | 5.97 ± 0.49 b |
Carbohydrates | 36.75 ± 0.60 a | 49.00 ± 0.43 b | 27.13 ± 0.84 c | 24.91 ± 0.31 c |
Energy | 175.72 ± 1.61 a | 236.56 ± 0.29 b | 173.90 ± 0.32 a | 166.49 ± 0.17 c |
Sample | Folic Acid | THF | 5M-THF | 5F-THF | Total |
---|---|---|---|---|---|
HXTO | 1669.79 ± 0.49 a | 432.14 ± 0.27 a | 549.19 ± 0.43 a | 228.19 ± 0.33 a | 2879.31 ± 0.55 a |
HXTS | 744.36 ± 0.32 b | 348.56 ± 0.34 a | 745.23 ± 0.20 a | 273.97 ± 0.10 a | 2112.12 ± 0.42 a |
COM | 496.58 ± 0.74 b | 192.36 ± 0.34 b | 65.25 ± 0.14 c | 85.36 ± 0.28 a | 839.55 ± 0.15 c |
C | 654.23 ± 0.16 b | 295.12 ± 0.22 b | 185.37 ± 0.65 d | 195.41 ± 0.11 a | 1330.13 ± 0.36 d |
Mineral | Sample | |||
---|---|---|---|---|
HXTO | HXTS | C | Com | |
Al (mg/Kg) | 8.61 ± 0.01 a | 7.30 ± 0.01 b | 11.39 ± 0.02 c | 9.26 ± 0.01 d |
As (mg/Kg) | Nd a | Nd a | 0.07 ± 0.01 b | 0.03 ± 0.01 c |
B (mg/Kg) | 1.58 ± 0.01 a | 1.69 ± 0.01 b | 0.46 ± 0.01 c | 0.34 ± 0.02 d |
Ca (g/100 g) | 0.11 ± 0.01 a | 0.11 ± 0.01 a | 0.01 ± 0.01 b | 0.03 ± 0.01 b |
Cr (mg/Kg) | 0.13 ± 0.01 a | 0.14 ± 0.01 a | 0.03 ± 0.01 b | 0.02 ± 0.01 b |
Cu (mg/Kg) | 1.51 ± 0.01 a | 1.63 ± 0.01 b | 1.01 ± 0.01 c | 1.07 ± 0.01 d |
Fe (mg/Kg) | 9.99 ± 0.02 a | 10.16 ± 0.04 b | 9.67 ± 0.01 c | 7.33 ± 0.01 d |
Mg (g/100 g) | 0.06 ± 0.01 a | 0.06 ± 0.01 a | 0.02 ± 0.01 b | 0.03 ± 0.01 b |
Mn (mg/Kg) | 7.18 ± 0.08 a | 7.34 ± 0.06 a | 3.88 ± 0.16 b | 2.12 ± 0.12 b |
P (g/100 g) | 0.10 ± 0.04 a | 0.10 ± 0.01 ab | 0.07 ± 0.01 ab | 0.05 ± 0.01 b |
Si (mg/kg) | 31.99 ± 0.01 a | 24.91 ± 0.01 b | 29.41 ± 1.39 c | 17.67 ± 1.46 d |
Sr (mg/Kg) | 3.46 ± 0.04 a | 3.26 ± 0.08 b | 0.81 ± 0.06 c | 0.25 ± 0.02 d |
Tl (mg/Kg) | 0.41 ± 0.03 a | 0.35 ± 0.01 a | 1.37 ± 0.06 b | 0.22 ± 0.06 c |
Zn (mg/Kg) | 7.07 ± 0.01 a | 7.01 ± 0.01 a | 8.16 ± 0.02 b | 3.65 ± 0.01 c |
Se (mg/kg) | nd | nd | nd | nd |
Samples | ||||
---|---|---|---|---|
Days of Storage | Control | HTXO | HTXS | Com |
Day 0 | 4.85 ± 0.02 a v | 5.88 ± 0.01 d w | 5.82 ± 0.01 c w | 5.15 ± 0.02 b x |
Day 4 | 5.08 ± 0.01 b w | 5.90 ± 0.01 c w | 5.80 ± 0.02 a wx | 5.21 ± 0.01 d w |
Day 7 | 5.11 ± 0.01 c w | 5.82 ± 0.01 b v | 5.90 ± 0.02 d v | 5.17 ± 0.01 a x |
Day 11 | 5.17 ± 0.01 d x | 5.90 ± 0.01 a w | 5.77 ± 0.01 b x | 5.13 ± 0.01 c x |
Control | HXTO | HXTS | Com | ||
---|---|---|---|---|---|
Day 0 | L* | 79.21± 0.19 a, v | 58.78 ± 0.83 b, v | 62.29 ± 0.64 c, v | 69.27 ± 2.22 d, v |
a* | −2.03 ± 0.84 a, v | −6.15 ± 0.99 b, w | −5.53 ± 0.13 b, v | 5.62 ± 0.17 c, v | |
b* | 20.61 ± 0.42 a, w | 30.91 ± 0.04 b, v | 32.70 ± 2.08 b, v | 19.13 ± 1.16 a, v | |
C* | 20.28 ± 0.08 a, x | 31.73 ± 0.48 b, w | 31.68 ± 0.30 b, w | 19.93 ± 1.15 a, w | |
h | 93.29 ± 0.07 a, w | 99.57 ± 0.39 b, w | 100.18 ± 0.22 b, w | 73.60 ± 0.49 c, vw | |
Day 4 | L* | 78.91 ± 0.05 a, v | 57.76 ± 0.76 b, v | 59.24 ± 0.93 b, w | 70.29 ± 0.17 c, v |
a* | −1.50 ± 0.44 a, v | −3.17 ± 0.52 b, v | −5.16 ± 0.08 c, v | 5.60 ± 0.04 d, v | |
b* | 15.65 ± 0.03 a, v | 25.38 ± 0.64 b, w | 31.04 ± 0.20 c, v | 19.44 ± 0.04 d, v | |
C* | 15.79 ± 0.16 a, w | 25.44 ± 0.22 b, v | 31.53 ± 0.18 c, w | 20.23 ± 0.04 d, w | |
h | 95.13 ± 0.20 a, v | 98.64 ± 0.34 b, w | 99.42 ± 0.12 c, w | 73.92 ± 0.09 d, v | |
Day 7 | L* | 81.57 ± 0.69 a, v | 59.95 ± 0.57 b, v | 60.56 ± 0.51 b, vw | 71.18 ± 2.23 c, v |
a* | −0.87 ± 0.08 a, v | −5.11 ± 0.23 b, vw | −5.42 ± 0.37 b, v | 5.70 ± 0.21 c, v | |
b* | 9.15 ± 0.05 a, x | 23.83 ± 0.29 b, w | 25.34 ± 0.98 b, w | 18.86 ± 0.76 c, v | |
C* | 9.32 ± 0.21 a, v | 24.18 ± 0.03 b, v | 25.22 ± 0.37 b, x | 19.47 ± 1.47 c, w | |
h | 96.01 ± 0.53 a, v | 102.40 ± 0.06 b, v | 102.88 ± 0.03 b, v | 73.27 ± 0.11 c, vw | |
Day 11 | L* | 81.46 ± 0.61 a, v | 59.17 ± 0.75 b, v | 59.11 ± 0.13 b, w | 69.96 ± 0.61 c, v |
a* | −1.50 ± 0.22 a, v | −4.37 ± 0.14 b, v | −4.73 ± 0.11 b, v | 5.70 ± 0.21 c, v | |
b* | 17.46 ± 0.49 a, v | 25.67 ± 0.47 b, w | 28.17 ± 0.91 b, x | 18.62 ± 1.48 a, v | |
C* | 17.67 ± 0.53 a, y | 25.87 ± 0.08 b, v | 28.06 ± 0.36 c, v | 19.47 ± 1.47 d, w | |
h | 95.31 ± 0.22 a, v | 99.42 ± 0.20 b, w | 99.54 ± 0.24 b, w | 72.94 ± 0.78 c, w |
Samples | Chelating Activity Percent (%) | Antioxidant Activity (μmol TE/g) | ||
---|---|---|---|---|
ABTS | DPPH | ORAC | FRAP | |
Sp | 22.02 ± 0.12 a | 44.06 ± 0.32 a | 1467.20 ± 38.24 a | 1980.80 ± 6.13 a |
CBC | 16.42 ± 0.21 b | 9.55 ± 0.42 b | 7719.20 ± 56.87 b | 8858.90 ± 17.68 b |
A | 47.92 ± 0.26 c | 79.25 ± 0.52 c | 19,684 ± 56.406 c | 1899.02 ± 25.478 a |
HXTo | 83.32 ± 3.62 d | 84.16 ± 2.35 d | 41,326 ± 236.65 d | 61,326 ± 526.36 d |
HXTs | 94.32 ± 5.32 e | 89.89 ± 3.92 e | 71,326 ± 278.32 e | 65,326 ± 1362.52 e |
Control | HXTO | HXTS | Com | ||
---|---|---|---|---|---|
Day 0 | FRAP | 102.46 ± 0.82 a, w | 208.42 ± 0.54 b, w | 245.17 ± 3.95 c, w | 12.33 ± 1.82 d, w |
ORAC | 467.39 ± 0.55 a, w | 754.75 ± 1.39 b, w | 674.68 ± 1.53 c, x | 111.09 ± 6.02 d, w | |
ABTS | 22.24 ± 0.24 a, w | 43.82 ± 1.32 b, w | 60.58 ± 0.65 c, w | 8.97 ± 0.60 d, w | |
DPPH | 13.96 ± 1.52 a, w | 33.53 ± 1.61 b, w | 48.26 ± 0.66 c, w | 3.40 ± 0.84 d, w | |
Day 4 | FRAP | 66.47 ± 1.37 a, x | 107.85 ± 0.50 b, x | 186.91 ± 1.41 c, x | 9.78 ± 0.71 d, x |
ORAC | 402.15 ± 0.24 a, x | 469.09 ± 0.24 b, x | 672.57 ± 1.05 c, x | 105.34 ± 4.98 d, w | |
ABTS | 18.71 ± 0.44 a, x | 37.98 ± 1.22 b, x | 45.37 ± 1.35 c, x | 5.56 ± 0.52 d, x | |
DPPH | 2.29 ± 0.32 a, x | 28.80 ± 0.56 b, x | 35.70 ± 0.62 c, x | 2.21 ± 0.49 a, w | |
Day 7 | FRAP | 59.26 ± 1.19 a, y | 92.99 ± 1.75 b, y | 181.14 ± 1.20 c, y | 5.42 ± 2.25 a, x |
ORAC | 221.18 ± 1.05 a, y | 459.82 ± 1.12 b, y | 665.98 ± 1.00 c, x | 103.05 ± 7.64 d, w | |
ABTS | 17.35 ± 1.16 a, x | 36.65 ± 1.15 b, x | 39.38 ± 0.88 b, y | 4.44 ± 0.21 c, y | |
DPPH | 1.66 ± 0.31 a, x | 17.99 ± 0.55 b, y | 33.11 ± 1.16 c, y | 1.68 ± 0.02 a, w | |
Day 11 | FRAP | 50.09 ± 1.63 a, z | 89.37 ± 1.61 b, y | 176.68 ± 1.75 c, y | 4.59 ± 1.23 a, x |
ORAC | 90.45 ± 0.53 a, z | 459.51 ± 1.27 b, y | 647.17 ± 2.38 c, y | 86.67 ± 1.97 a, x | |
ABTS | 10.77 ± 1.14 a, y | 35.05 ± 1.82 b, x | 31.62 ± 2.23 c, z | 2.69 ± 0.47 d, z | |
DPPH | 1.11 ± 0.11 a, x | 11.31 ± 0.87 b, z | 28.36 ± 0.98 c, z | 0.44 ± 0.08 a, w |
Days of Storage | |||||
---|---|---|---|---|---|
Microorganism | Samples | 0 | 4 | 7 | 11 |
TVC | Control | 1.6 × 103 ± 200 a, w | 5.13 × 103 ± 404.15 a, w | 6.03 × 104 ± 5033.22 a b, w | 1.37 × 105 ± 55,075 b, w |
HXTs | 17.67 ± 6.81 a, w | 1.57 × 104 ± 351.19 a, w | 1.32 × 105 ± 11,239.81 b, w | 7.87 × 105 ± 70,237.69 c, x | |
HXTo | 3.57 × 103 ± 305.51 a, w | 1.7 × 104 ± 1000 a, w | 6.53 × 104 ± 5507.57 a, w | 7.63 × 105 ± 73,711.15 b, x | |
Commercial | 1.81 × 103 ± 45.83 a, w | 2.27 × 103 ± 309.89 a, w | 1.12 × 104 ± 251.66 a, w | 1.26 × 105 ± 9073.77 a, w | |
TMY | Control | <10 | 1.44 × 103 ± 45.09 a, w | 8.2 × 104 ± 3605 b, w | 1.5 × 105 ± 14,525 c, w |
HXTs | <10 | 3.78 × 103 ± 196.55 a, w | 4.07 × 104 ± 2081.67 a, w, x | 3.90 × 105 ± 29,569.12 b, y | |
HXTo | <10 | 5.57 × 103 ± 602.77 a, w | 2.78 × 104 ± 1795.36 a, x | 6.83 × 105 ± 30,550 b, x | |
Commercial | 1.7 × 103 ± 170.59 a | 2.2 × 103 ± 67.35 a, w | 2.16 x104 ± 602.77 a, x | 1.2 × 105 ± 3605.55 b, w, x, y | |
E. coli | Control | <10 | |||
HXTs | |||||
HXTo | |||||
Commercial | |||||
TCC | Control | <10 | |||
HXTs | |||||
HXTo | |||||
Commercial |
Sample | Appearance | Aroma | Texture | Taste | Color | Juiciness | Purchase Intention | Global Acceptance | Order Received | |
---|---|---|---|---|---|---|---|---|---|---|
Com | Average ± SD | 4.37 ± 0.72 | 3.50 ± 1.04 | 3.80 ± 1.03 | 3.30 ± 1.18 | 4.47 ± 0.82 | 3.93 ± 1.02 | 3.43 ± 0.97 | 3.70 ± 0.70 | 2.23 ± 1.19 |
C | 3.83 ± 1.02 | 3.40 ± 1.19 | 3.17 ± 1.15 | 3.17 ± 0.83 | 3.60 ± 1.07 | 3.17 ± 1.09 | 2.77 ± 1.10 | 3.27 ± 0.79 | 2.87 ± 1.04 | |
HXTO | 3.77 ± 1.01 | 3.17 ± 1.32 | 4.07 ± 0.79 | 3.33 ± 1.30 | 3.37 ± 1.27 | 4.07 ± 0.70 | 3.17 ± 1.32 | 3.40 ± 1.00 | 2.53 ± 1.01 | |
HXTS | 3.87 ± 0.90 | 3.43 ± 1.07 | 3.93 ± 0.79 | 3.17 ± 1.32 | 3.50 ± 1.33 | 3.87 ± 0.86 | 3.10 ± 1.32 | 3.30 ± 1.18 | 2.43 ± 1.17 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peñalver, R.; Ros, G.; Nieto, G. Development of Gluten-Free Functional Bread Adapted to the Nutritional Requirements of Celiac Patients. Fermentation 2023, 9, 631. https://doi.org/10.3390/fermentation9070631
Peñalver R, Ros G, Nieto G. Development of Gluten-Free Functional Bread Adapted to the Nutritional Requirements of Celiac Patients. Fermentation. 2023; 9(7):631. https://doi.org/10.3390/fermentation9070631
Chicago/Turabian StylePeñalver, Rocío, Gaspar Ros, and Gema Nieto. 2023. "Development of Gluten-Free Functional Bread Adapted to the Nutritional Requirements of Celiac Patients" Fermentation 9, no. 7: 631. https://doi.org/10.3390/fermentation9070631
APA StylePeñalver, R., Ros, G., & Nieto, G. (2023). Development of Gluten-Free Functional Bread Adapted to the Nutritional Requirements of Celiac Patients. Fermentation, 9(7), 631. https://doi.org/10.3390/fermentation9070631