Alternative Utilization of Pennisetum purpureum × Pennisetum americanum: Press Cake Conversion to Biobutanol
Abstract
:1. Introduction
2. Materials and Methods
2.1. Press Cake
2.2. Alkaline Pretreatment
2.3. Enzymatic Hydrolysis
2.4. Butanol Fermentation
2.4.1. Culture Preparation
2.4.2. Experimental Design
2.4.3. Butanol Fermentation Process
2.5. Analytical Methods
2.6. Statistical Analysis
2.7. Comparisons between Biobutanol Production and Combustion
3. Results and Discussion
3.1. Pretreatment of Press Cake
3.2. Enzymatic Hydrolysis
3.3. Butanol Production
3.4. Comparisons between Biobutanol Production and Combustion
3.5. Practical Applications and Future Research Perspectives
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nantasaksiri, K.; Charoen-Amornkitt, P.; Machimura, T. Land potential assessment of Napier grass plantation for power generation in Thailand using SWAT model. Model validation and parameter calibration. Energies 2021, 14, 1326. [Google Scholar] [CrossRef]
- Rengsirikul, K.; Ishii, Y.; Kangvansaichol, K.; Sripichitt, P.; Punsuvon, V.; Vaithanomsat, P.; Nakamanee, G.; Tudsri, S. Biomass Yield, Chemical Composition and Potential Ethanol Yields of 8 Cultivars of Napiergrass (Pennisetum purpureum Schumach.) Harvested 3-Monthly in Central Thailand. J. Sustain. Bioenergy Syst. 2013, 3, 107–112. [Google Scholar] [CrossRef] [Green Version]
- Wachendorf, M.; Richter, F.; Fricke, T.; Graß, R.; Neff, R. Utilization of semi-natural grassland through integrated generation of solid fuel and biogas from biomass. I. Effects of hydrothermal conditioning and mechanical dehydration on mass flows of organic and mineral plant compounds, and nutrient balances. Grass Forage Sci. 2009, 64, 132–143. [Google Scholar] [CrossRef]
- Suaisom, P.; Pholchan, P.; Aggarangsi, P. Holistic determination of suitable conditions for biogas production from Pennisetum purpureum x Pennisetum americanum liquor in anaerobic baffled reactor. J. Environ. Manag. 2019, 247, 730–737. [Google Scholar] [CrossRef]
- Johnston, H.J.; Mueller, W.; Steinle, S.; Vardoulakis, S.; Tantrakarnapa, K.; Loh, M.; Cherrie, J.W. How harmful is particulate matter emitted from biomass burning? A Thailand perspective. Curr. Pollut. Rep. 2019, 5, 353–377. [Google Scholar]
- Amiri, H.; Karimi, K. Pretreatment and hydrolysis of lignocellulosic wastes for butanol production: Challenges and perspectives. Bioresour. Technol. 2018, 270, 702–721. [Google Scholar] [CrossRef]
- Nanda, S.; Golemi-Kotra, D.; McDermott, J.C.; Dalai, A.K.; Gökalp, I.; Kozinski, J.A. Fermentative production of butanol: Perspectives on synthetic biology. New Biotechnol. 2017, 37, 210–221. [Google Scholar] [CrossRef]
- Vivek, N.; Nair, L.M.; Mohan, B.; Nair, S.C.; Sindhu, R.; Pandey, A.; Shurpali, N.; Binod, P. Bio-butanol production from rice straw—Recent trends, possibilities, and challenges. Bioresour. Technol. Rep. 2019, 7, 100224. [Google Scholar] [CrossRef]
- Wu, J.; Dong, L.; Zhou, C.; Liu, B.; Feng, L.; Wu, C.; Qi, Z.; Cao, G. Developing a coculture for enhanced butanol production by Clostridium beijerinckii and Saccharomyces cerevisiae. Bioresour. Technol. Rep. 2019, 6, 223–228. [Google Scholar] [CrossRef]
- Wackett, L.P. Biomass to fuels via microbial transformations. Curr. Opin. Chem. Biol. 2008, 12, 187–193. [Google Scholar] [CrossRef]
- Luo, H.; Zhang, J.; Wang, H.; Chen, R.; Shi, Z.; Li, X.; Ding, J. Effectively enhancing acetone concentration and acetone/butanol ratio in ABE fermentation by a glucose/acetate co-substrate system incorporating with glucose limitation and C. acetobutylicum/S. cerevisiae co-culturing. Biochem. Eng. J. 2017, 118, 132–142. [Google Scholar] [CrossRef]
- Liu, Y.K.; Chen, W.C.; Huang, Y.C.; Chang, Y.K.; Chu, I.M.; Tsai, S.L.; Wei, Y.H. Production of bioethanol from Napier grass via simultaneous saccharification and co-fermentation in a modified bioreactor. J. Biosci. Bioeng. 2017, 124, 184–188. [Google Scholar] [CrossRef] [PubMed]
- Nieves, L.M.; Panyon, L.A.; Wang, X. Engineering Sugar Utilization and Microbial Tolerance toward Lignocellulose Conversion. Front. Bioeng. Biotechnol. 2015, 3, 17. [Google Scholar] [CrossRef] [PubMed]
- Procentese, A.; Raganati, F.; Olivieri, G.; Elena Russo, M.; Marzocchella, A. Pre-treatment and enzymatic hydrolysis of lettuce residues as feedstock for bio-butanol production. Biomass Bioenergy 2017, 96, 172–179. [Google Scholar] [CrossRef]
- Phitsuwan, P.; Sakka, K.; Ratanakhanokchai, K. Structural changes and enzymatic response of Napier grass (Pennisetum purpureum) stem induced by alkaline pretreatment. Bioresour. Technol. 2016, 218, 247–256. [Google Scholar] [CrossRef]
- Tsai, M.H.; Lee, W.C.; Kuan, W.C.; Sirisansaneeyakul, S.; Savarajara, A. Evaluation of different pretreatments of Napier grass for enzymatic saccharification and ethanol production. Energy Sci. Eng. 2018, 6, 683–692. [Google Scholar] [CrossRef]
- Kim, J.S.; Lee, Y.Y.; Kim, T.H. A review on alkaline pretreatment technology for bioconversion of lignocellulosic biomass. Bioresour. Technol. 2016, 199, 42–48. [Google Scholar] [CrossRef]
- van der Pol, E.; Bakker, R.; van Zeeland, A.; Sanchez Garcia, D.; Punt, A.; Eggink, G. Analysis of by-product formation and sugar monomerization in sugarcane bagasse pretreated at pilot plant scale: Differences between autohydrolysis, alkaline and acid pretreatment. Bioresour. Technol. 2015, 181, 114–123. [Google Scholar] [CrossRef]
- Cardona, E.; Rios, J.; Peña, J.; Peñuela, M.; Rios, L. King Grass: A very promising material for the production of second generation ethanol in tropical countries. Biomass Bioenergy 2016, 95, 206–213. [Google Scholar] [CrossRef]
- He, C.R.; Kuo, Y.Y.; Li, S.Y. Lignocellulosic butanol production from Napier grass using semi-simultaneous saccharification fermentation. Bioresour. Technol. 2017, 231, 101–108. [Google Scholar] [CrossRef]
- Gao, K.; Boiano, S.; Marzocchella, A.; Rehmann, L. Cellulosic butanol production from alkali-pretreated switchgrass (Panicum virgatum) and phragmites (Phragmites australis). Bioresour. Technol. 2014, 174, 176–181. [Google Scholar] [CrossRef] [PubMed]
- Qureshi, N.; Saha, B.C.; Hector, R.E.; Dien, B.; Hughes, S.; Liu, S.; Iten, L.; Bowman, M.J.; Sarath, G.; Cotta, M.A. Production of butanol (a biofuel) from agricultural residues: Part II—Use of corn stover and switchgrass hydrolysates. Biomass Bioenergy 2010, 34, 566–571. [Google Scholar] [CrossRef]
- Sirisantimethakom, L.; Thanapornsin, T.; Laopaiboon, L.; Laopaiboon, P. Enhancement of butanol production efficiency from sweet sorghum stem juice by Clostridium beijerinckii using statistical experimental design. Chiang Mai J. Sci 2018, 45, 1235–1246. [Google Scholar]
- Boonsombuti, A.; Tangmanasakul, K.; Nantapipat, J.; Komolpis, K.; Luengnaruemitchai, A.; Wongkasemjit, S. Production of biobutanol from acid-pretreated corncob using Clostridium beijerinckii TISTR 1461: Process optimization studies. Prep. Biochem. Biotechnol. 2016, 46, 141–149. [Google Scholar] [CrossRef]
- Gao, K.; Rehmann, L. ABE fermentation from enzymatic hydrolysate of NaOH-pretreated corncobs. Biomass Bioenergy 2014, 66, 110–115. [Google Scholar] [CrossRef]
- Ding, J.C.; Xu, G.C.; Han, R.Z.; Ni, Y. Biobutanol production from corn stover hydrolysate pretreated with recycled ionic liquid by Clostridium saccharobutylicum DSM 13864. Bioresour. Technol. 2016, 199, 228–234. [Google Scholar] [CrossRef]
- Shukor, H.; Al-Shorgani, N.K.N.; Abdeshahian, P.; Hamid, A.A.; Anuar, N.; Rahman, N.A.; Kalil, M.S. Production of butanol by Clostridium saccharoperbutylacetonicum N1-4 from palm kernel cake in acetone–butanol–ethanol fermentation using an empirical model. Bioresour. Technol. 2014, 170, 565–573. [Google Scholar] [CrossRef]
- Qureshi, N.; Saha, B.C.; Dien, B.; Hector, R.E.; Cotta, M.A. Production of butanol (a biofuel) from agricultural residues: Part I—Use of barley straw hydrolysate. Biomass Bioenergy 2010, 34, 559–565. [Google Scholar] [CrossRef]
- Shanmugam, S.; Sun, C.; Zeng, X.; Wu, Y.-R. High-efficient production of biobutanol by a novel Clostridium sp. strain WST with uncontrolled pH strategy. Bioresour. Technol. 2018, 256, 543–547. [Google Scholar] [CrossRef]
- Suaisom, P. Integrated Utilisation of Pennisetum purpureum cv. Napier Pak Chong1 Grass for Renewable Energy Production. Doctoral Dissertation, Chiang Mai University, Chiang Mai, Thailand, 2019. [Google Scholar]
- Suaisom, P.; Pholchan, P.; Man, H.C.; Aggarangsi, P. Optimization of Hydrothermal Conditioning Conditions for Pennisetum purpureum x Pennisetum americanum (Napier PakChong1 grass) to Produce the Press Fluid for Biogas Production. Pertanika J. Sci. Technol. 2019, 27, 109–122. [Google Scholar]
- Van Soest, P.J. Development of a comprehensive system of feed analyses and its application to forages. J. Anim. Sci. 1967, 26, 119–128. [Google Scholar] [CrossRef]
- Miller, G.L. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 1959, 31, 426–428. [Google Scholar] [CrossRef]
- Boonchuay, P.; Techapun, C.; Leksawasdi, N.; Seesuriyachan, P.; Hanmoungjai, P.; Watanabe, M.; Srisupa, S.; Chaiyaso, T. Bioethanol Production from Cellulose-Rich Corncob Residue by the Thermotolerant Saccharomyces cerevisiae TC-5. J. Fungi 2021, 7, 547. [Google Scholar] [CrossRef]
- Boonchuay, P.; Takenaka, S.; Kuntiya, A.; Techapun, C.; Leksawasdi, N.; Seesuriyachan, P.; Chaiyaso, T. Purification, characterization, and molecular cloning of the xylanase from Streptomyces thermovulgaris TISTR1948 and its application to xylooligosaccharide production. J. Mol. Catal. B Enzym. 2016, 129, 61–68. [Google Scholar] [CrossRef]
- Qureshi, A.S.; Zhang, J.; Bao, J. High ethanol fermentation performance of the dry dilute acid pretreated corn stover by an evolutionarily adapted Saccharomyces cerevisiae strain. Bioresour. Technol. 2015, 189, 399–404. [Google Scholar] [CrossRef]
- ECHEMI. Available online: https://www.echemi.com/productsInformation/pid_Seven2824-butanol.html (accessed on 29 January 2022).
- Manatura, K.; Hung, C.H.; Chen, C.M.; Lu, J.-H.; Wu, K.-T. Energy Analysis for steam boiler burning with biomass. In Proceedings of the 4th International Conference on Sustainable Energy, Ho Chi Minh City University of Technology, Ho Chi Minh City, Vietnam, 28 October 2015. [Google Scholar]
- Ion, D.; Codrut, P. Efficiency assessment of condensing steam turbine. Adv. Environ. Ecosyst. Sustain. Tour. 2013, 203–208. [Google Scholar]
- Yeh, R.-H.; Lin, Y.-S.; Wang, T.-H.; Kuan, W.-C.; Lee, W.-C. Bioethanol production from pretreated Miscanthus floridulus biomass by simultaneous saccharification and fermentation. Biomass Bioenergy 2016, 94, 110–116. [Google Scholar] [CrossRef]
- Pensri, B.; Aggarangsi, P.; Chaiyaso, T.; Chandet, N. Potential of Fermentable Sugar Production from Napier cv. Pakchong 1 Grass Residue as a Substrate to Produce Bioethanol. Energy Procedia 2016, 89, 428–436. [Google Scholar] [CrossRef] [Green Version]
- Minmunin, J.; Limpitipanich, P.; Promwungkwa, A. Delignification of Elephant Grass for Production of Cellulosic Intermediate. Energy Procedia 2015, 79, 220–225. [Google Scholar] [CrossRef] [Green Version]
- Camesasca, L.; Ramírez, M.B.; Guigou, M.; Ferrari, M.D.; Lareo, C. Evaluation of dilute acid and alkaline pretreatments, enzymatic hydrolysis and fermentation of napiergrass for fuel ethanol production. Biomass Bioenergy 2015, 74, 193–201. [Google Scholar] [CrossRef]
- Liong, Y.Y.; Halis, R.; Lai, O.M.; Mohamed, R. Conversion of lignocellulosic biomass from grass to bioethanol using materials pretreated with alkali and the white rot fungus, Phanerochaete chrysosporium. BioResources 2012, 7, 5500–5513. [Google Scholar] [CrossRef]
- Wang, Y.; Blaschek, H.P. Optimization of butanol production from tropical maize stalk juice by fermentation with Clostridium beijerinckii NCIMB 8052. Bioresour. Technol. 2011, 102, 9985–9990. [Google Scholar] [CrossRef] [PubMed]
- Razak, M.N.A.; Ibrahim, M.F.; Yee, P.L.; Hassan, M.A.; Abd-Aziz, S. Statistical optimization of biobutanol production from oil palm decanter cake hydrolysate by Clostridium acetobutylicum ATCC 824. BioResources 2013, 8, 1758–1770. [Google Scholar]
- Malaviya, A.; Jang, Y.S.; Lee, S.Y. Continuous butanol production with reduced byproducts formation from glycerol by a hyper producing mutant of Clostridium pasteurianum. Appl. Microbiol. Biotechnol. 2012, 93, 1485–1494. [Google Scholar] [CrossRef] [PubMed]
- Zetty-Arenas, A.M.; Alves, R.F.; Portela, C.A.F.; Mariano, A.P.; Basso, T.O.; Tovar, L.P.; Maciel Filho, R.; Freitas, S. Towards enhanced n-butanol production from sugarcane bagasse hemicellulosic hydrolysate: Strain screening, and the effects of sugar concentration and butanol tolerance. Biomass Bioenergy 2019, 126, 190–198. [Google Scholar] [CrossRef]
- Sanguanchaipaiwong, V.; Leksawasdi, N. Butanol production by Clostridium beijerinckii from pineapple waste juice. Energy Procedia 2018, 153, 231–236. [Google Scholar] [CrossRef]
- Chinwatpaiboon, P.; Doolayagovit, I.; Boonsombuti, A.; Savarajara, A.; Luengnaruemitchai, A. Comparison of acid-, alkaline-, and ionic liquid–treated Napier grass as an immobilization carrier for butanol production by Clostridium beijerinckii JCM 8026. Biomass Convers. Biorefin. 2020, 10, 1071–1082. [Google Scholar] [CrossRef]
- Sivabalan, K.; Hassan, S.; Ya, H.; Pasupuleti, J. A review on the characteristic of biomass and classification of bioenergy through direct combustion and gasification as an alternative power supply. J. Phys. Conf. Ser. 2021, 1831, 012033. [Google Scholar]
- Ashani, P.N.; Shafiei, M.; Karimi, K. Biobutanol production from municipal solid waste: Technical and economic analysis. Bioresour. Technol. 2020, 308, 123267. [Google Scholar] [CrossRef]
- González-Peñas, H.; Lu-Chau, T.A.; Eibes, G.; Lema, J.M. Energy requirements and economics of acetone-butanol-ethanol (ABE) extractive fermentation: A solvent-based comparative assessment. Bioprocess Biosyst. Eng. 2020, 43, 2269–2281. [Google Scholar] [CrossRef]
Biomass | Pretreatment | Enzyme Hydrolysis | Glucose Concentration (g/L) | Glucose Yield (g/g) | Reference |
---|---|---|---|---|---|
Napier (press cake) | Alkaline pretreatment (NaOH) | iKnowZyMe AC cellulase (Thailand) 50 °C, 72 h | 34.5 | 345 mg glucose/g pretreated biomass | This study |
627 mg reducing sugar/g pretreated biomass | |||||
(259 mg reducing sugar/g dried press cake) | |||||
Napier grass sticks (removed juice) | Alkaline pretreatment (NaOH) | Cellic®CTec2 and HTec2 enzyme (Novozymes, Denmark) 50 °C, 96 h | 51.6 | 245 mg glucose/g dried raw biomass | [16] |
Acid pretreatment | 29.2 | 146 mg glucose/g dried raw biomass | |||
Acid and alkaline pretreatment | 56.9 | 217 mg glucose/g dried raw biomass | |||
King grass | Alkaline pretreatment (NaOH) | Accellerase 1500 (Genencor) | 628 mg reducing sugar/g pretreated biomass | [19] | |
Napier stems | Alkaline pretreatment (NaOH) | Cellic®CTec2 and HTec2 xylanase 50 °C, 72 h | 18.5 | [15] | |
Alkaline pretreatment (Ca(OH)2) | 11.7 | ||||
Napier grass (whole crop) | Alkaline pretreatment (NaOH) | iKnowZyMe AC cellulase (Thailand) 50 °C, 72 h | 43 | 522 mg glucose/g treated biomass | [41] |
768 mg reducing sugar/g treated biomass | |||||
Napier grass (whole crop) | Acid pretreatment | Cellulase complex NS50013 and β-glucosidase NS50010 (Novozymes, Brazil) 50 °C, 130 h | 6–9 | [43] | |
Acid and alkaline pretreatment | 23 | ||||
Napier grass (whole crop) | Alkaline pretreatment (NaOH) | Trichoderma reesei ATCC 26921 | 7.4 | 740 mg glucose/g treated biomass | [44] |
Run | pH | Sugar Concentration (mg/L) | Butanol (g/L) | Butanol Yield (g/g Reducing Sugar Utilized) |
---|---|---|---|---|
1 | −1 (5.50) | −1 (40) | 3.62 | 0.145 |
2 | +1 (6.50) | −1 (40) | 4.37 | 0.155 |
3 | −1 (5.50) | +1 (60) | 3.39 | 0.115 |
4 | +1 (6.50) | +1 (60) | 3.28 | 0.091 |
5 | −α (5.29) | 0 (50) | 3.47 | 0.094 |
6 | α (6.71) | 0 (50) | 4.13 | 0.118 |
7 | 0 (6.00) | −α (35) | 4.28 | 0.154 |
8 | 0 (6.00) | α (64) | 3.57 | 0.110 |
9 | 0 (6.00) | 0 (50) | 4.40 | 0.170 |
10 | 0 (6.00) | 0 (50) | 4.08 | 0.163 |
11 | 0 (6.00) | 0 (50) | 4.39 | 0.161 |
12 | 0 (6.00) | 0 (50) | 3.61 | 0.160 |
13 | 0 (6.00) | 0 (50) | 4.32 | 0.183 |
Term | Standard Error Coefficient | T-Value | p-Value |
---|---|---|---|
Constant | 0.714 | −6.760 | 0.000 |
A-pH | 0.221 | 6.992 | 0.000 |
B-Sugar concentration | 0.008 | 3.064 | 0.018 |
A2 | 0.017 | −6.808 | 0.000 |
B2 | 0.000 | −3.771 | 0.007 |
AB | 0.001 | −1.541 | 0.167 |
R-squared = 92.19% | |||
Adjust R-squared = 86.61% |
Biomass | Pretreatment | Butanol Fermentation | Butanol Yield (g/g) | Reference |
---|---|---|---|---|
Napier (2 cm of press cake) | 3 wt% NaOH, 10% of solid loading, 90 °C, 1 h/iKnowZyMe AC cellulase (Thailand) | C. beijerinckii TISTR 1461, pH 6.08, initial reducing sugar 43 g/L, 37 °C, 192 h, static condition | 0.30 g/g glucose utilized | This study |
0.27 g/g sugar glucose + xylose utilized | ||||
0.14 g/g reducing sugar utilized | ||||
Napier (0.38 mm) | 5 wt% NaOH, 6.67% of solid loading, 120 °C, 15 min | Immobilized C. beijerinckii JCM 8026, pH 6.5, 37 °C, 120 h, 150 rpm | 0.27 g/g glucose utilized | [50] |
Napier (0.38 mm) | 5 wt% H2SO4, 6.67% of solid loading, 120 °C, 15 min | Immobilized C. beijerinckii JCM 8026, pH 6.5, 37 °C, 120 h, 150 rpm | 0.25 g/g glucose utilized | [50] |
Napier (<0.84 mm) | 2.5 wt% NaOH, 8% of solid loading, 121 °C, 40 min/Novozymes Cellic®CTec2 | Semi-simultaneous saccharification fermentation, C. acetobutylicum ATCC 824, pH 6.8, 37 °C, 96 h, 150 rpm | 0.22 g/g sugar glucose + xylose utilized | [20] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suaisom, P.; Pholchan, P.; Chaiyaso, T.; Tippayawong, N. Alternative Utilization of Pennisetum purpureum × Pennisetum americanum: Press Cake Conversion to Biobutanol. Fermentation 2023, 9, 661. https://doi.org/10.3390/fermentation9070661
Suaisom P, Pholchan P, Chaiyaso T, Tippayawong N. Alternative Utilization of Pennisetum purpureum × Pennisetum americanum: Press Cake Conversion to Biobutanol. Fermentation. 2023; 9(7):661. https://doi.org/10.3390/fermentation9070661
Chicago/Turabian StyleSuaisom, Pitchaya, Patiroop Pholchan, Thanongsak Chaiyaso, and Nakorn Tippayawong. 2023. "Alternative Utilization of Pennisetum purpureum × Pennisetum americanum: Press Cake Conversion to Biobutanol" Fermentation 9, no. 7: 661. https://doi.org/10.3390/fermentation9070661
APA StyleSuaisom, P., Pholchan, P., Chaiyaso, T., & Tippayawong, N. (2023). Alternative Utilization of Pennisetum purpureum × Pennisetum americanum: Press Cake Conversion to Biobutanol. Fermentation, 9(7), 661. https://doi.org/10.3390/fermentation9070661